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General Models & Methods

▶ Introduction

We shall see some basic signal models used in the context of statistical signal processing. These are subdivided into
two main classes: Parametric and non parametric models.

Then we shall explore common statistical methods used to extract the information from signals, namely estimation
and prediction. The way these methods are implemented depends on the type of signal model considered.

Consequently, we will present estimation methods for parametric and non parametric signal models, and prediction
methods for parametric and non parametric signal models.
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2.1Models

Non Parametric & Parametric
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Types of Signal Models

▶ Non Parametric Signal Models

We suppose the signal to have specific characteristics / properties but these cannot be explicitly represented by a finite
set of parameters (or a function depending on them).

▶ Parametric Signal Models We suppose the signal to have specific characteristics / properties and these can be
represented by a finite set of parameters (or a function depending on them).
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Non Parametric Signal Models

▶ Signal with i.i.d. behaviour

The signal is modelled as a discrete time stochastic process {X[n]}n∈Z where the random variables X[n] are
independent and identically distributed.

The most famous i.i.d. signal is probably the White Noise.
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Non Parametric Signal Models

▶ Wide Sense Stationary (w.s.s.) Processes

A discrete time stochastic process {X[n]}n∈Z such that

− E [X[n]] =constant, independent of n;
− E[X [k]X∗ [l]] = R (k − l) and cov(X [k] ,X [l] ) = Γ (k − l), ∀ k, l ∈ Z.

Property
w.s.s. processes admit a Power Spectral Density defined as

SX (ω) =
∞
∑

k=−∞
RX (k) e−iωk ,

(if the correlation RX is summable).
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Parametric Signal Models

▶ Parametric Law

The law of the process is described by a finite set of parameters.

▶ Parametric Law: Gaussian Process

The most famous parametric signal is probably the Gaussian w.s.s. process.

Call {X[n]}n∈Z the process. Let XN = [X[1], . . . ,X[N]] be the vector of N samples, xN = [x1, . . . , xN ] be the
vector of N sample values, and m = [m1, . . . ,mN ] the vector of the probabilistic means.

Assume a limited correlation, e.g., E [X[n]X[m]] = E [X[n]]E [X[m]] for ∣m − n∣ >K.

Then, the probability density is given by

fX[1],...,X[N](x1, . . . , xn) =

¿
ÁÁÀ 1

(2π)N det(CXN )
exp{−

1

2
(xN −mN )CX

−1
N (xN −mN )t}

where (case K = 2)

CXN =

⎛
⎜⎜⎜⎜
⎝

σ2 C12 C13 0 0

C21 σ2 C12 C13 0
⋮ ⋱ ⋱ ⋱ ⋮
0 C31 C21 σ2 C12

0 0 C31 C21 σ2

⎞
⎟⎟⎟⎟
⎠

,
Cij = E [X[n]X[m]] −E [X[n]]E [X[m]] ,
σ
2 = Cii .
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Parametric Signal Models

▶ Parametric Law: Stationary Markov Chain

Stochastic process {X[n]}n∈Z (that we consider stationary) taking discrete values (in a set D), such that

P (X[n] = in ∣ X[n − 1] = in−1,X[n − 2] = in−2, . . .) = P (X[n] = in ∣ X[n − 1] = in−1) ,

for in, in−1, in−2, . . . ∈ D.

It is a process with a dependence limited to the nearest past.

The process is completely characterized by:

− Transition probabilities P (X[n] = i ∣ X[n − 1] = k) = pki, ;
− Initial probabilities P (X[n] = k) = πk

A Markov chain {X[n]}n∈Z can be generally expressed as

X[n] = f(X[n − 1], Z[n]) .

where Z[n] is a sequence of i.i.d. random variables independent of X[n − 1],X[n − 2], . . .. Z[n] represent the
innovation.
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Parametric Signal Models

▶ Parametric Law: Stationary Markov Chain

Key tool to work with Markov chains: Bayes’ rule.

Given two random variables A and B with discrete values in D, we have

P (A = k ∣ B = l) =
P (A = k , B = l)

P (B = l)
, k, l ∈ D ,

supposing P (B = l) > 0.

Indeed, let X[n] be a Markov chain. Using the Baye’s rule, its probability (law of the process)
P (X[n] = in, . . . ,X[n − k] = in−k), in, . . . , in−k ∈ D, can be expressed as transition probabilities plj and initial
probabilities πi

P (X[n] = in, . . . ,X[n − k] = in−k) = pin−1in . . . pin−kin−k+1πin−k , in, . . . , in−k ∈ D .

Remark
Notice that Baye’s rule is defined for probabilities (or cumulative distribution functions).
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Parametric Signal Models

▶ AutoRegressive (AR) Processes: Definition

An AR process is a w.s.s. process X[n], taking continuous values in R, satisfying the equation

M

∑
k=0

pkX[n − k] =W [n] , n ∈ Z ,

− W [n], is a zero mean Gaussian white noise, with variance σ2
W ;

− pk, k = 0, . . . ,M sequences of bounded coefficients (real or complex).
Without loss of generality, we will assume p0 = 1.

The AR process is said to be of order M and it is characterized by the parameters p1, . . . , pM , and σ2
W .

An AR of order 1
X[n] + p1X[n − 1] =W [n] ,

is a particular case of continuous valued process with Markovian properties.

École Polytechnique Fédérale de Lausanne - EPFL #10



Parametric Signal Models

▶ AutoRegressive (AR) Processes: Definition

An AR process is a w.s.s. process X[n], taking continuous values in R, satisfying the equation

M

∑
k=0

pkX[n − k] =W [n] , n ∈ Z ,

− W [n], is a zero mean Gaussian white noise, with variance σ2
W ;

− pk, k = 0, . . . ,M sequences of bounded coefficients (real or complex).
Without loss of generality, we will assume p0 = 1.

The AR process is said to be of order M and it is characterized by the parameters p1, . . . , pM , and σ2
W .

An AR of order 1
X[n] + p1X[n − 1] =W [n] ,

is a particular case of continuous valued process with Markovian properties.
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Parametric Signal Models

▶ AutoRegressive (AR) Processes: Filtering Interpretation

M−1
∑
k=0

pkX[n − k] =W [n] , n ∈ Z ,

Left term = filtering of X[n] by a filter with impulse response h[l] = pl, l = 0, . . . ,M − 1 and z transform

P (z) =
M−1
∑
k=0

pkz
−k .

By interpreting z−1 as the delay operator, we have (symbolically)

P (z)X[n] =W [n] .

When P (z) is strictly minimum phase with p0 = 1 the AR is in its canonical form.

Remark
Such a symbolic notation is very handy to define AR processes and we will adopt it quite often. However, is has to be
used carefully, by considering z−1 as a delay operator (and not by mixing time domain and the z-transform domain)!
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Parametric Signal Models

▶ AutoRegressive (AR) Processes: Synthesis and Analysis

When dealing with AR processes two problems naturally arise:

− Generate an AR process given a white noise W [n] (synthesis problem)

− Check if X[n] corresponds to a given AR process (analysis problem)
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Parametric Signal Models

▶ AutoRegressive (AR) Processes: Synthesis

P (z) strictly minimum phase filter, then 1/P (z) defines a fractional causal and stable ℓ1 (BIBO) filter. Applying
such filter to both sides of the AR equation yields

X[n] =
∞
∑
l=0

hS[l]W [n − l] ,

where hS[l], l ∈N, is the impulse response of the filter

HS (z) =
1

P (z)
.

HS (z) is called synthesis filter: it allows to generate an AR process X[n] given a white noise W [n].

Remark
Since 1/P (z) is causal and ℓ1 stable, it is an analytical function that admits a power series expansion: we call hS[l],
l ∈N, the coefficients of such a series. In particular, one can check that hS[0] = 1 (since p0 = 1).
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Parametric Signal Models

▶ AutoRegressive (AR) Processes: Analysis

In the case of an AR process the analysis filter is straightforwardly given by P (z).

P (z) allows to check if a process X[n] corresponds to a given AR model by testing if the output of the filter is a
white noise.
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Parametric Signal Models

▶ AutoRegressive (AR) Processes: Correlation Structure

We assume that the filter P (z) is strictly minimum phase

Let HS (z) be the synthesis filter of the AR process and hS[k] its impulse response. Then, the correlation of the
process has the following structure

RX[m] +
M−1
∑
k=1

pkRX[m − k] = hS
∗[−m]σ2

W , , m ≥ 0 .

Since the synthesis filter is causal, i.e., hS[l] = 0 , for l < 0,

RX[m] +
M−1
∑
k=1

pkRX[m − k] = δmσ2
W , m ≥ 0 .

The above equation is of great importance: milestone of Yule Waker Equations, which play an important role in
prediction and parametric spectral estimation.
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Parametric Signal Models

▶ AutoRegressive (AR) Processes: Correlation Structure

RX[m] +
M−1
∑
k=1

pkRX[m − k] = δmσ2
W , m ≥ 0 .

Remark
To prove the result multiply both sides of the AR equation by X∗[n −m] and compute the expectation; To obtain
RX[m] for m < 0 just recall that RX[−m] = RX[m]∗.
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Parametric Signal Models

▶ AutoRegressive (AR) Processes: Power Spectrum

We assume that the filter P (z) is strictly minimum phase

The power spectrum of an AR process is given by

SX (ω) =
1

∣P (ejω)∣2
σ2
W .

Remark
The simplest proof of the above result is obtained by considering the filtering interpretation of an AR process. Then,
by applying the fundamental filtering formula to both sides of the AR equation we have

SX (ω) ∣P (ejω)∣
2 = σ2

W .
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Parametric Signal Models

▶ Numerical Exercise: AutoRegressive (AR) Processes

Generate an M samples of an AR process

X[n] = a1X[n − 1] + . . . + aNX[n −N] +W [n] .

where W [n] is a centered Gaussian white noise with variance σ2
W (choose the order, the values of the coefficients,

and the power of the noise).

In Python, you can use:
import statsmodels.api as sm

ar = np.array([1,a1,a2,...,aN])

ma = np.array([sigmaW])

arProcess = sm.tsa.ArmaProcess(ar, ma)

x= arProcess.generate_sample(nsample=M)

Compute the empirical correlation of the AR samples (be careful how you do it!) and compare it with the empirical
correlation of a realization of M samples of W [n].
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Parametric Signal Models

▶ Numerical Exercise #2.1: Markov Chain

Generate M samples of a N state Markov chain.

Compute the empirical correlation of the Markov chain samples (be careful how you do it!) and compare it with the
empirical correlation of a realization of M samples of a Gaussian white noise.
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2.2Methods

Estimation & Prediction

− Linear Estimation & Prediction;

− Estimation of Parametric Probability Densities;

− Estimation of Most Probable Realization.
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Estimation & Prediction

▶ Estimation

Obtain a certain quantity, such as a process X[n], or a parameter, from a sequence of observations Y [k] = f(X[k]),
k ∈ Z (does not imply causality).

▶ Prediction

Predict the evolution of a quantity, such as a process X[n], given the values of its past X[n − 1],X[n − 2], . . . (it
implies causality).

Common scenarios: Predict the weather or the stock value of tomorrow from the weather or the stock values of the
past days; Predict the evolution of a model based signals (e.g., predictor of an AR process).
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Estimation & Prediction

▶ Optimality in the Mean Square Error - MSE sense

Given a signal modeled as a w.s.s. process X[n], its estimator or predictor Y [n] is chosen so to minimize the MSE

E [∣X[n] − Y [n]∣2] (minimum energy of the error).

▶ MSE Minimization and the Projection Theorem

W.s.s. processes are elements of a Hilbert Space.

The estimator or the predictor contains less information than the process itself (we do not know the process we just
estimate or predict it ..).

Therefore, if we call S the space of the process and G the space of the estimator or predictor, we can say G ⊂ S. In
many situations the estimator or the predictor is nothing but the projection of the process X[n] onto the space G.

By the projection theorem in Hilbert Spaces finding Y [n] that minimizes E [∣X[n] − Y [n]∣2] is equivalent to find
Y [n] such that E [(X[n]−Y [n])V [n]∗] = 0 for every V [n] ∈ G, that is for every V [n] = linear combination of Y [k],
k ∈ Z.
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The estimator or the predictor contains less information than the process itself (we do not know the process we just
estimate or predict it ..).

Therefore, if we call S the space of the process and G the space of the estimator or predictor, we can say G ⊂ S. In
many situations the estimator or the predictor is nothing but the projection of the process X[n] onto the space G.

By the projection theorem in Hilbert Spaces finding Y [n] that minimizes E [∣X[n] − Y [n]∣2] is equivalent to find
Y [n] such that E [(X[n]−Y [n])V [n]∗] = 0 for every V [n] ∈ G, that is for every V [n] = linear combination of Y [k],
k ∈ Z.
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Linear Estimation of Non Parametric w.s.s. Models

▶ Linear Estimation Based on Indirect Observations

Process X[n] w.s.s. indirectly observed via the process Y [n] w.s.s..

Typical scenario is a signal X[n] corrupted by a white noise W [n]

Y [n] = X[n] +W [n] , or

Y [n] = ∑
k∈N

g[k](X[n − k] +W [n − k]) ,

where:
− We assume that X[n] and Y [n] are jointly wide-sense stationary;

− We observe a realization y[n] of Y [n] (measurements);

− We estimate the corresponding realization x[n] of X[n] as a linear combination of the realization y[n] of Y [n],
i.e., using the model

X̂[n] = ∑
k∈Z

hn,kY [k] .

Notice that being a priori the linear combination of an infinite number of terms, its coefficients need to take the
dependence w.r.t. to n into account.

Linear Estimation of Non Parametric Models

Estimation: The Wiener Filter

Process X [n] w.s.s. indirectly observed via the process Y [n] w.s.s..

Example
Signal corrupted by noise Simple but very common situation

Y [n] = X [n] + W [n] , or Y [n] =
∑

k∈
g [k ](X [n − k ] + W [n − k ]) ,

where W [n] is a white noise.

X [n]

information

+

W [n]

noise

Y [n]

observations

EPFL 19 / 50
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Linear Estimation of Non Parametric w.s.s. Models

▶ Linear Estimation as Filtering

Linearly estimate X[n] given that we observe Y [k], k ∈ Z.

X̂[n] = ∑
k∈Z

hn,kY [k] .

By exploiting the wide sense stationarity we have

X̂[n] = ∑
k∈Z

hn−kY [k] ,

which enables a filtering interpretation of the linear estimator

X̂[n] = ∑
k∈Z

h[n − k]Y [k] .

▶ Wiener Filter

As best linear estimator (filter) of X[n] based on Y [k], k ∈ Z, we choose the one that minimizes the mean square
error

E [∣X[n] − X̂N [n]∣
2] .

The filter that minimize the mean square error is called Wiener Filter.
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Linear Estimation of Non Parametric w.s.s. Models

▶ Wiener Filter: Computation

The linear estimator minimizing the MSE in the L2(P ) space of w.s.s. processes is given by the projection theorem
by projecting X[n] onto the Hilbert space generated by {Y [k]}k∈Z.

Projection computed by directly minimizing the mean square error E [∣X[n] − X̂[n]∣2] , or by applying the orthogo-

nality between the error and any Y [k], i.e.,

E [(X[n] − X̂[n])Y ∗[l]] = 0 , ∀l .

Using the latter E [(X[n] − X̂[n])Y ∗[l]] = RXY [n − l] − ∑
k∈Z

h[n − k]RY [k − l] = 0, i.e.,

RXY [n − l] = ∑
k∈Z

h[n − k]RY [k − l] ,

or, by changing variables (m = n − k, k = n −m, n − l = u),

RXY [u] = ∑
m∈Z

h[m]RY [u −m] ,

These are are called Wiener-Hopf (or normal) equations.
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Linear Estimation of Non Parametric w.s.s. Models

▶ Wiener Filter: Solution of the Wiener-Hopf equations

The are basically two approaches for the solution of the Wiener-Hopf equations
a) Considering a finite impulse response (FIR) filter.

We assume h[k] being defined for k = 0, . . . ,K, and zero otherwise. Then, the Wiener-Hopf equations can be
written as

RXY [n] =
K

∑
k=0

h[k]RY [n − k] , that is rXY =RY h where

rXY =
⎡⎢⎢⎢⎢⎢⎣

RXY [0]
⋮

RXY [K]

⎤⎥⎥⎥⎥⎥⎦
RY =

⎡⎢⎢⎢⎢⎢⎣

RY [0] . . . RY [−K]
⋮ ⋱ ⋮

RY [K] . . . RY [0]

⎤⎥⎥⎥⎥⎥⎦
,

and therefore h =R−1Y rXY

b) Computing the Power Spectral Densities.

Fourier transforming both sides of the Wiener-Hopf equations yields

SXY (ω) = SY (ω)H(ejω) , hence, H(ejω) =
SXY (ω)
SY (ω)

,

where SXY (ω) is cross power spectral density between X[n] and Y [k] and SY (ω) is power spectral density of
Y [k].
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Linear Estimation of Non Parametric w.s.s. Models

▶ Wiener Filter: Signal Corrupted by Noise

Y [n] = X[n] +W [n] ,

Linear Estimation of Non Parametric Models

Estimation: The Wiener Filter

Process X [n] w.s.s. indirectly observed via the process Y [n] w.s.s..

Example
Signal corrupted by noise Simple but very common situation

Y [n] = X [n] + W [n] , or Y [n] =
∑

k∈
g [k ](X [n − k ] + W [n − k ]) ,

where W [n] is a white noise.

X [n]

information

+

W [n]

noise

Y [n]

observations

EPFL 19 / 50

Then, given the independence between X and W , the Wiener-Hopf equations read

RX[n] =
K

∑
k=0

h[k]RY [n − k] ,

and:
a) The FIR filter is given by

h =R−1Y rX ;

b) The Transfer function of the general filter is given by

H(ejω) =
SX(ω)
SY (ω)

.
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École Polytechnique Fédérale de Lausanne - EPFL #27



Linear Estimation of Non Parametric w.s.s. Models

▶ Wiener Filter: In Practice

While the theoretical derivation of the Wiener filter is very elegant, its practical use is quite limited. Indeed, by taking
a closed look at the Wiener-Hopf equations

RXY [u] = ∑
m∈Z

h[m]RY [u −m] ,

we can remark that:

− Their solution requires the knowledge of the cross correlation between the signal we would like to reconstruct (in
practice unknown) and the measured signal.

− When considering the solution based on the power spectral de density, the estimates of the latter need to be chosen
very wisely. Indeed they appear in a rational expression and estimation errors of SXY (ω) and SY (ω) can have
drastic effect on the computation of H(ejω);

In practice the Wiener filter given by the above equation is of no use for the reconstruction of the unknown signal
x[n], yet the Wiener-Hopf equations play a key role in

− Adaptive filtering (as we shall see later);

− System identification.
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Linear Prediction of Non Parametric w.s.s. Models

▶ Prediction as Orthogonal Projection

Predict the process w.s.s. X[n] at the instant n, based on linear combination of a finite observation of its past,

X̂N [n] = a1,NX[n − 1] + . . . + aN,NX[n −N] ,

X̂N [n] linear predictor of order N .

We consider (as usual) best linear estimator in mean square sense = orthogonal projection of X[n] onto the Hilbert
space generated by X[n − 1], . . . ,X[n −N].
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We consider (as usual) best linear estimator in mean square sense = orthogonal projection of X[n] onto the Hilbert
space generated by X[n − 1], . . . ,X[n −N].
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Linear Prediction of Non Parametric w.s.s. Models

▶ Error of The Orthogonal Projection (Prediction Error)

− The prediction error ϵN [n] = X[n] − X̂N [n] is orthogonal to X[n − 1], . . . ,X[n −N]

E [(X[n] − X̂N [n])X[n − k]] = 0 , k = 1, . . . ,N .

− The L2(P ) norm of the prediction error

∥ϵN ∥22 = E [∣X[n] − X̂N [n]∣
2] ,

is minimized.

Combining the above two equations with the predictor expression gives

∥ϵN ∥22 = E [(X[n] − X̂N [n])X[n]] .
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Linear Prediction of Non Parametric w.s.s. Models

▶ Yule Walker Equations

The projection theorem provides the best linear predictor in an algebraic way:

Linear prediction eq. X̂N [n] = a1,NX[n − 1] + . . . + aN,NX[n −N] ,
+

Orthogonality of the error E [(X[n] − X̂N [n])X[n − k]] = 0 , k = 1, . . . ,N .

+

Norm of the error ∥ϵN ∥22 = E [(X[n] − X̂N [n])X[n]] .
=

System of N + 1 equations with N + 1 unknowns: ∥ϵN ∥22 and a1,N , . . . , aN,N

Yule Walker
equations

∥ϵN ∥22 +RX[1]a1,N + . . . +RX[N]aN,N =RX[0]
RX[0]a1,N + . . . +RX[N − 1]aN,N =RX[1]

⋮ = ⋮
RX[N − 1]a1,N + . . . +RX[0]aN,N =RX[N] .
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Linear Prediction of Non Parametric w.s.s. Models

▶ Yule Walker Equations in Matrix Form

∥ϵN ∥22 +RX[1]a1,N + . . . +RX[N]aN,N =RX[0]
RX[0]a1,N + . . . +RX[N − 1]aN,N =RX[1]

⋮ = ⋮
RX[N − 1]a1,N + . . . +RX[0]aN,N =RX[N]

In matrix form, the N equations for coefficients estimation read RN
XaN,1 =RN,1

X , where

RN
X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RX[0] RX[1] ⋯ RX[N − 1]
RX[1] RX[0] ⋯ RX[N − 2]
⋮ ⋱ ⋮

RX[N − 1] RX[N − 2] ⋯ RX[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

aN,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1,N
a2,N
⋮

aN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, RN,1
X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RX[1]
RX[2]
⋮

RX[N]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Linear Prediction of Non Parametric w.s.s. Models

▶ Yule Walker Equations

Real scenario

− I observe K samples x[1], . . . , x[K];
− I compute the empirical correlation

R̂X[k] = α
K−k
∑
l=1

x[l]x[l + k] , k = 1, . . . ,N <K ,

Assignement
Should we use a biased or an unbiased correlation?

For next week, propose how to efficiently implement the Yule Walker equations so to reduce estimation issues like the
one arising at extreme lags for the unbiased correlation, or the one arising when dealing with non zero mean signals
and the biased correlation.
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Linear Estimation AR Parametric Models

▶ Yule Walker Equations (Once Again!)

Estimation of AR processes boils down into estimating the parameters of the process, that is, the coefficient of the
linear regression and the variance of the white noise.

Suppose you want to estimate the parameters of an AR model of order N

N

∑
k=0

pkX[n − k] =W [n] ,

that is, p1, . . . , pN , and σ2
W .

We are right within the framework of the Yule Walker equations. Indeed:

− I observe K samples x[1], . . . , x[K] of the AR process of order N ;

− I compute the empirical correlation;

− I exploit the correlation structure

RX[m] +
N

∑
n=1

pnRX[m − n] = hS
∗[−m]σ2

W , , m ≥ 0 ,

in order to write N + 1 equations in the N + 1 unknowns p1, . . . , pN , and σ2
W .
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Linear Estimation of AR Parametric Models

▶ Yule Walker Equations (Once Again!)

That is ...
σ2
W −RX[1]p1 − . . . −RX[N]pN =RX[0]
−RX[0]p1 − . . . −RX[N − 1]pN =RX[1]

⋮ = ⋮
−RX[N − 1]p1 − . . . −RX[0]pN =RX[N]

In matrix form, the N equations for coefficients estimation read −RN
XpN,1 =RN,1

X , where

RN
X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RX[0] RX[1] ⋯ RX[N − 1]
RX[1] RX[0] ⋯ RX[N − 2]
⋮ ⋱ ⋮

RX[N − 1] RX[N − 2] ⋯ RX[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

pN,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
⋮

pN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, RN,1
X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RX[1]
RX[2]
⋮

RX[N]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Linear Estimation of AR Parametric Models

▶ Recursive Solution of the Yule Walker Equations

The Yule Walker equations can efficiently solved iteratively, starting for a order 1 linear systems and then increasing
the order.

This is particularly interesting when the order of the process is not know: We keep increasing the model order until
there is no significant change in the estimation error.

The Levinson’s algorithm enables to estimate the parameters of an AR of order N based on the parameters estimated
for an AR of order N-1, with a significant computation burden reduction.
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Linear Estimation of AR Parametric Models

▶ Levinson’s Algorithm: Backward and Forward Predictors

Forward predictor:
Linear predictor of X[n] based on the finite past X[n − 1], . . . ,X[n −N]

X̂N [n] = a1,NX[n − 1] + . . . + aN,NX[n −N] .

Forward predictor error:
ϵN [n] = X[n] − X̂N [n] .

Backward predictor:
Linear predictor of X[n] based on the finite future X[n + 1], . . . ,X[n +N]

̃̂XN [n] = ã1,NX[n + 1] + . . . + ãN,NX[n +N] ,

Backward predictor error

ϵ̃N [n] = X[n] − ̃̂XN [n]
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Linear Estimation of AR Parametric Models

▶ Levinson’s Algorithm: Backward and Forward Predictors

We can remark that by setting Y [n] = X[−n], ̃̂YN [n] is the forward predictor of the process X[−n]. Similarly, ŶN [n]
is its backward predictor.

We shall consider two possible cases

− X[n] is real:
X[n] and X[−n] have same correlation. Same solution of the Yule Waler equations for backward and forward
predictor. Consequently ãk,N = ak,N , k = 1, . . . ,N .

− X[n] is complex:
The correlations of X[n] and X[−n] are complex conjugate, therefore, ãk,N = a∗k,N .

We can readily see that, since ∣ϵN [n]∣2 and ∣̃ϵN [n]∣2 are both real,

E [∣ϵN [n]∣2] = E [∣̃ϵN [n]∣2] .

For notation ease, but without loss of generality, we shall restrict ourselves to the real case.
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Linear Estimation of AR Parametric Models

▶ Levinson’s Algorithm: Recursion for the Backward and Forward Predictors

The milestone of the Levinson’s algorithm is the following property enabling to express the forward and backward
predictors in a recursive form:

Property
We have

Forward predictor X̂N [n] =X̂N−1[n] +KN (X[n −N] − ̃̂XN−1[n −N])

Forward predictor error ϵN [n] =ϵN−1[n] −KN ϵ̃N−1[n] ,

and

Backward predictor ̃̂XN [n −N] =̃̂XN−1[n −N] +KN (X[n] − X̂N [n])

Backward predictor error ϵ̃N [n −N] =ϵ̃N−1[n −N] −KN ϵ̃N−1[n −N] ,

where

Reflection coefficient KN =
E [ϵN−1[n]X[n −N]]

E [ϵ̃N−1[n −N]X[n −N]]
.

École Polytechnique Fédérale de Lausanne - EPFL #39



Linear Estimation of AR Parametric Models

▶ Levinson’s Algorithm: Recursion for the AR Coefficients

Inserting the forward predictor

X̂N [n] = a1,NX[n − 1] + . . . + aN,NX[n −N] .

into the recursive prediction formula

X̂N [n] = X̂N−1[n] +KN (X[n −N] − ̃̂XN−1[n −N])

we obtain

ak,N = ak,N−1 −KNaN−k,N−1 , k = 1, . . . ,N − 1 ,
aN,N =KN ,

where the reflection coefficient KN can be expressed as

KN =
RX[N] − ∑N−1

k=1 ak,N−1RX[N − k]
RX[0] − ∑N−1

k=1 ak,N−1RX[k]
.

The above equations recursively provide the coefficients of the AR process.
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Linear Estimation of AR Parametric Models

▶ Levinson’s Algorithm: Recursion for the AR Coefficients

1. Start the iteration with K1 = RX[1]/RX[0], and a1,1 =K1 (1 multiplication);

2. Recursively use

ak,N = ak,N−1 −KNaN−k,N−1 , k = 1, . . . ,N − 1 ,
aN,N =KN ,

where KN can be expressed as

KN =
RX[N] − ∑N−1

k=1 ak,N−1RX[N − k]
RX[0] − ∑N−1

k=1 ak,N−1RX[k]
.

(O(N) multiplications each recursion step, where N is the step prediction order).

In matrix form:

KN =
[RX[N] ⋯ RX[1]] [−1 a1,N−1 ⋯ aN−1,N−1]

′

[RX[0] ⋯ RX[N − 1]] [−1 a1,N−1 ⋯ aN−1,N−1]
′

and ⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1,N
⋮

aN−1,N
aN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1,N−1
⋮

aN−1,N−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−KN

⎡⎢⎢⎢⎢⎢⎢⎢⎣

aN−1,N−1
⋮

a1,N−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Linear Estimation of AR Parametric Models

▶ Levinson’s Algorithm: Computational Burden

Levinson’s algorithm = O(N2) multiplications.

Yule-Walker equations = O(N2) multiplications (Toeplitz systems).

However, using the Levinson’s algorithm, with O(N2) multiplications we obtain not only the coefficient of order N
but also the coefficients of all orders less than N as well as an estimation of the model order!
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Linear Estimation of AR Parametric Models

▶ Numerical Exercise #2.2: Levinson’s Algorithm as Order Estimation

Let’s see how the Levinson’s Algorithm can be used to estimate the order of an AR process.

− Generate N samples of an AR process of order K (make sure the associated synthesis filter is stable, and that
N >>K).

− Estimate the coefficients of the AR process assuming its order to be L >K.

− Analyze the reflection coefficients. What can you remark?
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Linear Prediction of AR Parametric Models

▶ Prediction as Orthogonal Projection

Linear prediction of AR processes answers problem of the type:

− Given X[n], X[n − 1], X[n − 2], . . ., how can I predict X[n + k]?
− Which linear combination of X[n], X[n − 1], X[n − 2], . . ., best approximates X[n + k]?

For AR process such a problem has an immediate solution, provided that P (z) is minimum phase. How can that be
so simple? Hilbert Spaces do the job for you!

AR processes are w.s.s., therefore ∈ L2(P ) (space of square integrable r.v.), the latter being a Hilbert space with norm
∥X∥ = E [∣X ∣2].
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École Polytechnique Fédérale de Lausanne - EPFL #44



Linear Prediction of AR Parametric Models

▶ Hilbert Subspaces of the Past

H (A,n) Hilbert subspace of L2(P ) generated by the r.v. A[n],A[n − 1],A[n − 2], . . .:

H (A,n) is composed by the linear combinations of the r.v. {A(n − k)}k∈N and the limits of such linear combinations,

i.e., H (A,n) = span ({A(n − k)}k∈N).

Theorem (Filtering the past)
Let X[n] be a wide sense stationary process and Y [n] the output of a stable causal filter when the input is X[n].
Then

Y [n] ∈ H (X,n) , ∀ n ∈ Z .

In the framework of AR processes, the above theorem gives the following result:

Theorem
Let X[n] be an AR process. Assume that the corresponding polynomial P (z) is minimum phase. Then

H (X,n) = H (W,n) , ∀ n ∈ Z .
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Linear Prediction of AR Parametric Models

▶ Prediction as Orthogonal Projection onto the Hilbert Subspace of the Past

The element of H (X,n), denoted X̂n+k,n, that best approximate (in the mean square sense) X[n+k] ∈ H (X,n + k)
is the orthogonal projection of X[n + k] onto H (X,n).
In particular

− X̂n+k,n exists, is unique, and it is such that X[n + k] − X̂n+k,n is orthogonal to H (X,n).

− X̂n+k,n is the orthogonal projection of X[n + k] onto H (X,n), and, in the prediction framework, it is called
k-steps predictor.

▶ Intuitive Property to Easily Compute the k-Steps Predictor

Let Y be a r.v. in H (X,n + k). Suppose that we can write Y as

Y = A +B .

where A is a r.v. orthogonal to H (X,n) and B is a r.v. in H (X,n). Then, the orthogonal projection of Y onto
H (X,n) is given by B.
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Linear Prediction of AR Parametric Models

▶ Intuitive Property and Synthesis Filter

For the k-steps predictor of an AR processes express using the synthesis filter we have

X[n + k] =
∞
∑
l=0

hS[l]W [n + k − l] =
k−1
∑
l=0

hS[l]W [n + k − l]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+
∞
∑
l=k

hS[l]W [n + k − l]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

.

Then

X̂n+k,n =
∞
∑
l=k

hS[l]W [n + k − l] .

▶ 1-Step Predictor

The case of a 1-step predictor X̂n+1,n is quite simple (no synthesis representation)

X[n + 1] = −
M−1
∑
k=1

pkX[n + 1 − k] +W [n + 1] , therefore X̂n+1,n = −
M−1
∑
k=1

pkX[n + 1 − k] .

In a practical scenario, p1, . . . , pM−1 are estimated using the Yule Walker equations.

Assignement
For next week, provide the expression of a 2-step predictor without using the synthesis filter.
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Estimation of Parametric Probability Densities

▶ Maximum Likelihood Estimation

The framework here is the following:

− We observe the realization of a process Y [n], say y[1], . . . , y[N];
− We know that the probability density of the process Y [n] has a particular form fY (y,θ) characterized by a set of

K parameters θ = (θ1, . . . , θK);
− We do not know the value of the parameters θ.

Knowledge of θ provides fY (y,θ) and information related to it.

Having observed the samples y[1], . . . , y[N], among all the possible parameter values θ we choose the one maximizing
the probability of obtaining y[1], . . . , y[N], that is

θ̂ = argmax
θ

fY (y[1], . . . , y[N],θ)

The function fY (y[1], . . . , y[N],θ) is called Likelihood Function - LF for the samples y[1], . . . , y[N], and θ̂ is the
the Maximum Likelihood Estimator - MLE.
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Estimation of Parametric Probability Densities

▶ Maximum Likelihood Estimation (Example 1/2)

A thermistor probe (resistance varying according to the temperature) measures the skin temperature. The signal can
be modeled as

Y [n] = x[n] +W [n]
where

− x[n] are the values of the temperature (deterministic);

− W [n] is a Gaussian, centered, white noise with unitary variance.

Y [n] is a sequence of independent Gaussian random variables (variance 1 and mean x[n])

fY (y[1], . . . , y[N],θ) =
1

(2π)N/2
exp

⎧⎪⎪⎨⎪⎪⎩
−
1

2

N

∑
k=1
∣y[k] − x[k]∣2

⎫⎪⎪⎬⎪⎪⎭
.

where θ = x[1], . . . , x[N] (the mean vector of the joint Gaussian distribution).

fY (y[1], . . . , y[N],θ) represents the Likelihood Function and its maximization w.r.t.

x[1], . . . , x[N]

provides the most likely values of the temperatures.
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Estimation of Parametric Probability Densities

▶ Maximum Likelihood Estimation (Example 2/2)

The maximization of the Likelihood Function is equivalent to the maximization of its logarithm, that is

log (fY (y[1], . . . , y[N],θ)) = log
⎛
⎝

1

(2π)N/2
exp

⎧⎪⎪⎨⎪⎪⎩
−
1

2

N

∑
k=1
∣y[k] − x[k]∣2

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

= log(
1

(2π)N/2
) −

1

2

N

∑
k=1
∣y[k] − x[k]∣2 .

In this particular Gaussian case, the maximization of the Likelihood Function

fY (y[1], . . . , y[N],θ)

corresponds to the minimization of the Mean Square Error

N

∑
k=1
∣y[k] − x[k]∣2 .
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Estimation of Most Probable Realization

▶ A Posteriori Distribution

Process X[n] indirectly observed via the process Y [n].

We assume here that X[n] is a discrete valued process.

Having observed the values y[1], . . . , y[N], the a posteriori distribution is given by

P (X[1], . . . ,X[N] ∣ y[1], . . . , y[N]) .

▶ Maximum A Posteriori

Given the a posteriori distribution and the observed values y = y[1], . . . , y[N] we estimate the values x = x[1], . . . , x[N]
of the process X = X[1], . . . ,X[N] as the ones maximizing the a posteriori distribution, i.e.,

x̂ = argmax
x

P (X = x ∣ y) .
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Estimation of Most Probable Realization

▶ Assignement

Assignement
Should we use a biased or an unbiased correlation?

For next week, propose how to efficiently implement the Yule Walker equations so to reduce estimation issues like the
one arising at extreme lags for the unbiased correlation, or the one arising when dealing with non zero mean signals
and the biased correlation.

Assignement
For next week, provide the expression of a 2-step predictor without using the synthesis filter.
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2.3 Chapter Summary
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Chapter Summary

▶ General Models

− Wide Sense Stationary Processes (Signals) (non parametric)
They present a constant mean, a finite variance, a correlation depending only on the difference of the time lags,
and they admin a power spectral density.

− Processes (Signals) with i.i.d. Behaviour (non parametric)
They are a particular class of w.s.s. processes. The Gaussian white noise is the emblematic signal of such a class.
The power spectral density of an i.i.d. process is constant.

− Processes (Signals) Defined by a Parametric Law (parametric)
They admit a law (cumulative distribution / probability density) described by a finite number of parameters. As
examples, we saw the discrete valued Markov chains, characterized by the initial and the transitions probabilities,
and the Gaussian processes, characterized by the mean and the variance.

− Processes (Signals) Defined by a Parametric Equation (parametric)
They can be described by a closed form equation dependent on a finite number of parameters. As example, we
saw the Auto-Regressive (AR) processes of order M , characterized by the M parameters p1, . . . , pM and the noise
power σ2

W . AR are, by definition, w.s.s., they have a very particular form of the correlation, and they admin a
power spectral density that can be expressed as a rational polynomial. AR process are easily represented using the
associated synthesis filter, enabling to express them as a sum of orthogonal process.
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They are a particular class of w.s.s. processes. The Gaussian white noise is the emblematic signal of such a class.
The power spectral density of an i.i.d. process is constant.

− Processes (Signals) Defined by a Parametric Law (parametric)
They admit a law (cumulative distribution / probability density) described by a finite number of parameters. As
examples, we saw the discrete valued Markov chains, characterized by the initial and the transitions probabilities,
and the Gaussian processes, characterized by the mean and the variance.

− Processes (Signals) Defined by a Parametric Equation (parametric)
They can be described by a closed form equation dependent on a finite number of parameters. As example, we
saw the Auto-Regressive (AR) processes of order M , characterized by the M parameters p1, . . . , pM and the noise
power σ2

W . AR are, by definition, w.s.s., they have a very particular form of the correlation, and they admin a
power spectral density that can be expressed as a rational polynomial. AR process are easily represented using the
associated synthesis filter, enabling to express them as a sum of orthogonal process.
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Chapter Summary

▶ General Methods

After collecting a set of data (signal samples), the common operations to extract information are the following.
− Estimation: Obtain a certain quantity, such the values of a x[k], or a set of parameters, from a sequence of

observations y[k] (does not imply causality).
● Estimating the realization of a w.s.s. (non parametric signal model) processes giving observations related to

it: Wiener Filter.

● Estimating the parameters of an AR (parametric signal model) process giving a realization of the process: Yule
Walker Equations (can be optimally solved using the Levinson algorithm).

● Estimating the parameters of a probability density (parametric model) giving its outcome: Maximum Likeli-
hood Estimator.

● Estimating the most probable realization of a process given its distribution conditioned to the observations:
Maximum a Posteriori.

− Prediction: Predict the evolution of a quantity, such as the values of a process x[n], given the values of its past
x[n − 1], x[n − 2], . . . (it implies causality).
● Predicting the future value of a w.s.s. processes (non parametric signal model) giving its past observations:

Yule Walker Equations (can be optimally solved using the Levinson algorithm).

● Predicting the future value of an Auto-Regressive processes (parametric signal model) giving its past obser-
vations: Intuitive property (projection/synthesis filter) and Yule Walker Equations (can be optimally solved
using the Levinson algorithm).
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École Polytechnique Fédérale de Lausanne - EPFL #55



Chapter Summary

▶ General Methods

After collecting a set of data (signal samples), the common operations to extract information are the following.
− Estimation: Obtain a certain quantity, such the values of a x[k], or a set of parameters, from a sequence of

observations y[k] (does not imply causality).
● Estimating the realization of a w.s.s. (non parametric signal model) processes giving observations related to

it: Wiener Filter.

● Estimating the parameters of an AR (parametric signal model) process giving a realization of the process: Yule
Walker Equations (can be optimally solved using the Levinson algorithm).

● Estimating the parameters of a probability density (parametric model) giving its outcome: Maximum Likeli-
hood Estimator.

● Estimating the most probable realization of a process given its distribution conditioned to the observations:
Maximum a Posteriori.

− Prediction: Predict the evolution of a quantity, such as the values of a process x[n], given the values of its past
x[n − 1], x[n − 2], . . . (it implies causality).
● Predicting the future value of a w.s.s. processes (non parametric signal model) giving its past observations:

Yule Walker Equations (can be optimally solved using the Levinson algorithm).

● Predicting the future value of an Auto-Regressive processes (parametric signal model) giving its past obser-
vations: Intuitive property (projection/synthesis filter) and Yule Walker Equations (can be optimally solved
using the Levinson algorithm).

École Polytechnique Fédérale de Lausanne - EPFL #55


