
COM-500
STATISTICAL SIGNAL AND DATA PROCESSING THROUGH APPLICATIONS

Solutions 2

Solution 1. One system or more than one system?

(a) From the z-plane plot we see that the two zeros are z1 = jα and z2 = −jα, where 0 < α < 1
(real). Consequently the z-transform has the form H̃(z) = (1 − z1z

−1)(1 − z2z
−1) =

(1 − jαz−1)(1 + jαz−1) = 1 + jαz−1 − jαz−1 + α2z−2 = 1 + α2z−2. The corresponding
impulse response is therefore h̃(0) = 1, h̃(1) = 0, h̃(2) = α2, and h̃(k) = 0 for k ≥ 3.
Hence, h̃(n) = h(n) and H̃(z) = H(z).

(b) The z-transforms shows two zeros near the unit circle at normalized frequencies f1 = 0.25
and f2 = −0.25. Consequently the magnitude of the corresponding frequency response
|H̃(ej2πf )| should show a minimum of the frequency response at f1 = 0.25 and a minimum
at f2 = −0.25. The plot of |H(ej2πf )| (bottom) shows a maximum at f1 = 0.25 (and for
the symmetry of the spectrum, a maximum at f2 = −0.25). Consequently, |H(ej2πf )| ≠
|H(ej2πf )| and the plot of the z-transform and the plot of the magnitude of the frequency
response |H(ej2πf )| do not correspond to the same system.

Solution 2. Hilbert Spaces in Probability.
This exercise may seem strange at a first glance, but it is actually a standard exercise of linear
algebra. One should just replace the scalar product used in RN with

⟨X,Y ⟩ = E[XY ],

where X and Y are random variables defined on the same probability space. One could easily
verify that this product is actually a valid scalar product. The scalar product always induces a
norm, defined by

∥X∥ =
√
⟨X,X⟩.

With these definitions, the space H is actually a Hilbert space. (One could verify that all the
properties valid for vector spaces hold for the set H and also that H is complete.)
The space H is generated by the random variables X0, X1, X2 which represent a basis of the
space. They are the vectors of the space and one can apply the usual vector operations on them.

(a) The subspace W is the subspace of H generated by the vectors (i.e. the random variables)
X0 and X1. To determine an orthogonal basis, one can apply the Gram-Schmidt procedure:

Y0 = X0

∥X0∥
Y1 = X1−⟨X1,Y0⟩Y0

∥X1−⟨X1,Y0⟩Y0∥ ,

and replace the scalar product and the norm with the definitions that we presented earlier.
We obtain,
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(b) To determine the best approximation ofX2 inW , say X̂2, we write it as a linear combination
of X0 and X1 (or equivalently of Y0 and Y1),

X̂2 = b0X0 + b1X1.

The error of the approximation is given by

E = X2 − X̂2

To apply the projection theorem we impose that the approximation error is orthogonal to
W . This correspond to the two equations:

⟨E,X0⟩ = 0
⟨E,X1⟩ = 0,

which gives the linear system:{
⟨X0, X0⟩b0 + ⟨X1, X0⟩b1 = ⟨X2, X0⟩
⟨X0, X1⟩b0 + ⟨X1, X1⟩b1 = ⟨X2, X1⟩.

The solution of the system is
b0 = − 1

6
b1 = 7

12 ;

therefore, X̂2 = −X0/6 + 7X1/12.

Solution 3. Links between definitions

(a) True If a WSS process is real valued, then it’s (auto)correlation is symmetric. Since
the Power Spectral Density is defined as the (Discrete Time) Fourier Transform of the
correlation of the process:

SX(ω) =

∞∑
k=−∞

RX [k]e−ikω,

we can use the property that the Fourier Transform of a symmetric signal is real valued.

Alternatively, we can use the intuition from the lecture, that the Power Spectral Density is
the expected value of the square of the Fourier Transform of the signal, and thus it’s real
valued.

Additional remark, not in the scope of the class: if you want to define the Power Spectral
Density for a non stationary signal, you have to do this locally, because the signal is going
to change over time, and you can’t rely on RX . You can define the Power Spectral Density
as exactly the expected value of the square of the Fourier Transform of the signal on some
interval:

ŜX,N (ω) = E

∣∣∣∣∣ 1√
N

N−1∑
k=0

X[k]e−jkω

∣∣∣∣∣
2

=
1

N
E

(
N−1∑
k=0

N−1∑
m=0

X[k]X∗[m]e−jω(k−m)

)
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Then, if you assume that the signal is actually stationary, you can simplify this expression
as follows:

ŜX,N (ω) =
1

N

N−1∑
k=0

N−1∑
m=0

E
(
X[k]X∗[m]e−jω(k−m)

)
=

N−1∑
l=−N+1

N − l

N
RX [l]e−jlω −−−−→

N→∞

∞∑
l=−∞

RX [l]e−jlω

And therefore in the limit we get our “standard” PSD:

ŜX,N (ω) −−−−→
N→∞

SX(ω)

which formalises intuition that the Power Spectral Density is exactly the expected value of
the square of the Fourier Transform.

(b) False. A SSS process implies that it’s values are indeed identically distributed, but not
always independent. A simple counterexample is the discrete process built as follows:

X[n] = X[0] = Y for every n

where Y is a (non constant) random variable. The process is clearly SSS, the variables Y
are identically distributed, but are dependent.

(c) True It follows from the properties of expected value. If X and Y are independent, then
E(XY ) = E(X)E(Y ), and therefore:

E
(
(X − E(X))(Y − E(Y )

)
= E(XY )− E(X)E(Y ) = 0,

so X and Y are uncorrelated.

Solution 4. A Simple AR Process

(a) The recursion formula

X[n+ 1] = aX[n] +W [n+ 1], n ≥ 0

yields

X[1] =aX[0] +W [1]

X[2] =aX[1] +W [2] = a2X[0] + aW [1] +W [2]

X[3] =aX[2] +W [3] = a3X[0] + a2W [1] + aW [2] +W [3]

...

X[n] =anX[0] + an−1W [1] + an−2W [2] + · · ·+W [n]

=anX[0] +

n−1∑
k=0

akW [n− k].
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Hence the mean of X[n] is given by

E [X[n]] = anE [X[0]] +

n−1∑
k=0

akE [W [n− k]] = 0

since both E [X[0]] = 0 and E [W [j]] = 0, ∀j ≥ 0.

The variance of X[n] is given by

E
[
|X[n]|2

]
= E

(anX[0] +

n−1∑
k=0

akW [n− k]

)anX[0] +

n−1∑
j=0

ajW [n− j]

∗
= |a|2nE

[
|X[0]|2

]
+

n−1∑
j=0

ana∗jE [X[0]W ∗[n− j]]

+

n−1∑
k=0

aka∗nE [W [n− k]X∗[0]]

+
n−1∑
k,j=0

aka∗jE [W [n− k]W ∗[n− j]]

Recall that E
[
|X[0]|2

]
= c2, the sequence of random variables W [n] and X[0] are indepen-

dent and centered, thus E [X[0]W ∗[n− j]] = E [W [n− k]X∗[0]] = 0, ∀0 ≤ j, k ≤ (n − 1)
and E [W [n− k]W ∗[n− j]] = σ2δ[j − k]. Combining these observations, we have

E
[
|X[n]|2

]
= |a|2nc2 + σ2

n−1∑
k,j=0

aka∗jδ[j − k]

= |a|2nc2 + σ2
n−1∑
k=0

|a|2k

= |a|2nc2 + σ2

(
1− |a|2n

1− |a|2

)
(b) If c2 = σ2

1−|a|2 , the variance of X[n] is independent of n and is given by

E
[
|X[n]|2

]
=

σ2

1− |a|2
.

Following the same steps in part (a), one can show that

X[n+ k] = akX[n] + ak−1W [n+ 1] + ak−2W [n+ 2] + · · ·+W [k + n]. (1)

Thus 
X[n]

X[n+ 1]
...

X[n+ k]

 = A


X[n]

W [n+ 1]
...

W [n+ k]


The distribution of (X[n],W [n+ 1], · · · ,W [n+ k]) is independent of n ≥ 0, and therefore
the distribution of (X[n], · · · , X[n + k]) is independent of n ≥ 0, therefore {X[n]}n≥0 is
strictly stationary.
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(c) Recall that
X[n]− aX[n− 1] = W [n],

thus ⟨X[n] − aX[n − 1], u⟩ = ⟨W [n], u⟩ = 0 for all u ∈ H(X,n − 1) since H(X,n − 1) =
H(W,n− 1) (see Theorem 2.2 in class notes). Recall that, roughly speaking, H(W,n− 1)
is composed of linear combinations of W [n− 1],W [n− 2], . . . . Note also that aX[n− 1] ∈
H(X,n− 1) (since it is a linear function of X[n− 1]), hence by the projection theorem this

is the best linear approximation (best in least square sense) for X[n], thus X̂[n|n − 1] =
aX[n− 1].

(d) The whitening filter makes {X[n]}n≥0 a white noise, here we have

X[n]− aX[n− 1] = W [n],

so it is clear that P (z) = 1− az−1. The generating filter is given by

Hs(z) =
1

P (z)
=

1

(1− az−1)
=
∑
n≥0

anz−n

and
X[n] = W [n] + aW [n− 1] + a2W [n− 2] + · · ·+ akW [n− k] + . . .

(e) Using (1) we obtain

E [X[n+ k]X∗[n]] =E

akX[n] +

k−1∑
j=0

ajW [n+ k − j]

X∗[n]


=akE

[
|X[n]|2

]
+

k−1∑
j=0

ajE [W [n+ k − j]X∗[n]]

=akE
[
|X[n]|2

]
=ak

(
|a|2nc2 + σ2

(
1− |a|2n

1− |a|2

))
where the last equality follows from part (a) and E [W [n+ k − j]X∗[n]] = 0 since W [n +

k − j] and X[n] are independent ∀0 ≤ j ≤ k − 1. Plugging c2 = σ2

1−|a|2 yields

RX [k] = ak
σ2

1− |a|2
.

Note that the above equality together with the fact that E [X[n]] = 0 shows that the

process {X[n]}n≥0 is wide sense stationary with the special condition c2 = σ2

1−|a|2 . Since

the process is wide sense stationary and Gaussian, it is strictly stationary. Recall that
the statistics of a Gaussian process is completely determined by its first and second order
properties.

(f) Again from (1), we have

X[n] = a2X[n− 2] + aW [n− 1] +W [n].

thus ⟨X[n]− a2X[n− 2], u⟩ = ⟨aW [n− 1], u⟩+ ⟨W [n], u⟩ = a⟨W [n− 1], u⟩+ ⟨W [n], u⟩ = 0
for all u ∈ H(X,n − 2) since H(X,n − 2) = H(W,n − 2) and the random variables
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W [n−2],W [n−3], . . . are independent of W [n−1] and W [n]. Note also that a2X[n−2] ∈
H(X,n− 2), hence by the projection theorem this is the best least square approximation

for X[n] knowing X[n− 2], X[n− 3], . . . , thus X̂[n|n− 2] = a2X[n− 2].
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