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A quick question

Exercise 1. How many parameters? (3 pts)

Let X [n], be a stochastic process taking 10 possible values, and such that

- P (X [n] = i0|X [n− 1] = i1, . . . , X [n− k] = ik) = P (X [n] = i0|X [n− 1] = i1),
for every n, k

- P (X [n] = i) = P (X [n+ l] = i) for every l

We would like to describe the process X [n] for n = 1, . . . , 1000, that is, we would like
to characterize the law (probability) of X [1], . . . , X [1000]. How many parameters
are necessary to characterize X [1], . . . , X [1000]?

Solution 1.

X [n] is a Markov chain, characterised by its initial and transition probabilities.

Now, we have 10 possible values (10 states), therefore

- 10 initial probabilities πi, i = 1, . . . , 10;

- 10× 10 transition probabilities pij , i = 1, . . . , 10, j = 1, . . . , 10.

and

- 1 probability constraint for the initial probabilities
∑10

i=1 πi = 1;

- 10 probability constraints for the transition probabilities
∑10

j=1 pij = 1, i =
1, . . . , 10.

Finally, the law of the process is characterised by 10 − 1 + 10 × 10 − 10 = 99
parameters.

Bonus

If we also take into account that the Markov chain is stationary (i.e., P (X [n] = i) =
P (X [n+ l] = i) for every l), the initial distribution satisfy

πj =

10
∑

i=1

πipij .

In such a case the law of the Markov chain is completely characterized by its tran-
sition probability, that is, by 90 parameters.
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Exercise 2. A and B (20 pts)

In a Free Jazz concert two trumpeters play respectively the note A and B for several
seconds. The note A can be modelled as a sinusoid with frequency 440Hz, while the
note B with a sinusoid of frequency 493.88Hz.

We record the two trumpeters with a sampling frequency of 10KHz.

Modeling

We would like to provide an explicit model, that is, an equation, in order to describe
the sound of the two trumpeters.

Given that we do not know the beginning of each sinusoid, we model such an incer-
titude with a random variable and, therefore, the recorded signal with a stochastic
process, that we assume to be w.s.s..

1) Setting the amplitude of the two sinusoids to a1 and a2, respectively, provide
the expression of the w.s.s. stochastic process X [n] (discrete time) modelling
the recorded sound (sampled) produced by the two trumpeter. Clearly de-
scribe the random variables modelling the incertitude of the time origin of the
sinusoids (distribution, characteristics, etc ..).

2) Prove that the expression you have provided for the stochastic process X [n]
describes indeed a w.s.s. process.

Spectral estimation

Let’s now go back to the recording, that is, the sequence of samples.

Based on such a sequence of recorded samples we would like to estimate the power
spectral density of the process in order to verify that we have indeed recorded the
two notes A and B.

We start with the simplest approach: The Periodogram! Obviously, we need to be
able to distinguish the two notes, that is, we need an appropriate spectral resolution.

3) How many samples do we need to record in order to be able to distinguish the
two notes? Justify precisely your answer.

4) Describe in details the advantages and disadvantages of the Periodogram.

You finally decide not to use the periodogram. Based on the modelling assumption,
you are asked to:

5) Propose a parametric spectral estimation method and precisely justify you
choice.

6) Describe in detail the proposed spectral estimation method and in particu-
lar ALL the steps necessary to obtain the values of the spectrum from the
recorded samples.
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Solution 2.

1) X [n] is a harmonic process, with two harmonics, one at f1 = 440Hz (440/10000
in normalized frequencies) and the other at f2 = 493.88 (493.88/10000 in nor-
malized frequencies), where fs = 10000 is the sampling frequency. The easiest
way to write the equation of the model is to use complex exponentials, that is

X [n] =
a1
2

(

ei(2πn
f1
fs

+Θ1) + e−i(2πn
f1
fs

+Θ1)
)

+
a2
2

(

ei(2πn
f2
fs

+Θ2) + e−i(2πn
f2
fs

+Θ2)
)

.

where, given the framework of the problem, the amplitudes a1 and a2 are
assumed to be real.

Θ1 and Θ2 are two random variables modeling the incertitude of the time origin
(phase). They are uniformity distributed over [0, 2π) , and independent on
each other.

Given that only the random variables Θ1 and Θ2 are concerned by the com-
putations of the moments, we shall write the process as

X [n] =
a1
2
ei2πn

f1
fs eiΘ1 +

a1
2
e−i2πn

f1
fs e−iΘ1 +

a2
2
ei2πn

f2
fs eiΘ2 +

a2
2
e−i2πn

f2
fs e−iΘ2

=α[n]eiΘ1 + α∗[n]e−iΘ1 + β[n]eiΘ2 + β∗[n]e−iΘ2 ,

where obviously α[n] = a1
2
ei2πn

f1
fs and β[n] = ei2πn

f2
fs .

2) In order to prove that X [n] is w.s.s. we need to verify that

– E [X [n]] = constant;

– E [X [n+ k]X [n]∗] = R(k), i.e., a function of the time lag difference;

– (Bonus) VarX [n] < ∞, or E [|X [n]|] < ∞.

Now,

– E [X [n]] = E
[

α[n]eiΘ1 + α∗[n]e−iΘ1 + β[n]eiΘ2 + β∗[n]e−iΘ2

]

= α[n]E
[

eiΘ1

]

+
α∗[n]E

[

e−iΘ1

]

+ β[n]E
[

eiΘ2

]

+ β∗[n]E
[

e−iΘ2

]

, where

E
[

eiΘk
]

=

∫ 2π

0

eiθk
1

2π
dθ =

1

i2π
eiθk

]2π

0

=
1

i2π
(1− 1) = 0 , k = 1, 2 .

– In order to compute E [X [n+ k]X [n]∗], notice that

E
[

e±iΘ1e±iΘ2

]

= 0 ,

and that
E
[

e±i2Θk
]

= 0 , k = 1, 2 .

Therefore E [X [n + k]X [n]∗]

=E
[(

α[n + k]eiΘ1 + α∗[n+ k]e−iΘ1

) (

α[n]eiΘ1 + α∗[n]e−iΘ1

)]

+ E
[(

β[n+ k]eiΘ2 + β∗[n+ k]e−iΘ2

) (

β[n]eiΘ2 + β∗[n]e−iΘ2

)]

=α[n+ k]α∗[n] + α[n+ k]∗α[n] + β[n+ k]β∗[n] + β[n+ k]∗β[n] ,

where α[n + k]α∗[n] =
(

a1
2

)2
ei2πk

f1
fs and β[n + k]β∗[n] =

(

a2
2

)2
ei2πk

f2
fs .

Without further computation, this shows that the correlation if a function
of the difference of the time lags, i.e., E [X [n+ k]X [n]∗] = R(k).

Notice that R(0) = 2
(

a1
2

)2
+ 2

(

a2
2

)2
.
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– Var (X [n]) = E [|X [n]|2]−|E [X [n]] |2 = R(0)−0 = 2
(

a1
2

)2
+2

(

a2
2

)2
< ∞ .

3) We know that the spectral resolution of a Periodogram is, in normalized fre-
quencies, 1/N , that is, given N samples we can distinguish two spectral lines
is their frequencies differ more than 1/N . The normalized frequencies of the
two sinusoids are f1/fs and f2/fs. Then

∣

∣

∣

∣

f2
fs

−
f2
fs

∣

∣

∣

∣

=
53.88

10000
>

1

N
.

which gives N > 185.6, in practice, N ≥ 186.

4) Advantages of the Periodogram

– Simple (just the square of the DFT)

– General (just assumes that the signal is w.s.s.)

Disadvantages of the Periodogram

– Biased

– Constant variance

– Affected by the sum of the extreme lag errors of the correlation

5) The process X [n] is harmonic, and its spectrum is composed of spectral lines.
Therefore, the optimal approach is to use the annihilating filter. Notice that
such a method does not work properly in the presence of noise. However, there
is no indication in the presence of noise.

6) Given the assumption that the signal is composed of two (real) sinusoids, with
normalized frequencies f1/fs and f2/fs , the power spectral density presents
4 spectral lines: f1/fs, f2/fs, with respective amplitudes a21 and a22, and the
frequency symmetric counterparts 1 − f1/fs and 1 − f2/fs, with respective
amplitudes a21 and a22. Therefore, we need to estimate 4 frequencies and 2
amplitudes.

The steps to achieve line spectrum estimation using the annihilating filter are
the following

– Compute the 4 values of the impulse response h[1], . . . , h[4] (h[0] = 1) of
the annihilating filter using the following set of equations









x[3] x[2] x[1] x[0]
x[4] x[3] x[2] x[1]
x[5] x[4] x[3] x[2]
x[6] x[5] x[4] x[3]

















h[1]
h[2]
h[3]
h[4]









= −









x[4]
x[5]
x[6]
x[7]









– Compute the the z-transform H(z) = 1 + h[1]z−1 + h[2]z−2 + h[3]z−3 +
h[4]z−4;

– Find the zeroes of H(z) (with respect to the variable z);
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– Given that the zeroes have the form zk = ei2π
fk
fs , k=1,2,3,4, (where

f3/fs = 1 − f2/fs and f4/fs = 1 − f1/fs), compute the frequencies fk,
k=1,2,3,4, as the scaled argument of the zeroes

fk =
fs
2π

arg (zk) .

– Given the line spectrum positions fk, k = 1, 2, 3, 4, compute the ampli-
tudes of the line spectrum using the equation

X [n] =
a1
2
ei2πn

f1
fs eiΘ1+

a1
2
e−i2πn

f1
fs e−iΘ1+

a2
2
ei2πn

f2
fs eiΘ2+

a2
2
e−i2πn

f2
fs e−iΘ2 ,

that is, solve the linear system













1 1 1 1

ei2π
f1
fs e−i2π

f1
fs ei2π

f2
fs e−i2π

f2
fs

ei4π
f1
fs e−i4π

f1
fs ei4π

f2
fs e−i4π

f2
fs

ei6π
f1
fs e−i6π

f1
fs ei6π

f2
fs e−i6π

f2
fs





















a1
2
ejΘ1

a1
2
e−jΘ1

a2
2
ejΘ2

a2
2
e−jΘ2









=









x[0]
x[1]
x[2]
x[4]









Then the amplitudes of the spectral lines are given by the square of the
absolute value of the solution of the above linear system, i.e., |a1

2
ejΘ1|2,

|a1
2
e−jΘ1|2, |a2

2
ejΘ2|2, |a2

2
e−jΘ2|2.

6



Exercise 3. Filtered process (15 pts)

Let W [n] be a white noise, that is, a i.i.d. sequence of random variables, with
variance σ2 and mean 0. Let H(z) = 1 − a1z

−1 − a2z
−2 be strictly minimum phase

filter.

Consider the stochastic process X [n] defined as

X [n]H(z) = W [n] ,

1) Prove that X [n] is a wide-sense stationary process.

2) Compute the expression of its correlation. Justify precisely your answer.

3) Compute the expression of its power spectral density. Justify precisely your
answer.

Suppose that the magnitude of the filter 1/H(z) is given by
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Magnitude Response 

Notice that the maximum value of the magnitude is 1.95 10−3 and the minimum
value is 0.15 10−3

4) Draw on the z plane the poles and zeroes of 1/H(z).

5) Draw the power spectral density of X [n] and indicate its minimum and max-
imum values.

Solution 3.

1) H(z) is minimum phase, therefore its inverse 1/H(z) defines a stable filter.
Consequently, the process X [n] can be modeled as the filtering of a white
noise with the stable filter 1/H(z). Symbolically, by multiplying on the right
both terms of the equation by 1/H(z), we have

X [n] = W [n]
1

H(z)
,

Given that a white noise is a w.s.s. process (i.i.d. sequence of random vari-
ables), by the fundamental filtering formula the process X [n] is also w.s.s..
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2) From its definition X [n]H(z) = W [n], the process X [n] can be written as

X [n] = a1X [n− 1] + a2X [n− 2] +W [n] .

The correlation reads

R(k) =E [X [n+ k]X∗[n]]

=E [X [n+ k] (a1X [n− 1] + a2X [n− 2] +W [n])∗]

=a1R(k + 1) + a2R(k + 2) + E [X [n+ k]W ∗[n]] ,

where the last term is E [X [n+ k]W ∗[n]] = δkσ
2.

3) We use here the expression of X [n] as the filtering of a white noise

X [n] = W [n]
1

H(z)
.

By the fundamental filtering formula (for its applicability see answer 1) we
have

SX(ω) =
1

|H(eiω)|2
SW (ω) =

1

|H(eiω)|2
σ2 ,

4) The magnitude plots shows two poles with argument near 0.1 and 0.9 (that
is 0.2π and 1.8π). There are no zeroes (behind zeroes at the origin). The z
plane plot of the poles reads
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5) The power spectral density of X [n] is given by the square of the magnitude of
1

H(eiω
times the variance σ2 of the noise. That is, the square of the given plot

of the magnitude times σ2.
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The maximum value is σ2(1.95 10−3)2 = σ23.8 10−6 and the minimum value
is σ2(0.15 10−3)2 = σ22.25 10−8.
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