
COM-500
STATISTICAL SIGNAL AND DATA PROCESSING THROUGH APPLICATIONS

Solutions 8

Solution 1. Firing Neuron

(a) Random variables Ni, i = 1, . . . , 20 obey the Poisson distribution given by

P (Ni = k) =
λke−λ

k!
.

Note that the parameter t has been omitted since each interval i is one second long.

Since the activity of the recorded neuron is modeled by a Poison process, and random
variables Ni, i = 1, . . . , 20 model the number of spikes in non-overlapping intervals, they
are independent. Therefore

P (N1 = n1, . . . , N20 = n20)

= P (N1 = n1) · . . . · P (N20 = n20)

=
λn1e−λ

n1!
· . . . · λ

n20e−λ

n20!
.

Random variable N obeys the Poisson distribution as well:

P (N = n) =
(20λ)ne−20λ

n!
.

(b) Denote by n the number of recorded spikes in the entire experiment (in our case, n = 100).
The Poisson process likelihood function is a function of the parameter λ (firing rate) given
by the probability that random variable N takes the value n:

fN (n) = fN (N = n; λ) =
(20λ)ne−20λ

n!
.

(c) Maximizing the likelihood function fN (n; λ) is equivalent to maximizing its log-likelihood
ln fN (n; λ). The value of the parameter λ is obtained by taking the derivative of the
log-likelihood with respect to λ and equating it to zero:

∂ ln fN (n; λ)

∂λ
=

n

λ
− 20 = 0 .

It follows that λ = n
20 .

(d) In order to be able to characterize the Markov chain, we need to estimate two state proba-
bilities: π3 and π8, and four transition probabilities: p33, p38, p83, and p88. However, since
state probabilities and transition probabilities from each state should sum to one, we know
that three parameters: π8, p38 and p83 are dependent, and need not be determined.



(e) The Markov chain likelihood function is a function of a set Θ of Markov chain parameters
(state and transition probabilities), and is given by the probability that a sequence of
Markov chain’s states is equal to the given sequence:

fΛ[1],...,Λ[20](λ1, . . . , λ20; Θ) = P (Λ[1] = λ1, . . . ,Λ[20] = λ20; Θ)

Using the Markov chain property, we obtain

fΛ[1],...,Λ[20](λ1, . . . , λ20; Θ) = P (Λ[20] = λ20|Λ[19] = λ19)× . . .

× P (Λ[2] = λ2|Λ[1] = λ1)×
× P (Λ[1] = λ1)

= pλ20λ19 · . . . · pλ2λ1πλ1 .

(f) We start by maximizing the log-likelihood ln fΛ[1],...,Λ[20](λ1, . . . , λ20; Θ) subject to state
and transition probabilities’ constraints:

J = ln pλ20λ19 + . . .+ ln pλ2λ1 + lnπλ1

− α1(π3 + π8 − 1)− α2(p33 + p38 − 1)− α3(p83 + p88 − 1) .

Using the observed data, we have

J = 5 ln p33 + 6 ln p38 + 6 ln p83 + 2 ln p88 + lnπ3

− α1(π3 + π8 − 1)− α2(p33 + p38 − 1)− α3(p83 + p88 − 1) .

Taking partial derivatives of J w.r.t. state and transition probabilities and equating them
to zero, one obtains the following estimation for Markov chain parameters:

π̂3 = 1, π̂8 = 0, p̂33 =
5

11
, p̂38 =

6

11
, p̂83 =

3

4
, p̂88 =

1

4
.

Solution 2.

(a) We have:

X0[n] = V0[n] + V0[n− 1] + S[n] =

=

{
V0[n] + V0[n− 1] + V1[n], n is even
V0[n] + V0[n− 1] + V2[n], n is odd

Process X0[n] is a sum of two processes D[n] and S[n] that are Gaussian at every instant.
Therefore, X0[n] is Gaussian, as well. To check if the process is wide sense stationary we
compute the mean and the variance.

E[X0[n]] = 0

E[X0[n]X0[n]] = E[(V0[n] + V0[n− 1] + S[n])(V0[n] + V0[n− 1] + S[n])]

=

{
2σ2

V0
+ σ2

V1
, n is even

2σ2
V0

+ σ2
V2
, n is odd
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We can see that S[n] is not a wss process and consequently X0[n] is not wss.

In order to compute the correlation of X0[n] we need first to compute the correlation of
S[n].

RS [n,m] = E[S[n]S[m]] =


E[V1[n]V1[m]] = δ[n−m]σ2

V1
, n and m are even

E[V1[n]V2[m]] = 0, n even, m odd
E[V2[n]V1[m]] = 0, n odd, m even
E[V2[n]V2[m]] = δ[n−m]σ2

V2
, n and m are odd

Then,

RX0 [n,m] = E[X0[n]X0[m]]

= E[(V0[n] + V0[n− 1] + S[n])(V0[m] + V0[m− 1] + S[m])]

= 2σ2
V0
δ[n−m] + σ2

V0
δ[n− 1−m] + σ2

V0
δ[n−m+ 1] +RS [n,m]

=


2σ2

V0
δ[n−m] + σ2

V1
δ[n−m], n and m are even

2σ2
V0
δ[n−m] + σ2

V2
δ[n−m], n and m are odd

σ2
V0
δ[n− 1−m] + σ2

V0
δ[n−m+ 1], otherwise

(b) We define the cost function as:

Jmin = E[|D[n]−
1∑

k=0

fn(k)X0[n− k]|2].

The optimal filter is given by:[
fn(0)
fn(1)

]
=

[
RX0

[n, n] RX0
[n− 1, n]

RX0
[n, n− 1] RX0

[n− 1, n− 1]

]−1 [
RDX0

[n, n]
RDX0

[n, n− 1]

]
where

RDX0
[n,m] = E[D[n]X0[m]] = E[D[n](D[m] + S[m])] = RD[n,m] +RDS [n,m],

RD[n,m] = 2σ2
V0
δ[n−m] + σ2

V0
δ[n− 1−m] + σ2

V0
δ[n−m+ 1],

RDS [n,m] = 0 for all n and m

Then, when n is even we have:[
fn(0)
fn(1)

]
=

[
2σ2

V0
+ σ2

V1
σ2
V0

σ2
V0

2σ2
V0

+ σ2
V2

]−1 [
2σ2

V0

σ2
V0

]
=

[
7/11
1/11

]
,

and when n is odd we have:[
fn(0)
fn(1)

]
=

[
2σ2

V0
+ σ2

V2
σ2
V0

σ2
V0

2σ2
V0

+ σ2
V1

]−1 [
2σ2

V0

σ2
V0

]
=

[
5/11
2/11

]
.

(c) We define the cost function as:

Jmin = E[|S[n]−
1∑

k=0

fn(k)X1[n− k]|2].
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The optimal filter is given by:[
fn(0)
fn(1)

]
=

[
RX1 [n, n] RX1 [n− 1, n]
RX1

[n, n− 1] RX1
[n− 1, n− 1]

]−1 [
RSX1 [n, n]

RSX0
[n, n− 1]

]
where

RX1
[n,m] = E[X1[n]X1[m]]

= E[(V3[n]− V3[n− 1] + S[n])(V3[m]− V3[m− 1] + S[m])]

= 2σ2
V3
δ[n−m]− σ2

V3
δ[n− 1−m]− σ2

V3
δ[n−m+ 1] +RS [n,m]

=


2σ2

V3
δ[n−m] + σ2

V1
δ[n−m], n and m are even

2σ2
V3
δ[n−m] + σ2

V2
δ[n−m], n and m are odd

−σ2
V3
δ[n− 1−m]− σ2

V3
δ[n−m+ 1], otherwise

,

RSX1
[n,m] = E[S[n]X1[m]] = E[S[n](V3[m]− V3[m− 1] + S[m])]

= RS [n,m] =


σ2
V1
δ[n−m] n,m even

σ2
V2
δ[n−m] n,m odd

0 otherwise

For even n we have:[
fn(0)
fn(1)

]
=

[
2σ2

V3
+ σ2

V1
−σ2

V3

−σ2
V3

2σ2
V3

+ σ2
V2

]−1 [
σ2
V1

0

]
=

[
6/17
1/17

]
,

and when n is odd we have:[
fn(0)
fn(1)

]
=

[
2σ2

V3
+ σ2

V2
−σ2

V3

−σ2
V3

2σ2
V3

+ σ2
V1

]−1 [
σ2
V2

0

]
=

[
12/17
2/17

]
.

The estimated of D[n] can be determine as:

D̂[n] = X0[n]− Ŝ[n]

(d) The optimal filter is obtained in the same way as before[
f̄n,0
f̄n,1

]
=

[
RX̄ [n, n] RX̄ [n− 1, n]
RX̄ [n, n− 1] RX̄ [n− 1, n− 1]

]−1 [
RDX̄ [n, n]

RDX̄ [n, n− 1]

]
where

RX̄ [n,m] = R

[[
X0[n]
X1[n]

]
[ X∗

0 [m] X∗
1 [m] ]

]
=

[
RX0

[n,m] RX0X1
[n,m]

RX1X0
[n,m] RX1

[n,m]

]
,

and

RDX̄ [n,m] =

[
RDX0

[n,m]
RDX1 [n,m]

]
.
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