

Exercises 3

Exercise 1. POWER SPECTRUM DENSITY

Consider the stochastic process defined as

$$Y[n] = X[n] + \beta X[n - 1]$$

where $\beta \in \mathbb{R}$ and $X[n]$ is a zero-mean wide-sense stationary process with autocorrelation function given by

$$R_X[k] = \sigma^2 \alpha^{|k|}$$

for $|\alpha| < 1$.

- (a) Compute the power spectrum density $S_Y(e^{j\omega})$ of $Y[n]$.
- (b) For which values of β does $Y[n]$ corresponds to a white noise? Explain.

Exercise 2. PROJECTION OF AR PROCESS

Consider the autoregressive process defined as:

$$X[n] = X[n - 1] - X[n - 2] + 2X[n - 3] + W[n], \quad (1)$$

where $W[n]$ is white noise. Your task is to find the best *linear* predictor $Y[n - 1]$ of order 3 of $X[n + 2]$ given the past $(X[n - 1], X[n - 2], X[n - 3])$, using two methods:

- (a) by using the projection theorem and solving a system of linear equations,
- (b) by recursively expanding the definition of $X[n + 2]$ and using an intuitive property.

Exercise 3.

The process $X[n]$ is a real AR process of order M .

- 1) Write the recursion that allows to synthesize the process $X[n]$ from a white noise process $W[n]$.
- 2) Write the correlation structure of X .

Suppose that the order M is unknown but an estimate of the correlation function $R_X[n]$ is available for $n \geq 0$.

- 3) Describe precisely a procedure to determine the order M , the parameters of the AR model and the variance of the input noise W .
- 4) What is the expression of the power spectral density of $X[n]$, $S_X(\omega)$ (as a function of the parameters and the order M)?