
Statistical Signal & Data Processing - COM500

Midterm Exam

April 17 2025, Duration 1h

Name : Family Name : Seat No :

Read Me First!

You are allowed to use:

• The given cheatsheet summarizing the most important formulas;

• A pocket calculator.

You are definitively not allowed to use:

• Any kind of support not mentioned above;

• Your neighbor; Any kind of communication systems (smartphones etc.) or laptops;

• Printed material; Text and Solutions of exercises/problems; Lecture notes or slides.

Write solutions on separate sheets, i.e. no more than one solution per paper sheet.

Return your sheets ordered according to problem (solution) numbering.

All the best for your exam!!



Warmup Exercise

This is a warm up problem .. do not spend too much time on it. Please provide justified,
rigorous, and simple answers. If needed, you can add assumptions to the problem setup.

Exercise 1. AR process (6 pts)

Consider an AR process given by the following equation

X[n] = X[n− 1]− 0.25X[n− 2] +W [n] ,

where W [n] is a Gaussian white noise with variance σ2 = 1.

1) Compute the correlation.

2) Compute the power spectral density.

3) Draw on the z-plane the poles and zeros of the synthesis filter.
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Main Problem

Here comes the core part of the exam .. take time to read the introduction and each problem
statement. Please provide justified, rigorous, and simple answers. Remember that you are not
simply asked to describe statistical signal processing tools, but you are rather asked to describe
how to apply such tools to the given problem. If needed, you can add assumptions to the problem
setup.

Exercise 2. Ripples and Fast Ripples in Epileptic EEG (26 pts)

Electroencephalography (EEG) is a method to record an electrogram of the neural (electrical)
activity of the brain. It is typically non-invasive, with the EEG electrodes placed along the
scalp.

During both human and experimental epilepsy, EEG measurements have shown two types
of very particular signals: One called ripples (R), with oscillation frequencies in the range
of 80–250 Hz, and the other fast ripples (FR), with oscillation frequencies in the range of
250–600 Hz. In epilepsy analysis frameworks, EEG signals have a sampling frequency of fs =
2 kHz.

The figure below shows a time frequency analysis (spectrogram) of the simulated neural activity
of an acute phase of epilepsy. Think of a spectrogram as a sequence of periodograms (power
spectral densities), computed using a sequence of samples centered at different instant of times.

Fig. 1: Time frequency analysis of the simulated neural activity of an acute phase of epilepsy
(Fink, C. G. and Gliske, S. and Catoni, N. and Stacey, W. C., “Network Mechanisms

Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A
Computational Analysis”, eNeuro Vol. 2, Issue 3 May/June 2015).

In particular, we can observe a high energies around the frequency 200 Hz (ripples) and around
the frequency 400 Hz (fast ripple).

We shall call x[n] the signal of the neural activity.

1) Propose a simple w.s.s. model for the signal x[n]. For the sake of simplicity, you can
assume that the EEG signal is the sum of a periodic component at frequency 200 Hz,
representing the ripples, a periodic component 400 Hz, representing the fast ripples, and
a white noise W [n].
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2) Prove that the proposed model is indeed w.s.s..

We have measured N = 1000 samples of x[n]. The time frequency plot of Fig. 1 shows two
energy peaks, one at 200 Hz (ripples) and the other at 400 Hz (fast ripple).

3) Given the number of samples N , is it possible that there are more energy peaks, i.e.,
more components around the frequencies 200 Hz and 400 Hz? If so, give that intervals at
which these components might be.

We now drop the simple assumption that the signal can be modeled as two (or more) periodic
components at precise frequencies, plus noise. We rather take into account that we actually
have a distribution of energy around 200 Hz and 400 Hz. We would like to estimate the shape of
such a distribution of energies, i.e., the shape of the power spectral density, for a given instant
(interval) of time.

4) Propose a parametric method to estimate the shape of the power spectral density. Pre-
cisely describe such method: You are given the 1000 samples, sampled at fs = 2kHz, and
you are asked to detail each step as if you have to implement the method in a computer.
Precisely indicate the input and output of each step.

6) Write the expression (a sum with the right indexes) of the energy contained in the interval
[175, 225] Hz (energy of the ripples) and the expression (a sum with the right indexes) of
the energy contained in the interval [375, 425] Hz (energy of the fast ripples).

4



COM500 CheatSheet 1/2

Stochastic Processes

w.s.s.
E[X[n]]=const. ,Var(X[n])=const.<∞

E[X[k]X∗[l]]=R(k−l) ,∀k,l∈Z ,

PSD: w.s.s. + RX (k)∈ℓ1 (summable)

SX (ω)=
∑∞

k=−∞ RX (k)e−iωk .

Fundamental Filtering Formula
X[n] w.s.s., RX (k)∈ℓ1, and hk∈ℓ1, then

Y [n]=
∑∞

k=−∞ hn−kX[k] , is w.s.s. with

E[Y ]=E[X]
∑∞

k=−∞ hk , RY (k)∈ℓ1

SY (ω)=|H(ω)|2SX (ω) ,H(ω)=DTFT of hk

Markov Chain
{X[n]}n∈Z (considered stationary) with discrete values in D, |

P(X[n]=in | X[n−1]=in−1,X[n−2]=in−2,...)

=P(X[n]=in | X[n−1]=in−1) ,∀in,in−1,...∈D

Hidden Markov Chain
{X[n]}n∈Z Markov chain, {W [n]}n∈Z Gaussian white noise

Y [n]=X[n]+W [n] .

Bayes’ Rule
A and B with discrete values in D,

P(A=k | B=l)=
P(A=k , B=l)

P(B=l)
, k,l∈D .

AR Process
A w.s.s. process X[n], with values in R, |∑M

k=0 pkX[n−k]=W [n] , n∈Z ,

W [n], is a zero mean Gaussian white noise
pk , k=0,...,M bounded coefficients (real or complex). We as-
sume p0=1.

Filtering Interpretation (z−1 delay operator)

P (z)X[n]=W [n]

Canonical form: P (z) strict. min. phase, p0=1.

Correlation:

RX [m]+
∑M−1

k=1
pkRX [m−k]=δmσ2

W , m≥0 .

PSD (fundamental filtering formula):

SX (ω)|P(ejω)|2=σ2
W .

Harmonic Processes

X[n]=
∑K

k=1 αke
j(ωkn+Θk) ,n∈N ,

Θk i.i.d. uniformly distributed over [0,2π].

RX [l]=
∑K

k=1|αk|2ejωkl , SX (ω)=
∑K

k=1|αk|2δ(ω−ωk) .

Poisson Random Process N((0, t])

N((0, t]) obeys the Poisson distribution P(N=k)=
(aλ)ke−aλ

k!
, (λ

is the rate), and given two disjoint intervals (t1, t2] and (t3, t4],
N((t1, t2]) is independent of N((t3, t4]).
Inter-arrival time Sn=Tn−Tn−1 . i.i.d. with density fS(t)=λe−tλ .

Hilbert Spaces

Projection Theorem
E ,S Hilbert spaces with S⊂E, then

∀v∈E ,∃! b∈S |

b=argmin
c∈S

∥v−c∥ , ⟨v−b,c⟩=0 ,∀ c∈S ,

Projection Theorem w.s.s.
E S Hilbert spaces of w.s.s. processes with S⊂E⊆L2(P ), then

∀X[n]∈E ,∃!Y [n]∈S |

Y [n]=argmin
U[n]∈S

E[|X[n]−U [n]|2] ,

E[(X[n]−Y [n])U∗[n]]=0 ,∀ U [n]∈S ,

Empirical Statistics

Bias & Variance
Ŝ(x[1],...,x[N ]) empirical statistics of a probabilistic moment S.
Bias E[Ŝ(X[1],...,X[N ])]−S ,

Variance Var(Ŝ(X[1],...,X[N ])−S) .

Unbiased & Biased Correlation

R̂NB
X (k)= 1

N−|k|
∑N−|k|

n=1 x[n+k]x∗[n] ,

R̂B
X (k)= 1

N

∑N−|k|
n=1 x[n+k]x∗[n] .

Methods

Linear Estimation of w.s.s.: Wiener Filter
Estimation of X[n] given Y [n]

Normal equations RXY [u]=
∑

m∈Z h[m]RY [u−m]

Wiener Filter H(ejω)=
SXY (ω)

SY (ω)

Linear Prediction of w.s.s.: Yule-Walker
Prediction of X[n] as linear combination of X[n−1],...,X[n−N ].
Coefficients ak solutions of


RX [0] ... RX [N−1]

...
. . .

...
RX [N−1] ... RX [0]




a1

...
aN

=


RX [1]

...
RX [N ]

 .

Linear Estimation of AR: Yule-Walker∑N
k=0 pkX[n−k]=W [n] . Coeff. pk solution of

−


RX [0] ... RX [N−1]

...
. . .

...
RX [N−1] ... RX [0]




p1

...
pN

=


RX [1]

...
RX [N ]

 .

σ2
W=RX [0]+RX [1]p1+...+RX [N ]pN

Linear Pretiction of AR: Projection Theorem
H(X,n)=H(W,n) , ∀ n∈Z .

Intuitive property:

Y ∈H(X,n+k) , Y =A+B , A⊥H(X,n) , B∈H(X,n)

orthogonal projection of Y onto H(X,n) is B.

Estimation Param. Prob.: MLE
θ parameters of the prob. function fY , y[1],...,y[N ] realization
of the process Y [n], then

θ̂=argmaxθ fY (y[1],...,y[N ],θ)

Spectral Estimation

Periodogram: General w.s.s. process

PN
X (ω)= 1

N |∑N
n=1 x[n]e−jωn|2= 1

N
|x̂N (ω)|2 ,

Bias ∑N−1
k=−N+1

N−|k|
N

RX [k]e−jωk−SX (ω)

Variance constant
Resolution ∆f> 1

N

Annihilating Filter: Line Spectra
Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in absence of noise
1) Given 2K observations, solve the system

x[K−1] ... x[0]

...
...

x[2K−2] ... x[K−1]




h[1]

...
h[K]

=−


x[K]

...
x[2K−1]


2) Compute H(z) and the zeros of H(z)

3) Compute the argument of the zeros of H(z)

4) Compute ωk from the zeros’ arguments
5) Compute the amplitudes |αk|2 by solving

1 ... 1

ejω1 ... ejωK

...
...

ejω1(K−1) ... ejωK (K−1)





α1e
jΘ1

α2e
jΘ2

...
αKejΘK


=



x[0]

x[1]

...
x[K−1]


MUSIC: Line Spectra
Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in the presence of noise
1) Given M observations with M>>N>K center the process
and compute the empirical correlation matrix

R̂NN
Y = 1

M−N+1

∑M−N+1
n=1 yN1[n]yN1[n]

H
;

2) Compute the eigendecomposition ĜN(N−K) of R̂NN
Y

corresponding to λR
K+1 to λR

N .
3.a) Determine the peaks of

1

eN1(ω)H ĜN(N−K)ĜN(N−K)HeN1(ω)
;

where

eN1(ω) =
[
1 e−jω . . . e−j(N−1)ω

]T
,

3.b) Determine the minimum values of

eN1(ω)HĜN(N−K)ĜN(N−K)HeN1(ω) .

4) Compute the modulus of the amplitudes using

RNN
Y =ENKAKKENKH

+σ2
W INN .

Yule-Walker: Smooth Spectra
1) Given N observations with N>>M center the process and
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compute the empirical correlation

R̂X [k]= 1
N

∑N−k
n=1 x0[n+k]x0[n]∗ , k=0,...,M

2) Solve the Yule Walker equations to obtain p̂1,...,p̂M

3) Compute the estimate of the spectrum as

ŜX (ω)=
σ̂2
W

|P̂ (z)|2

∣∣∣∣∣
z=ejω

.

Mixture Models

Sequence of samples y=[y[1],...,y[N ]], sequence of corresponding
classes c=[c[1],...,c[N ]]

FY (y)=
∑

c∈C P(Y ≤y,C=c)=
∑

c∈C P(Y ≤y |C=c)P(C=c)

=
∑

c∈C
∏N

n=1 P(Y [n]≤y[n] |C[n]=c[n])P(C=c)

i.i.d. Mixtures

P(C=c)=P(C[1]=c[1])...P(C[N ]=c[N ])=πc[1]...πc[N] ,

Markovian Mixtures

P(C=c)=πc[1]pc[1]c[2]...pc[N−1]c[N] ,

Discrete value Process + Noise
Y =X+W where X is a discrete value process and W a white
Gaussian noise.

fY (y)=
∑

x∈C
∏N

n=1 G
x[n],σ2 (y[n])P(X=x) .

Denoising a Discrete Value Process
Estimate the parameters of the mixture model using the max-
imum likelihood approach; Estimate the original signal using
the maximum a posteriori approach, i.e., find x maximizing
the a posteriori distribution

P(X=x |y)=
fY (y |X=x)P(X=x)

fY (y)

PCA

Principal Components Computaiton
M data vectors, each characterized of N variables (realization
of a zero mean w.s.s. process) cm=[cm[1],...,cm[N ]]T , m=1,...,M.
Empirical correlation matrix

R̂c=
1
M

∑M
m=1 cm∗cHm= 1

M
C∗CH , (N×N) , where C=

[
c1 . . . cM

]
,

V solution of the equation R̂cV =V Λ, where Λ=diag(λ1,...,λN )

and V HR̂cV =Λ.
Principal components Z=V TC ,(N×M), uncorrelated.
Invertible transformation C=V Z ,

Analysis
K<<N eigenvalues with highest values (lossy/lossless reduc-
tion of variables)

Adaptive Filtering / Echo cancellation

Wiener-Hopf equations ∑
k∈Z h[n−k]RY (k−l)=RXY (n−l) , ∀ l .

Echo cancellation setup

E[n]=D[n]−fn∗X[n]=S[n]+h∗X[n]−fn∗X[n]=S[n]+(h−fn)∗X[n] .

Cost function & normal equations
Cost function for a k-tap filter

J(fn)=E[|E[n]|2]=E[|D[n]−fn∗X[n]|2] , w.r.t. fn[l] ,l=0,1,...,K

Minimum of the cost function = normal equations∑K
l=0 fn[l]RX (n−l,n−i)=RDX (n,n−i) , RX,nfn=rDX,n .

Iterative solution

f(i+1)=f(i)+µp , i=0,1,... , µ & p such that J(f(i+1))<J(f(i))

Convergence conditions

0<µ<2/λmax , p= 1
2
(rDX−RXf(i)) or p=4R−1

X
(rDX−RXf(i))(Newton)

Convergence rate

• 0≤1−µλj<1, monotonic decay to zero;

• −1<1−µλj<0 oscillatory decay to zero.

• K +1 modes {1− µλj , j = 0, . . . ,K}. The modes with
maximum magnitude (slowest rate of convergence), de-
termine the convergence rate of the algorithm. One can
select µ optimally by minimizing the value of the slowest
mode minµ maxj=0,...,K |1−µλj | , with the constraint that
each of the modes is stable, i.e., |1− µλ| < 1.

Computational burden reduction
Merging interation and adaptation

fn+1=fn+µ(rDX,n+1−RX,n+1fn) ,

fn+1=fn+µR−1
X,n+1

(rDX,n+1−RX,n+1fn) (Newton) ,

Replacing statistics with individual values

fn+1=fn+µXn(D[n]−XT
n fn)=fn+µXnE[n] ,


