COM-500
STATISTICAL SIGNAL AND DATA PROCESSING THROUGH APPLICATIONS
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Solutions 8

Solution 1. FIRING NEURON

(a)

Random variables N;, i = 1,...,20 obey the Poisson distribution given by

Nee=A
P(N;=k)= A
Note that the parameter ¢ has been omitted since each interval ¢ is one second long.

Since the activity of the recorded neuron is modeled by a Poison process, and random
variables N;, ¢ = 1,...,20 model the number of spikes in non-overlapping intervals, they
are independent. Therefore

P(Nl :nl,...7N20 :ngo)
:P(Nl :n1)~...-P(N20:n20)
)\’I’Lle—A )\’ngo e—)\

7?,1! ’/ZQO!

Random variable N obeys the Poisson distribution as well:

20\)™ —20A
P(N =n) = (20)"e™ % .
n!
Denote by n the number of recorded spikes in the entire experiment (in our case, n = 100).
The Poisson process likelihood function is a function of the parameter A (firing rate) given
by the probability that random variable N takes the value n:

20))"e 20
fn(n)=fn(N=mn; A= %
Maximizing the likelihood function fy(n; A) is equivalent to maximizing its log-likelihood
In fx(n; A). The value of the parameter \ is obtained by taking the derivative of the
log-likelihood with respect to A and equating it to zero:
Oln fxy(n; A)  n

O A 0=0

It follows that A\ = 5.

In order to be able to characterize the Markov chain, we need to estimate two state proba-
bilities: w3 and mg, and four transition probabilities: ps3, pss, ps3, and pgg. However, since
state probabilities and transition probabilities from each state should sum to one, we know
that three parameters: mg, pss and pgs are dependent, and need not be determined.



(e) The Markov chain likelihood function is a function of a set © of Markov chain parameters
(state and transition probabilities), and is given by the probability that a sequence of
Markov chain’s states is equal to the given sequence:

Jang,... ao](A1s .. Aoo; ©) = P(A[1] = Aq, ..., A[20] = Aog; ©)
Using the Markov chain property, we obtain

Tan)apoy (A1, - Az0; ©) = P(A[20] = Ago|A[19] = Aig) X ...

x P(A[2] = M| A[1] = Ar) x
x P(A[l] = \)
= PXaoAie v T PAA T -

(f) We start by maximizing the log-likelihood In fap,... a20](A1, - -+, A2o; ©) subject to state
and transition probabilities’ constraints:

J=Iprore + .-+ npr,n, +1nmy,
—aq(m3 + 718 — 1) — aa(ps3 + p3g — 1) — az(pss +psg — 1) .

Using the observed data, we have

J =25Inps3 4+ 61Inpss + 61npgs + 21Inpgs + Inms
—aq(m3 + 78 — 1) — aa(p3s + p3s — 1) — a3(pss +psg — 1) .

Taking partial derivatives of J w.r.t. state and transition probabilities and equating them
to zero, one obtains the following estimation for Markov chain parameters:
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Solution 2.
(a) We have:

Xo[n] = Vo[n] + Vo[n — 1] + S[n] =
_ { Vo[n] + Vo[n — 1] + Vi[n], nis even
" Vo[n] + Vo[n — 1] + Va[n], nis odd

Process Xy[n] is a sum of two processes D[n] and S[n] that are Gaussian at every instant.
Therefore, Xg[n] is Gaussian, as well. To check if the process is wide sense stationary we
compute the mean and the variance.

E[Xo[n]] =0

E[Xo[n]Xo[n]] = E[(Vo[n] + Vo[n — 1] + S[n]) (Vo[n] + Vo[n — 1] + S[n])]

2 2 :
_ { 20‘2,0 + 0‘2/1’ n is even
207, + oy,, nisodd



We can see that S[n] is not a wss process and consequently Xg[n] is not wss.

In order to compute the correlation of Xy[n] we need first to compute the correlation of

Sln].

E[Vi[n]Vi[m]] = 6[n — m]o},, n and m are even
Rsfn,m] = Bisialstm] = 3 il = 0 s odd. m v
E[Va[n]Va[m]] = 6[n — mlop,, n and m are odd
Then,
Rxo[n,m] = E[Xo[n]Xo[m]]
= E[(W[n] +V0[n— 1]+ S[n])(Volm] + Vo[m — 1] + S[m])]
= 207,0[n—m]+ oy, 6[n—1—m]+oy,6n—m+ 1]+ Rsgln,m]
{ 207, 6[n — m] + avlé[ m], n and m are even
= 207, 6[n — m]+av26[n—m], n and m are odd
oy, 0[n —1—m]+oy,6n—m+1], otherwise

(b) We define the cost function as:

Tmin = E[[D[n] =Y fu(k) Xo[n — K]|%].
k=0

The optimal filter is given by:

BRI e B

where
Rpx,[n,m] = E[D[n]Xo[m]] = E[D[n](D[m] + S[m])] = Rp[n,m] + Rps[n,m],

Rpln,m] = 20%/06[n —m|+ 0‘2,—05[71 —1-m]+ 0‘2,—05[71 —m+ 1],
Rps[n,m] =0 for all n and m

Then, when n is even we have:

fa0) ] [ 202 +02 o3 ] '[20% ] [ 71
i |- Nk

f’ﬂ (1) 0‘2/0 20—‘2/0 + 0-‘2/2

and when n is odd we have:
[ £(0) ] B [ 2% +0%,  o% }1 { 202, ] B { 5/11 }
fn(1) o, 207, +0v, o, 2/11 |-
(c) We define the cost function as:

Tmin = E[|S[n] = > fu(k)X1[n — k][],



The optimal filter is given by:

{ £a(0) } _ [ Rx,[nn]  Rx,[n—1,n] ] { Rsx,[n.n]
fn(1) Rx,[n,n—1] Rx,[n—1,n—1] Rsx,[n,n —1]
where

Rx,[n,m] = E[Xi[n]X:i[m]

= E[(Vs[n] = Vs[n — 1] + S[n])(Vs[m] — Va[m — 1] + S[m])]

= 207,6[n —m] — oy, 0[n — 1 —m] — 07,6[n — m+1] + Rg[n,m]

20, 0[n — m] + a3y, 6[n — m), n and m are even
= 207, 6[n — m] + oy, d[n — m), n and m are odd
—oy,0[n —1—m] — oy, 6[n —m+1], otherwise

Rsx, [n,m] = E[S[n]X1[m]] = E[S[n](V3[m] — V3[m — 1] + S[m])]
oy, 6[n—m] nm even
= Rg[n,m| =< 0% 6ln—m] nmodd
0 otherwise
For even n we have:
f0) ] _[20%,+08, =o' [6} ]_[ 607
fa(1)y | —0‘2,3 20‘2,3 + 0‘2/2 0 | 117 |
and when n is odd we have:

fa0) ] [ 20% 402 0% 1'% ][ 12/17
fa(1) | -0y, 20%, + oy, 0 | | 217 |”

The estimated of D[n] can be determine as:

D[n] = Xq[n] — S[n]
(d) The optimal filter is obtained in the same way as before

AR b Y P

where

bt < 1[50 ] o o ] - [ il i |

and

Rl = [ ol ],



