
Statistical Signal & Data Processing - COM500

Midterm Exam

April 7 2022, Duration 1h30

Read Me First!

You are allowed to use:

• A handwritten cheatsheet (1 A4 sheet, double sided) summarizing the most important
formulas (no exercise text or exercise solutions);

• A pocket calculator.

You are definitively not allowed to use:

• Any kind of support not mentioned above;

• Your neighbor; Any kind of communication systems (smartphones etc.) or laptops;

• Printed material; Text and Solutions of exercises/problems; Lecture notes or slides.

Write solutions on separate sheets, i.e. no more than one solution per paper sheet.

Return your sheets ordered according to problem (solution) numbering.

All the best for your exam!!



Warmup Exercise

This is a warm up problem .. do not spend too much time on it. Please provide justified,
rigorous, and simple answers. If needed, you can add assumptions to the problem setup.

Exercise 1. Spectral Power (5 points)

Assume you want to compute the power (sum) of two specific frequency intervals [50, 70] Hz and
[100, 120] Hz of a power spectral density Sx[k] computed using the samples n = 1, . . . , 100000
of a signal x[n] (sampled at fs = 2 kHz).

We assume that the spectral density Sx[k] is also composed of 100000 samples, that is, k =
1, . . . , 100000.

The power P is then computed as a sum of the values of Sx[k] corresponding to the two
frequency intervals [50, 70] Hz and [100, 120] Hz, namely

P[50,70] =

k2∑
k=k1

Sx[k] ,

P[100,120] =

k4∑
k=k3

Sx[k] ,

Ptot = P[50,70] + P[100,120] .

1) Compute k1, k2, k3, and k4;

2) How can you exploit the fact the Sx[k] is a two sided spectrum?

Solution 1.

1) Given a sampling frequency fs and a number of samples N , the relation between frequen-
cies f ∈ [0, fs)], normalized frequencies f̃ ∈ [0, 1), and indexes k = 1, . . . , N is

f̃ =
f

fs
, k = f̃N + 1 =

f

fs
N + 1 .

Therefore the intervals [50, 70] Hz and [100, 120] Hz, can be expressed in normalized fre-
quencies as [0.05, 0.07] and [0.1, 0.12] and in terms of sample indexes [5001, 7001] and
[10001, 12001].

2) We can make an average of the two symmetric part of the spectrum to reduce the esti-
mation errors.
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Main Problem

Here comes the core part of the exam .. take time to read the introduction and each problem
statement. Please provide justified, rigorous, and simple answers. Remember that you are not
simply asked to describe statistical signal processing tools, but you are rather asked to describe
how to apply such tools to the given problem. If needed, you can add assumptions to the problem
setup.

Exercise 2. Bridge Vibrations (30 points)

Bridge inspection for preventive maintenance is commonly carried on using traditional visual
inspection tools. The latter can only detect obvious damages like disruption, cracks or rust on
the surface of bridges.

An advanced non-destructive inspection method is based on vibration measurements obtained
by mean on an accelerometer. Vibration monitoring can indeed immediately detect changes of
structural integrity and even determine type and location of an occurred malfunction.

The picture below shows and application of 3D vibration measurement on the Komtur Bridge
in Berlin, Germany.

   

Fig. 1 USB Acceleration sensor with laptop (left) and wireless LAN acceleration sensor (right) 

 

4 DATA ACQUISITION 
The basic measurement process and the necessary data analysis are exemplified on the 
Komtur Bridge in Berlin, Germany, which has been chosen due to its very intense and 
clearly perceptible vibration behaviour. Fig. 2 shows the inspected structure and a 
schematic representation of the three bridge sections with a total length of 91 m and a 
width of 20 m.  

 

 

Fig. 2 Picture and a schematic representation of the Komtur Bridge in Berlin, Germany Schematics of vibration measurement of the Komtur bridge in Berlin, Germany.

We denote with x[n] the (real) signal of the vertical acceleration (corresponding to the x axis in
the above picture). We suppose that we have obtained N = 100000 samples using a sampling
frequency fs = 1000 Hz.

The power spectral density Sx[k] of the vibration measurement x[n] is depicted in the figure
below, we we can identify the very distinctive vibration characteristics of the Komtur bridge.
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the time series are called ambient windows. Fig. 3 shows a typical time series of an ac-
celeration measurement including an example of an ambient window which is addition-
ally depicted in Fig. 4. 

 

Fig. 3 Time series of an acceleration measurement 

 

Fig. 4 Ambient window 

For the selected ambient windows of the time series the frequency spectrum is calcu-
lated according to the Fast Fourier Transform algorithm (FFT) and averaged over all 
sections (RESNIK 2010). As an example the averaged frequency spectrum for the vertical 
acceleration in the middle of the bridge is shown in Fig. 5. The smoothed Power Spec-
tral Density (PSD) of the time series is determined in accordance to the Welch method 
(WELCH 1967) and is shown in Fig. 6. In both spectra the natural frequencies at ap-
proximately 2 Hz and 2.6 Hz can be identified considerably. 

 

Fig. 5 Averaged frequency spectrum (FFT) 

ambient window 

Power spectral Sx[k] density of the vertical vibration measurement x[n] of the Komtur bridge.

Please notice that:

• Being the signal real, only half of the spectrum is displayed;

• Only the relevant frequency interval is presented;

• The constant (DC) component, due to the gravity, has been eliminated, i.e., the signal
x[n] has been centred.

The characteristic “natural” vibration frequencies of the bridge are around fa = 2 Hz and
fb = 2.6 Hz.

We now would like to develop an automatic vibration detection system that shall work for any
general bridge.

Please notice that questions 1), 2) & 3), 4), 5) are independent.

Consider the spectrum Sx[k] of the vibration measurement x[n] of the Komtur bridge presented
above. Suppose we have obtained the above spectrum with a periodogram computed using the
100000 samples of x[n] (sampled at fs = 1 kHz).

1) Is it possible that the bridge under test has more than 2 main vibration frequencies? If
so, what are the possible values of such frequencies?

We now proceed to the testing of another bridge, and we suppose, for simplicity, that it has 3
“natural” vibration frequencies f1, f2, and f3 (in hertz).

Due to interferences, the vibration measurement, that we shall now denote with y[n], is affected
by a white Gaussian noise.

2) Propose a w.s.s. model for the vibration measurement y[n].

3) Prove that the model you propose is indeed w.s.s..

We now would like to estimate the three frequencies f1, f2, and f3 (in hertz).
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4) Propose a parametric method to estimate the 3 main frequencies (only the frequencies!)
of the vibration measurement y[n]. Precisely describe such method: You are given the
100000 samples, sampled at fs = 1 kHz, and you are asked to detail each step as if you
have to implement the method in a computer. Precisely indicate the input and output of
each step.

Recent studies showed that bridges vibrate not at specific frequencies but rather at specific
frequency intervals (around main frequencies). We can indeed see such a behaviour by noticing
that the experimental power spectral density depicted in the picture above shows pulses rather
than lines.

To compute such pulses, it is necessary to estimate the whole power spectral density Sy[k] and
not only specific frequencies.

5) Propose another parametric method to estimate the shape of power spectral density
(pulses) Sy[k] of the the vibration measurement y[n]. Precisely describe such method:
You are given the 100000 samples, sampled at fs = 1 kHz, and you are asked to detail
each step as if you have to implement the method in a computer. Precisely indicate the
input and output of each step.

Solution 2.

N = 100000, fs = 1 kHz, fa = 2 Hz and fb = 2.6 Hz.

1) The spectral resolution of the periodogram is, ∆f = fs/N = 1 kHz/100000 = 0.01 Hz.
Any other spectral line falling in the interval [fk−∆f, fk + ∆f ], k = a, b will be “hidden”
by the impulse shape of the main frequency fk, k = a, b.

Therefore, it is possible to have other vibration frequencies belonging to the intervals
[2− 0.01, 2 + 0.01] Hz, and [2.6− 0.01, 2.6 + 0.01] Hz.

2) We have a real harmonic signal of 3 frequencies plus noise, that can be modelled as

Y [n] = X[n] +W [n] =
3∑

k=1

αk(e
i(2π

fk
fs
n+Θk) + e−i(2π

fk
fs
n+Θk)) +W [n] ,

=
3∑

k=1

αk(e
i2π

fk
fs
neiΘk + e−i2π

fk
fs
ne−iΘk) +W [n] ,

where Θk are i.i.d. uniform (on [0, 2π]) random variables, and W [n] is a centered white
noise.

3) We need to prove that:

E [Y [n]] = constant

E [Y [n]] = E

[
3∑
k=1

αk(e
i2π

fk
fs
neiΘk + e−i2π

fk
fs
ne−iΘk) +W [n]

]

=

3∑
k=1

αk(e
i2π

fk
fs
nE
[
eiΘk

]
+ e−i2π

fk
fs
nE
[
e−iΘk

]
) + E [W [n]] .
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Notice that E
[
e±iΘ

]
=
∫ 2π

0
e±iθ 1

2πdθ = 0 and E [W [n]] = 0. Therefore E [Y [n]] = 0

E [Y [n+ l]Y [n]∗] = RY [l].

E [Y [n+ l]Y [n]∗] =E
[
(X[n+ l] +W [n+ l]) (X[n] +W [n])

∗]
=E [X[n+ l]X[n]∗] + E [W [n+ l]X[n]∗] + E [X[n+ l]W [n]∗] + E [W [n+ l]W [n]∗]

X⊥W
= E [X[n+ l]X[n]∗] + E [W [n+ l]]︸ ︷︷ ︸

=0

E [X[n]∗] + E [X[n+ l]] E [W [n]∗]︸ ︷︷ ︸
=0

+E [W [n+ l]W [n]∗]︸ ︷︷ ︸
σ2
W δl

=E [X[n+ l]X[n]∗] + σ2
W δl .

Let’s now take a look at the term E [X[n+ l]X[n]∗]. For notation ease, denote αke
i2π

fk
fs
n = αke

+
k [n] and

αke
−i2π fk

fs
n = αke

−
k [n]

E [X[n+ l]X[n]∗] =E

[
3∑
k=1

3∑
m=1

(e+
k [n+ l]eiΘk + e−k [n+ l]e−iΘk)(e−m[n]e−iΘm + e+

m[n]eiΘm)

]

=

3∑
k=1

3∑
m=1

E
[
(e+
k [n+ l]eiΘk + e−k [n+ l]e−iΘk)(e−m[n]e−iΘm + e+

m[n]eiΘm)
]

Notice that

3∑
k=1

3∑
m=1,m 6=k

E
[
(e+
k [n+ l]eiΘk + e−k [n+ l]e−iΘk)(e+

m[n]eiΘm + e−m[n]e−iΘm)
]

=

3∑
k=1

3∑
m=1,m 6=k

E
[
(e+
k [n+ l]eiΘk + e−k [n+ l]e−iΘk)

]
E
[
(e+
m[n]eiΘm + e−m[n]e−iΘm)

]
= 0 .

Therefore,

E [X[n+ l]X[n]∗]

=
∑
k=1

xE
[
(e+
k [n+ l]eiΘk + e−k [n+ l]e−iΘk)(e+

k [n]e
iΘk + e−k [n]e

−iΘk)
]

=

3∑
k=1

(
e+
k [n+ l]e+

k [n]E
[
ei2Θk

]
+ e−k [n+ l]e+

k [n]E
[
e0
]
+ e+

k [n+ l]e−m[n]E
[
e0
]
+ e−k [n+ l]e−m[n]E

[
e−i2Θk

])
=

3∑
k=1

(
e−k [n+ l]e+

k [n] + e+
k [n+ l]e−k [n]

)
=

3∑
k=1

(
α2
ke
−i2π fk

fs
(n+l)ei2π

fk
fs
n + α2

ke
i2π

fk
fs

(n+l)e−i2π
fk
fs
n
)

=

3∑
k=1

α2
k(e
−i2π fk

fs
l + ei2π

fk
fs
l) .

Finally

E [Y [n+ l]Y [n]∗] =

3∑
k=1

α2
k(e
−i2π fk

fs
l + ei2π

fk
fs
l) + σ2

W δl ,

obtaining an expression depending only on l.

4) Given the presence of noise and that fact that we aim at the estimation of the vibration
frequencies, i.e. the position of spectral lines, MUSIC is a very good candidate method.
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Notice that 3 frequencies of a real harmonic signal correspond to 6 spectral lines (3 positive
and 3 symmetrically negative frequencies).

N = 100000, samples y[1], . . . , y[100000], fs = 1 kHz.

– Center the process ỹ[n] = y[n]−mY , where mY = 1
100000

∑100000
k=1 y[k];

– Compute the biased empirical correlation

R̂Y [k] =
1

100000

100000−k∑
n=1

ỹ[n+ k]ỹ[n] , k = 0, . . . , (100000− 1) , R̂Y [−k] = R̂Y [k] .

Set 8 << M << 100000, The empirical correlation matrix is then given by

R̂M×M
Y =


R̂Y [0] R̂Y [1] · · · R̂Y [M − 1]

R̂Y [−1]
. . .

...
...

. . .
...

R̂Y [−M + 1] · · · · · · R̂Y [0]

 .

Notice that we set M bigger than the number K = 6 of the positons of the spectral
lines we are looking for (so to exploit redundancy for the estimation of the positions),
and smaller than the number of samples (so to reduce the extreme lag issues of the
correlation)

– Compute the M eigenvalues λ and M eigenvectors g of R̂M×M
X .

– Call GM×(M−6) the matrix of the M − 6 eigenvectors corresponding to the M − 6
smaller eigenvalues.

– Define the vector eM×1(ω) =
[
1 e−jω . . . e−j(M−1)ω

]T
as a function of the variable

ω.

– Find the 6 values of ω (ω1, . . . , ω6) minimizing the equation

eM×1(ω)
H
ĜM×(M−6)ĜM×(M−6)HeM×1(ω) .

– Obtain the 6 normalized frequencies as f̃k = ωk

2π
. Out of the so obtained 6 frequencies,

select the 3 that fall in [0, 0.5).

5) Here we need to estimate the shape of the spectrum which is realistically composed of
“pulses”. Consequently the optimal approach is to estimate the spectrum as a smooth
spectrum

SY (ω) =
σ2

|P (ejω)|2
=

σ2

|1 + p1e−jω + . . .+ pMe−jωM |2

assuming the signal to be an AR process. Here, the AR process should be at least of
order M = 6 in order to account for the 6 peaks of the spectrum shape (3 vibration mode
of a real signal).

The polynomial coefficients p1, . . . , p6 and σ2 are estimated using the Yule-Walker equa-
tions.

7



– Center the process ỹ[n] = y[n]−mY , where mY = 1
100000

∑100000
k=1 y[k];

– Compute the empirical biased correlation

R̂Y [k] =
1

100000

100000−k∑
n=1

ỹ[n+ k]ỹ[n] , k = 0, . . . , (100000− 1) , R̂Y [−k] = R̂Y [k] .

– Write the Yule Walker equations for the estimation of p1, . . . , p6 and σ2R̂Y (0) . . . R̂Y (5)
...

. . .
...

R̂Y (5) . . . R̂Y (0)


p1

...
p6

 = −

R̂Y (1)
...

R̂Y (6)


σ2 = R̂Y (0) + R̂Y (1)p1 + . . .+ R̂Y (6)p6 .

– Solve the equations (Toeplitz symmetric 62 +6 multiplications, or use the Levinson’s
algorithm) in order to obtain p1, . . . , p6 and σ2

– Compute the estimation of the spectrum as

ŜY (ω) =
σ2

|1 + p1e−jω + . . .+ p6e−jω6|2

where the frequency (in radiants) ω can be discretized over N = 100000 points:
ω = 2πk/N , k = 0, . . . , N − 1

ŜY (k) =
σ2∣∣∣1 + p1e

−j2π k
N + . . .+ p6e

−j2π k
N

6
∣∣∣2 , k = 0, . . . , N − 1 .
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