
COM-500
STATISTICAL SIGNAL AND DATA PROCESSING THROUGH APPLICATIONS

Solutions 9

Solution 1. Correlating and Decorrelating Signals

(a) The set of random variables Y is determined as

Yi =

N−1∑
k=0

αi,k ·Xk.

The correlation function is given by

Ri,j = E[Yi · Yj ] = E[
N−1∑
k=0

N−1∑
l=0

αi,kαj,lXkXl]

=

N−1∑
k=0

N−1∑
l=0

αi,kαj,lE[XkXl].

Since the random variables Xi are normalized and independent, the correlation simplifies
to

Ri,j =

N−1∑
k=0

N−1∑
l=0

αi,kαj,lδ[k − l] =

N−1∑
k=0

αi,kαj,k.

(b) From (a) we can see that the correlation matrix RY is defined as RY = A · AT . If we
apply the det operator, we obtain

det (RY ) = det (A) · det
(
AT

)
= (det (A))

2
. (1)

The correlation matrixRy can also be expressed in terms of its eigenvalues and eigenvectors
as

RY = VY ·ΛY ·VT
Y ,

where Vy is a matrix containing the eigenvectors as columns and Λy is a diagonal matrix
with the eigenvalues along the diagonal.

Similarly, we can write

det (RY ) = det (VY ) · det (ΛY ) · det
(
VT

Y

)
=

N−1∏
i=0

λi (2)

because ΛY is diagonal and det (VY ) = 1. Therefore from (1) and (2), we have

det (RY ) = (det (A))
2
=

N−1∏
i=0

λi.

It follows that

det (A) =

N−1∏
i=0

λ
1/2
i .



(c) The KLT matrix T is given by T = VT
Y because it contains the eigenvectors of the corre-

lation matrix as the rows. Therefore, we can write

Z[n] = VT
Y ·Y[n].

The correlation RZ is given by RZ = E
[
Z[n] · ZT [n]

]
. It follows

RZ = E
[
VT

Y ·Y[n] ·YT [n] ·VY

]
= VT

Y ·RY ·VY .

From (b) we know that RY = VY ·ΛY ·VT
Y . Therefore

RZ = VT
Y ·VY ·ΛY ·VT

Y ·VY = ΛY ,

because VT
Y · VY = I. The correlation matrix RZ is diagonal and, thus, the variables

Zi[n], for i = 0, 1, . . . , N − 1, are uncorrelated. If the random variables are Gaussian,
uncorrelation is equivalent to independence.

Solution 2. KLT of circulant correlation matrices

(a) The KLT matrix T is given by the eigenvectors of Rx:

T =


−1/2 1/2 −1/2 1/2

0 −
√
(2)/2 0

√
(2)/2√

(2)/2 0 −
√
(2)/2 0

1/2 1/2 1/2 1/2


To show that this is indeed a KLT matrix we compute TRxT

T :

TRxT
T =


0.4 0 0 0
0 0.8 0 0
0 0 0.8 0
0 0 0 2

 ,

which is a diagonal matrix.

(b) The DFT matrix SN [k, n] = W−kn
N of size N = 4 is given by:

D =


1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

 .

If we compute now S∗
NRxSN we obtain:

S∗
NRxSN =


8 0 0 0
0 3.2 0 0
0 0 1.6 0
0 0 0 3.2

 ,

which is also a diagonal matrix.
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(c) Both transforms T and SN give a diagonal correlation matrix and can be used as a decor-
relation transform. However, the DFT matrix is constant for a given N and much easier
to compute that the KLT matrix. However, the DFT matrix does not always produce the
same results of the KLT. This exercise is a particular case where X is periodic and Rx is a
circulant matrix. The reason is that the DFT matrix diagonalizes ANY circulant matrix.
Therefore, if Rx is a circulant matrix, the DFT matrix is preferable as a decorrelation
transform.

Solution 3. Automatic Classification of Sound Waves
The problem here is to denoise y[n] which is a realization of a 4-state Markov chain X[n] plus
Gaussian noise W [n], the latter being centered and having variance σ2

W . Since X[n] is discrete-
valued, the only denoising approach is to use a mixture model (Markovian). We suppose the 4
states of the Markov chain {α, β, γ, δ} are coded into 4 numerical values {m1,m2,m3,m4}.

- Mixture Model
The distribution of Y [n] can be written as a Markovian mixture model. Calling y =
[y[1], . . . , y[1000]] the realization of Y = [Y [1], . . . , Y [1000]], and X = [X[1], . . . , X[1000]]
the corresponding underlying Markov process, we have

fY (y) =
∑
x∈X

1000∏
n=1

fx[n](y[n])P (X = x) =
∑
x∈X

1000∏
n=1

fx[n](y[n])πx[1]px[1]x[2] . . . px[999]x[1000]

where:

– X represents the set of all the possible value combinations of x = [x[1], . . . , x[1000]]
where each x[n] takes value in a set of four possible values {m1,m2,m3,m4}, n =
1, . . . , 1000;

– fx[n](y[n]) = Gx[n],σ2
W
(y[n]) is a Gaussian distribution with mean given by the value

x[n] and variance σ2
W , n = 1, . . . , 1000;

– πx[1], is the initial probability, x[1] ∈ m1,m2,m3,m4, and px[n]x[n+1], x[n], x[n+ 1] ∈
{m1,m2,m3,m4}, n = 1, . . . , 999, are the transition probabilities.

Notice that the model parameters are

– The means of the 4 Gaussian distributions mi, i = 1, . . . , 4;

– The common variance of the 4 Gaussian distributions σ2
W ;

– The initial probabilities πmi , that we can also write as πi, i = 1, . . . , 4;

– The transition probabilities πmjmi
that we can also write as πji, j, i = 1, . . . , 4;

- Parameter Estimation (MLE)
Applying the (modified) EM algorithm, to the likelihood function

h(y|θ =
{
σ2
W ,mi, πi, pij ; i, j = 1, . . . , 4

}
) =

∑
x∈X

1000∏
n=1

fx[n](y[n])πx[1]px[1]x[2] . . . px[999]x[1000] ,

enables the estimation of the parameters of the model θ̂ (via the maximum likelihood
technique).

In particular, we obtain the 4 numerical values m̂i, i = 1, . . . , 4, of the Markov chain.
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- Denoising of the Markov Chain (MAP)
Once the parameters of the mixture model are known, we can estimate the denoised values
of the Markov chain x̂ = [x̂[1], . . . , x̂[1000]] by maximizing the a-posteriori distribution

x̂ = argmax
x

P (X = x |y) ,

where
P (X = x |y) ∝ fY (y |X = x)P (X = x) ,

under the constraint
1000∑
n=1

4∏
i=1

(x[n]− m̂i) = 0.
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