
STATISTICAL SIGNAL AND DATA PROCESSING THROUGH APPLICATIONS
Lecturer: Dr. Andrea Ridolfi
Assistant: Sepand Kashani
Spring Semester 2022

Solutions 6

2022.04.01

Solution 1. Annihilating filter vs. MUSIC

- (a) and (b): In Python we have the following code:

import matplotlib.pyplot as plt

import numpy as np

import numpy.random as npr

import scipy.linalg as spl

def gen_samples(

a: np.ndarray,

f: np.ndarray,

N_realization: int,

N_sample: int,

random_phase: bool,

) -> np.ndarray: # (N_realization, N_sample)

X = np.zeros((N_realization, N_sample), dtype=np.complex128)

for i in range(N_realization):

n = np.arange(N_sample).reshape((-1, 1))

x_ = 2 * np.pi * f * n

if random_phase:

rng = npr.default_rng()

phase = rng.uniform(0, 2 * np.pi, size=len(f))

x_ += phase

X[i] = np.exp(1j * x_).sum(axis=-1)

return X

def noisy(signal: np.ndarray, var: float) -> np.ndarray:

rng = npr.default_rng()

params = dict(loc=0, scale=0.5 * np.sqrt(var), size=signal.shape)

noise = rng.normal(**params) + 1j * rng.normal(**params)

y = signal + noise

return y

def AF_method(Y: np.ndarray, K: int):

Get best filter which annihilates all realizations

N_realization, N_sample = Y.shape

M1 = np.zeros((N_realization, K + 1, K), dtype=np.complex128)

b1 = np.zeros((N_realization, K + 1), dtype=np.complex128)

for i, y in enumerate(Y):

y = y[: 2 * K + 1]

M1[i] = spl.toeplitz(c=y[K - 1 : -1], r=y[:K][::-1])

b1[i] = -y[K:]

h, *_ = spl.lstsq(

np.concatenate(M1, axis=0),

np.concatenate(b1, axis=0),

)

h = np.r_[1, h]

w_ = np.fmod(np.angle(np.roots(h)) + 2 * np.pi, 2 * np.pi)

f = np.sort(w_ / (2 * np.pi))

Get amplitudes (per realization)

a = np.zeros((N_realization, K), dtype=np.double)

M2 = np.exp(1j * np.arange(N_sample).reshape((-1, 1)) * f)

for i, y in enumerate(Y):

b2 = y

a_, *_ = spl.lstsq(M2, b2)

a[i] = np.abs(a_)

return np.mean(a, axis=0), f

def MUSIC_method(y: np.ndarray, K: int, var: float):

Estimate correlation matrix

N_realization, N_sample = y.shape

y_ = y.reshape((N_realization, N_sample, 1))

R = np.mean(y_ * y_.transpose((0, 2, 1)).conj(), axis=0)

Get noise spectrum

D, V = spl.eigh(R)

Dn, Vn = D[:-K], V[:, :-K]

Find directions of minimum energy when projecting signal into noise space

f = np.linspace(0, 1, 1000)

E = np.exp(1j * 2 * np.pi * f.reshape((-1, 1)) * np.arange(N_sample))

residual = spl.norm(E.conj() @ Vn, axis=-1)

i = np.argsort(residual)[:K]

f = np.sort(f[i])

Estimate amplitudes.

Straightforward application of E @ (R - s^2 I) @ E.H leads to numerical issues due to ~0-valued eigenvalues in R.

We therefore transform equations a bit to overcome these issues.

D_ = np.clip(D - var, 0, None)

E = np.exp(1j * 2 * np.pi * f.reshape((-1, 1)) * np.arange(N_sample))

A_ = E @ (V * np.sqrt(D_))

a = np.sqrt(np.sum(A_ * A_.conj(), axis=-1).real)

return a, f

2

if __name__ == "__main__":

a_gt = np.r_[1, 2, 3]

f_gt = np.r_[0.2, 0.3, 0.4]

K = len(f_gt)

a_AF, f_AF = dict(), dict() # noise_var -> seq[float]

a_MU, f_MU = dict(), dict() # noise_var -> seq[float]

noise_var = np.r_[1, 4]

for n in noise_var:

X = gen_samples(

a=a_gt,

f=f_gt,

N_realization=20,

N_sample=250,

random_phase=True,

)

Y = noisy(X, var=n)

a_AF[n], f_AF[n] = AF_method(Y, K)

a_MU[n], f_MU[n] = MUSIC_method(Y, K, var=n)

fig, ax = plt.subplots()

ax.plot(f_gt, a_gt, ".", label=f"Ground Truth")

for n in noise_var:

ax.plot(f_AF[n], a_AF[n], "o", label=f"AF method, sigma^2 = {n:.02f}")

ax.plot(f_MU[n], a_MU[n], "x", label=f"MUSIC method, sigma^2 = {n:.02f}")

ax.set_xlabel("f")

ax.set_ylabel("a")

ax.legend()

fig.show()

- (c) The annihilating filter method can be used in the same way as for the previous case.
The MUSIC method can be used as well. The only difference would be when estimating
the moduli of the amplitudes from the lecture notes as the covariance matrix A of XK1[n]
changes.

Solution 2.

(a) The goal is to estimate the PSD SX(ejω) from samples X[n] of the piezo-electric sensor.
Since the PSD is assumed smooth, it can be modeled as the spectrum of an AR process
of yet-to-be-determined order M . We therefore seek an analysis filter P (z) =

∑M
k=0 pkz

−k

such that P (z)X[n] = W [n], where W [n] denotes some i.i.d. noise process of unknown
variance σ2. Provided P (z) and σ2 can be estimated, then the smooth spectrum will be
given by SX(ejω) = σ2/|P (ejω)|2.

3

Using the Yule-Walker equations

M∑
k=0

pkRX [n− k] = σ2δ[n],

one can solve the following linear system to estimate P (z) and σ2: 1 2
RX [0] · · · RX [−M] −1
RX [1] · · · RX [1−M] 0

...
. . .

...
...

RX [M + 1] · · · RX [1] 0




p0
...

pM
σ2

 =

 0
...
0

 . (1)

System (1) should be solved for increasing ordersM until the loss function M̂ = argminM≥0 ∥P (z)X[n]∥2
is minimized.

(b) If the smooth-spectrum assumption is invalid, then estimating SX(ejω) via a parametric
AR-process will require a large value M .

(c) The periodogram is a non-parametric method. Its main drawback is its limited spectral
resolution and high variance. Since mechanical stress in the mast is probably due to
resonance effects, a high-precision estimate of the spectrum is desired, hence our choice of
a parametric approach.

Solution 3.

- (a) First, it can be observed that since X[n] is a constant (X[n] = A) and W [n] is iid
with distribution N (0, 1), the process Y [n] is also iid, with distribution N (A, 1). In other
words, knowing the value of A, the joint distribution of N samples Y [0], . . . , Y [N − 1] is
given by

p(Y [1], . . . , Y [n]|A)
iid
=

N−1∏
i=0

p(Y [i]|A)

=

N−1∏
i=0

1√
2π

e−
(Y [i]−A)2

2 .

Furthermore, according to the definition, the likelihood function associated to the proba-
bility density function of the observed data is given by

L(A) ≜ p(Y [1], . . . , Y [n]|A)

=

N−1∏
i=0

1√
2π

e−
(Y [i]−A)2

2 ,

and its logarithm, the log-likelihood, is

L∗(A) = lnL(A)

= −N

2
ln 2π −

N−1∑
i=0

(Y [i]−A)2

2
.

1(1) can be re-written in various forms. The advantage of (1) is that its nullspace fully determines the solution
space.

2Recall that RX [k] = X[n] ⋆ X[−n].

4

Maximizing the likelihood function is equivalent to maximising the log-likelihood, which
can be done by setting to zero the partial derivatives of L∗(A) with respect to A. It gives:

∂L∗(A)

∂A
= 0 ⇔ 2

N−1∑
i=0

Y [i]−A

2
= 0

⇒ Â =
1

N

N−1∑
i=0

Y [i] ;

- (b) For the data provided, the mean is 5.71.

- (c) and (d) Our likelihood from the first part of the exercise have been calculated assuming
that A is a parameter, so we have p(Y [i]|A). We are now interested in posterior distribution,
that is:

p(A|Y [i]).

We can calculate it using Bayes rule:

p(A|Y [i])p(Y [i]) = p(Y [i], A) = p(Y [i]|A)p(A)

In a more elaborate way, we can write it as:

posterior× evidence = likelihood× prior.

Since evidence is probability of data, it’s constant for the given data and we can ignore it
in the optimisation. We are then interested in maximising:

p(Y [1], . . . , Y [n]|A)p(A) =

(
N−1∏
i=0

p(Y [i]|A)

)
p(A)

=

(
N−1∏
i=0

1√
2π

e−
(Y [i]−A)2

2

)
1√
2πσ2

A

e
− A2

2σ2
A

similarly like with likelihood optimisation, it’s easier to optimise the logarithm:

−N

2
ln 2π − 1

2
ln 2πσ2

A −
N−1∑
i=0

(Y [i]−A)2

2
− A2

2σ2
A

,

we want it’s derivative to be equal to zero:

−
N−1∑
i=0

(Y [i]−A) +
A

σ2
A

= 0 (2)

And maximum a posterior estimator is:

Â =

∑N−1
i=0 Y [i](
N + 1

σ2
A

) (3)

- (e) Value of the estimator Â depending on the variance of the prior σ2
A. Small variance of

the prior means we have a strong belief that A should be close to zero, and this belief is
reflected in the value of the estimator, see the plot below.

5

10 1 100 101 102

A

0

1

2

3

4

5

6

A

6

