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Solution 1.

(a) We want to minimize the error

E[n] = D[n]− Y [n] = D[n]−
∑
i

fn[i]X[n− i]

where

X[n] =
∑
k

h[k]D[n− k] + S[n].

If we define the cost function as
Jn = E[E[n]2],

then the normal equations imply:

L−1∑
j=0

fn[j]RX [n− j, n− i] = RDX [n, n− i] i = 0, . . . , L− 1, ∀n ∈ Z.

Now, we compute RX [n− j, n− i] and RDX [n, n− i] for the case where D[n] = V0[n].

RX [n− j, n− i] = E[(h[0]V0[n− j] + h[1]V0[n− j − 1] + S[n− j])

(h[0]V0[n− i] + h[1]V0[n− i− 1] + S[n− i])]

= 2RV0 [i− j] +RV0 [i− j + 1] +RV0 [i− j − 1] + σ2
Sδ[i− j]

= 2ρ
|i−j|
0 + ρ

|i−j+1|
0 + ρ

|i−j−1|
0 + σ2

Sδ[i− j],

RDX [n, n− i] = E[V0[n] · (h[0]V0[n− i] + h[1]V0[n− i− 1] + S[n− i])]

= RV0
[i] +RV0

[i+ 1]

= ρ
|i|
0 + ρ

|i+1|
0 ,

We can see that the processes D[n] and X[n] are stationary BUT the filter fn is not a
Wiener filter since we limit its length to L = 3.

From the Yule-Walker equation we have

fn = R−1
X,nRDX,n. fn[0]

fn[1]
fn[2]

 =

 2 + 2ρ0 + 1 2ρ0 + 1 + ρ20 2ρ20 + ρ0 + ρ30
2ρ0 + 1 + ρ20 2 + 2ρ0 + 1 2ρ0 + ρ20 + 1
2ρ20 + ρ0 + ρ30 2ρ0 + 1 + ρ20 2 + 2ρ0 + 1

−1  1 + ρ0
ρ0 + ρ20
ρ20 + ρ30

 .



Replacing ρ0 = 1/2, we get

fn = [0.3944 − 0.0361 0.0031]T .

We compute E[|E[n]|2] from the formula:

E[|E[n]|2] = E[(D[n]− fTXn)
2]

= σ2
D + fTRXf − 2fTRDX = 0.4343.

When the switch is in position “1”, all the steps are the same and we need to change V0

to V1. In that case we have, fn[0]
fn[1]
fn[2]

 =

 2 + 2ρ1 + 1 2ρ1 + 1 + ρ21 2ρ21 + ρ1 + ρ31
2ρ1 + 1 + ρ21 2 + 2ρ1 + 1 2ρ1 + ρ21 + 1
2ρ21 + ρ1 + ρ31 2ρ1 + 1 + ρ21 2 + 2ρ1 + 1

−1  1 + ρ1
ρ1 + ρ21
ρ21 + ρ31


=

 0.3999
−0.0797
0.0144


and

E[|E[n]|2] = E[(D[n]− fTXn)
2] = 0.4912.

(b) - We need to distinguish the four cases:

RD[n,m] =


ρ
|n−m|
0 n, m even,

ρ
|n−m|
1 n, m odd,

0 n even, m odd,
0 n odd, m even.

Clearly, the process D[n] is not stationary.

- Let us call Dh[n] =
∑

k h[k]D[n− k] = D[n] +D[n− 1]. Then

RX [n,m] = E[X[n]X[m]] = E[(Dh[n] + S[n])(Dh[m] + S[m])]

= RDh
[n,m] +RS [n,m] = RDh

[n,m] + σ2
Sδ[n−m]

and

RDh
[n,m] = E[(D[n] +D[n− 1])(D[m] +D[m− 1])]

= RD[n,m] +RD[n,m− 1] +RD[n,m− 1]

+RD[n− 1,m] +RD[n− 1,m− 1]

=


ρ
|n−m|
0 + 0 + 0 + ρ

|n−m|
1 n, m even,

ρ
|n−m|
1 + 0 + 0 + ρ

|n−m|
0 n, m odd,

0 + ρ
|n−m+1|
0 + ρ

|n−m−1|
1 + 0 n even, m odd,

0 + ρ
|n−m+1|
1 + ρ

|n−m−1|
0 + 0 n odd, m even.
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The correlation RDX is equal to

RDX [n,m] = E[D[n]X[m]] = E[D[n](D[m] +D[m− 1] + S[m])]

= RD[n,m] +RD[n,m− 1]

=


ρ
|n−m|
0 + 0 n, m even,

ρ
|n−m|
1 + 0 n, m odd,

0 + ρ
|n−m+1|
0 n even, m odd,

0 + ρ
|n−m+1|
1 n odd, m even.

Clearly, the process is not stationary.

- We have the normal equation

L−1∑
j=0

fn[j]RX [n− j, n− i] = RDX [n, n− i] i = 0, . . . , L− 1, ∀n ∈ Z

and to evaluate RX and RDX , we need to consider the cases where n is even and n is
odd.

Let us, for example, consider the case where n is even. Then, fn[0]
fn[1]
fn[2]

 =

 RX [n, n] RX [n− 1, n] RX [n− 2, n]
RX [n, n− 1] RX [n− 1, n− 1] RX [n− 2, n− 1]
RX [n, n− 2] RX [n− 1, n− 2] RX [n− 2, n− 2]

−1  RDX [n, n]
RDX [n, n− 1]
RDX [n, n− 2]


=

 3 1 + ρ20 ρ20 + ρ21
ρ20 + 1 3 1 + ρ21
ρ20 + ρ21 ρ21 + 1 3

−1  1
ρ20
ρ20


and we compute

fn = [0.3644 − 0.0963 0.0752]T .

Applying the same formula for computing the error as in the previous part, we get:

E[|E[n]|2] = 0.6409

The process D[n] is not stationary and this explains why the error is larger than in
the part a) for both D[n] = V0[n] and D[n] = V1[n].

(c) Since the position of the switch is randomly chosen we can introduce the random variable
SW [n] that describe the position of the switch. Positions p0 and p1 appear with the same
probability of 1/2. To compute RD[n,m] = E[D[n]D[m]], we can use the following formula:

E[f(D)] = E[E[f(D)|SW ]]

=
1

4
E[f(D)|sW = (0, 0)] +

1

4
E[f(D)|sW = (0, 1)]

+
1

4
E[f(D)|sW = (1, 0)] +

1

4
E[f(D)|sW = (1, 1)] .

Then

RD[n,m] = E[D[n]D[m]]

=
1

4
E[D[n]D[m]|sW = (0, 0)] +

1

4
E[D[n]D[m]|sW = (1, 1)]

=
1

4
ρ
|n−m|
0 +

1

4
ρ
|n−m|
1
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The process is stationary.

To compute the optimal filter we need:

RX [n,m] = E[X[n]X[m]] = E[(D[n] +D[n− 1] + S[n])(D[m] +D[m− 1] + S[m])]

= 2RD[n−m] +RD[n−m+ 1] +RD[n−m− 1] + σ2
Sδ[n−m],

and

RDX [n,m] = E[D[n]X[m]] = E[D[n](D[m] +D[m− 1] + S[m])]

= RD[n−m] +RD[n,m− 1].

Changing in the normal equation we get:

 f [0]
f [1]
f [2]

 =

 2.4167 1.0069 0.4294
1.0069 2.4167 1.0069
0.4294 1.0069 2.5167

−1  0.7083
0.2986
0.1308

 =

 0.2923
0.0010
0.0018



Solution 2.

1) The signal has the form x(t) =
∑100

k=1 αkδ(t − τk) , t ∈ [0, T ], where τ1, . . . , τ100 are the
positions of the spikes. The corresponding Fourier transform reads

x̂[n] =
1

T

100∑
k=1

αke
−j2πnτk/T =

1

T

100∑
k=1

αke
−jωkn , ωk = 2πτk/T .

The position of the spikes can be estimated using the annihilating filter approach. That
is, we look for the filter h such that (x̂ ∗ h) [n] = 0, where h has 100 coefficients. In Matrix
form we obtain 

x̂[99] . . . x̂[0]
x̂[100] . . . x̂[1]

...
...

x̂[198] . . . x̂[99]




h[1]
h[2]
...

h[100]

 = −


x̂[100]
x̂[101]

...
x̂[199]


The solution of such a linear system provides h[1], . . . , h[100] and therefore H[z] = 1 +
h[1]z−1 + . . .+ h[100]z−100. Call the a1, . . . , a100 the roots of the latter equation, then the
equalities a1 = ei2πτ1/T ,. . . ,a100 = ei2πτ100/T yield positions τ1, . . . , τ100.

2) The likelihood function for a 20-sample observation x[1], . . . , x[20] of a Markov chain X[n]
reads

h(x[1], . . . , x[20]; Θ) =P (X[1] = x[1], . . . , X[20] = x[20])

=πx[1]px[1]x[2]px[2]x[3] . . . px[19]x[20] ,

and in our case 00011010110110111011

h(x[1], . . . , x[20]; Θ) = P (X[1] = 0, . . . , X[20] = 1)

= π0p00p00p01p11p10p01p10p01p11p10p01p11p10p01p11p11p10p01p11

= π0p
2
00p

6
01p

6
11p

5
10 .
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3) We need to maximize h(x[1], . . . , x[20]; Θ) or log h(x[1], . . . , x[20]; Θ) with respect to πi and
pij , i, j = 0, 1 under the constraints π0 + π1 = 1, p00 + p01 = 1, and p10 + p11 = 1. Using
Lagrange maximizers and the log likelihood, we must maximize

log(h(x[1], . . . , x[20]; Θ))− λ1(π0 + π1 − 1)− λ2(p00 + p01 − 1)− λ3(p10 + p11 − 1)

that is

log π0+2 log p00+6 log p01+6 log p11+5 log p10−λ1(π0+π1−1)−λ2(p00+p01−1)−λ3(p10+p11−1) .

Maximization w.r.t.:

– π0 and π1 gives π0 = 1

– p00 gives 2/p00 − λ2 = 0, i.e. p00 = 2/λ2, and w.r.t. p01 gives 6/p01 − λ2 = 0, i.e.
p01 = 6/λ2. Considering the constraint p00 + p01 = 1 we obtain λ2 = 8 and therefore
p00 = 1/4 and p01 = 3/4.

– p10 gives 5/p10 − λ3 = 0,i.e. p10 = 5/λ3, and w.r.t. p11 gives 6/p11 − λ3 = 0, i.e.
p11 = 6/λ3. Considering the constraint p10+ p11 = 1 we obtain λ3 = 11 and therefore
p10 = 5/11 and p11 = 6/11.

4)

FY [n](y) = P (Y [n] ≤ y) =
∑
x∈0,1

P (Y [n] ≤ y,X[n] = x)

Bayes
=

∑
x∈0,1

P (Y [n] ≤ y | X[n] = x)P (X[n] = x)

=
∑
x∈0,1

P (W [n] + x ≤ y)P (X[n] = x)

= P (W [n] ≤ y)P (X[n] = 0) +P (W [n] + 1 ≤ y)P (X[n] = 1)

= P (W [n] ≤ y)π0 +P
(
W̃ [n] ≤ y

)
π1 ,

where W [n] is a centered Gaussian process with variance σ2
W and W̃ [n] is a Gaussian

process with mean 1 and variance σ2
W . The probability density function then reads

fY [n](y) = G0,σ2
W
(y)π0 + G1,σ2

W
(y)π1 .

where Gm,σ2(y) denotes a Gaussian probability density function with mean m and variance
σ2.

5) Notice that, as seen in class, in order to compute the probability density function we first
need to compute the cumulative distribution function.

Call X = {(x[1], . . . , x[10]) | x[i] ∈ {0, 1}} the set of all possible combinations of 0 and 1
so to form a vector of length 10.

Then the joint cumulative distribution of Y = [Y [1], . . . , Y [10]] reads

FY (y) = P (Y ≤ y) =
∑
x∈X

P (Y ≤ y,X = x)

Bayes
=

∑
x∈X

P (Y ≤ y | X = x)P (X = x) .
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P (Y ≤ y | X = x) is the distribution of Y = x +W (distribution of Y given that X is
known), i.e., distribution of i.i.d. Gaussian random variables, with the same variance σ2

W

and means given by the vector x.

P (Y ≤ y | X = x) = FW+x(y) =

10∏
n=1

FW [n]+x[n](y[n]) ,

which in terms of probability density reads

fW+x(y) =

10∏
n=1

Gx[n],σ2
W
(y[n]) , and fY (y) =

∑
x∈X

10∏
n=1

Gx[n],σ2
W
(y[n])P (X = x) .

Given that
P (X = x) = πx[1]px[1]x[2] . . . px[9]x[10] ,

we have

fY (y) =
∑
x∈X

(
10∏

n=1

Gx[n],σ2
W
(y[n])

)
πx[1]px[1]x[2] . . . px[9]x[10]

6) We need here to apply PCA. Call

ym = [y[1]m, . . . , y[30]m]T , m = 1, . . . , 20000 , (M = 20000 , N = 30) .

the vector containing the 30 samples of the m-th shape. Then

– Create zero mean data by averaging all the M=20000 shapes, that is

ymean =
1

20000

20000∑
m=1

ym .

For every m, center the m-th shape by subtracting the mean

ỹm = ym − ymean .

– Compute the empirical correlation matrix (using the centered data ỹm)

R̂y =
1

20000

20000∑
m=1

ỹm ∗ ỹH
m

– Compute the unitary matrix V of eigenvectors of R̂ and the eigenvalues by solving
the equation

R̂yV = V Λ

where Λ = diag(λ1, . . . , λN ) is the eigenvalues diagonal matrix and V HR̂yV = Λ.

– Look at the eigenvalues and select those with highest values, for instance, λ1, . . . λk,
where k < N (usually k << N).

– Compute the principal components

zm = V Tym , for m = 1, . . . , 20000 .

– Select the principal components corresponding to the eigenvalues with highest values,
for instance, z[1]m, . . . ,z[k]m, m = 1, . . . , 20000, and plot them in a k-dimensional
plot so to recognize the clusters and therefore the number of different shapes.
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