

Statistical Signal Processing

MidTerm Exam

Thursday, XX April 2011

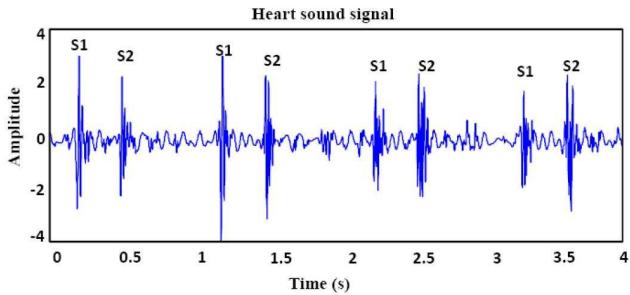
Read Me First!

*Only the personal cheat sheet is allowed.
No class notes, no exercise text or exercise solutions.*

**Write solutions on separate sheets,
i.e. no more than one solution per paper sheet.**

**Return your sheets ordered according to problem (solution)
numbering.**

Return the text of the exam.


A quick question

Exercise 1. HOW MANY PARAMETERS? (3 PTS)

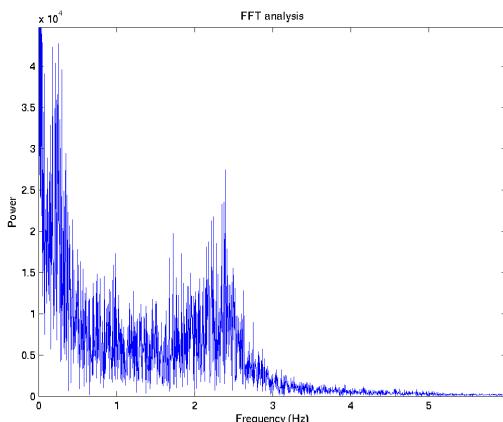
How many parameters are necessary to characterize a Markov Chain $X[n]$, $n = 1, \dots, 1000$, with 4 possible states? (*i.e.*, $X[n]$ takes 4 possible values)

Exercise 2. HAVE YOU ALREADY TRIED TO HEAR YOUR HEART WITH A MICROPHONE? (20 PTS)

If we place a microphone on the chest, the signal that we can record pretty much looks like this

where S1 corresponds to the systole and S2 to the diastole. Such a signal is called phonocardiogram - PCG.

We model the recorded signal as a stochastic process $X[n]$ that we assume to be wide sense stationary - w.s.s. over windows of 1500 samples.


Due to movement artifacts (not easy to keep the hand still), the measurement is affected by noise that we suppose to be a white Gaussian noise $W[n]$ with variance σ^2 . That is, what we measure is a signal $Y[n]$ given by

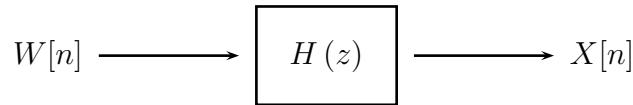
$$Y[n] = X[n] + W[n].$$

Given that we measure 30000 samples of $Y[n]$,

- 1) Describe how we can de-noise the 30000 samples of $Y[n]$ using the Wiener filter and precisely detail the steps necessary to obtain the de-noised values (hint: don't forget that the Wiener filter works only on w.s.s. signals ...).

Thanks to the de-noising, we have now access to 30000 samples of $X[n]$ (de-noised $Y[n]$). When one tries to compute the spectrum of each w.s.s. window of samples using the periodogram, what he gets looks like

Your boss ask you to use a periodogram to compute the spectrum for each windows of 1500 samples and he wants to know the performance of the periodogram


- 2) Compute the spectral resolution of the periodogram given that you have observed 1500 samples of $X[n]$.
- 3) Describe in details the advantages and disadvantages of the periodogram.
- 4) Given that you have 30000 samples, is there a way to improve the periodogram? If yes, how?

You finally decide not to use the periodogram. Based on the spectrum shown in the figure above, you are asked to:

- 5) Propose a parametric spectral estimation method and precisely justify your choice;
- 6) Describe in detail the proposed spectral estimation method and in particular the steps necessary to obtain the values of the spectrum from the 1500 values of the PCG signal $X[n]$.

Exercise 3. A BIT OF THEORY (7PTS)

We consider a voice synthesizer based on filtering of a white noise

where the input $W[n]$ is a real Gaussian white noise, centered, with correlation $R_W[n] = \delta_n \alpha$ ($\alpha > 0$),

$$H(z) = \frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

is a minimum phase filter with real coefficients a_1 and a_2 , and $X[n]$ is the process describing the synthesized voice.

- 1) Is $X[n]$ a wide-sense stationary process? Justify **precisely** your answer.

We are now interested in computing the second order properties of $X[n]$

- 2) Compute the power spectral density of $X[n]$, $S_X(\omega)$.