

Exercises 7

Exercise 1.

In this exercise, we consider the application of the Wiener filter in reducing additive noise. Consider a signal $X[n]$ embedded in additive zero mean white Gaussian noise. That is,

$$Y[n] = X[n] + W[n].$$

Assume that $X[n]$ and $W[n]$ are uncorrelated.

- (a) Derive the transfer function of an optimal non-causal filter.
- (b) We define the following signal to noise ratio:

$$a(\omega) = \frac{R_{xx}(e^{j\omega})}{R_{ww}(e^{j\omega})}.$$

How is the Wiener filter response in the case of noise-free frequencies, i.e., $a(\omega_o) \gg 1$? and in the case of very high noise, i.e., $a(\omega_o) \approx 0$? what can you conclude?

Exercise 2. WIENER FILTER

Suppose that a desired process $X[n]$ is generated by filtering the white gaussian noise $W[n]$ (centered with variance 1) using a filter $h[k]$, where

$$H(z) = \frac{1 + \frac{3}{4}z^{-1}}{1 + \frac{1}{2}z^{-1}}. \quad (1)$$

Consider now the signal $Y[n] = X[n] + V[n]$, where $V[n]$ is zero mean white Gaussian noise with variance $1/2$ and uncorrelated with $W[n]$.

- (a) Design a Wiener filter for estimating $X[n]$ from $Y[n]$.
- (b) Repeat (a) for the case when $V[n]$ is a random variable given by:

$$V[n] = \frac{1}{3}X[n-1] - \frac{1}{9}X[n-2].$$

Exercise 3.

In Markov chains, the probability that the chain is in a particular state k is given by π_k and the distribution of probabilities for states $1 \leq k \leq n$ can be represented by a vector π such that $0 \leq \pi_k \leq 1, \forall k$ and $\sum_{k=1}^n \pi_k = 1$. Markov chain is characterized by a matrix \mathbf{M} such that the probability distribution π_{m+1} at instant $m+1$ can be computed from the distribution π_m at instant m as follows:

$$\pi_{m+1} = \mathbf{M}\pi_m.$$

The matrix $\mathbf{M} = [m_{ij}]$ has the following properties: $0 \leq m_{ij} \leq 1$ and $\sum_{i=1}^n m_{ij} = 1, \forall j$. An equilibrium distribution of the Markov chain π^e is a solution of the eigenvalue equation:

$$\mathbf{M}\pi^e = \pi^e$$

(a) Let $\|\cdot\|_1$ be the 1-norm, defined as follows:

$$\|\mathbf{x}\|_1 = |x_1| + \dots + |x_n|, \quad \mathbf{x} \in \mathbb{C}^n.$$

Show that $\|\mathbf{M}\pi\|_1 = \|\pi\|_1$ for any probability distribution π .

(b) Does the sequence π_m always (for any initial vector π_0 with the above properties) converge to an equilibrium distribution π^e ?

Exercise 4. MARKOV CHAIN

In this exercise you will generate Markov chain with 3 states. This could be for example the state of the weather: sunny, snowy and rainy. We can write transition probabilities in the matrix form:

$$\begin{bmatrix} 0.8 & 0.2 & 0.1 \\ 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.7 \end{bmatrix} \quad (2)$$

where the probabilities of the states at step $n+1$ given at step n the process was in the state i is defined by i -th column.

- (a) *Warm up exercise:* Draw the diagram depicting this Markov Chain and it's transition probabilities.
- (b) Generate a realisation of this Markov Chain in Python or Matlab, picking any state you like as the initial state. You can use provided Jupyter Notebook.
- (c) Is your process (with a fixed starting point) stationary? What is the probability distribution after one, two and five steps? You can calculate the distribution in Python/Matlab.
- (d) What equations the initial probabilities have to satisfy for the process to be stationary?
- (e) Calculate such initial probabilities in Python/Matlab. Do it twice using different methods: using eigenvalue decomposition and estimate using your realisation of the process. Give example situations where you would use each method.
- (f) Assume now that you don't know the transition probabilities of your Markov Chain. Formulate the Maximum Likelihood as optimisation problem. What method would you use to solve it?
- (g) *Additional Question:* Using the generated realisations of your signal solve your problem using `solve` in Matlab or `scipy.optimize.minimize` in Python. Is your estimation accurate?