1. Fundamentals
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1.1 Preamble
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Living in a Sampled World

Sampling Theorem

z(t) analog signal with maximum frequency fmax.

z[n] = z(nTs) samples obtained from z(t) by sampling at frequency fs = 1/T5.

The "must” condition in order to have z[n] carrying the same information as z(t) is:

fs >2fma><-

If fs is given and fs < 2fmax, then z(t) needs to be low passed, so that the maximum
frequency fip,,, of the low passed analog signal = p(t) satisfies fs >2fip, . -

Better lose the saddle than the horse!

Spectrum and Replicas

signal F.T. spectrum
&(f)
a(t) a(f) ﬂ\\
o B [ 1
,i #(f = kfs)
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Living in a Sampled World

Time & Frequency Domains

This course deals (mostly) with discrete time signals or, more generally, countable data
1‘[0],1‘[1], s 71‘[N7 1]9

where, in practical scenarios, N is finite.
Time domain samples are commonly indexed with integers;

Frequency domain samples are indexed with integers, i.e., sample indexes, or expressed
in normalized frequencies or in radians.
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Living in a Sampled World

Sample Indexes in the Frequency Domain

When dealing with a finite sequence of samples z[0],...,z[N — 1], the transformation into
the frequency domain leads to yet another sequence of samples Z[0],..., &[N —1].
Recalling that the spectrum of a sampled signal is periodic, the samples Z[0],...,Z[N - 1]

represent the period on the positive frequencies

Normalized Frequencies

The spectrum of a samples signal z[n] is fs-periodic. The period (where all the information

is contained) can be represented in the interval (—%S, %] or equivalently [0, f5).
Frequencies can be normalized with respect to the sampling frequency fs, therefore
obtaining a spectrum period in the interval (—%, %] or equivalently [0,1).

When working with samples, the sampling frequency information is not necessarily available!

in) i(f) i(f)
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o
i
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o
i
—
-
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Living in a Sampled World

Radians

The quantity w = 27 f is defined as angular frequency or radians per unit of time. In a
discrete world, it also can be normalized.

With an abuse of notation, the normalized radians per unit of time are defined as

w= 27rfi, and the correspond to radians € [0, 27).

(w) (w)

Ecole Polytechnique Fédérale de Lausanne - EPFL



1.2 Linear Time Invariant Systems
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Linear Time Invariant Systems

» Impulse Response h[n]

1 ifn=0

Output of a system when the input is the discrete time impulse §[n] = {0 ns0
if n

é[n] - h[n]

» Linear Time Invariant System - LTI
z1[n] »y1[n], =x2[n] > y2[n] = az1[n] + Br2[n] - ayi[n] + By2[n],

and
z[n] = y[n] = z[n-m] > y[n-m].

Property
The impulse response h of a linear time invariant system gives a complete description of the
input-output relation of the system, and y[n] = (z * h)[n] = Y z[n - k]h[k].

keZ

z[n] _ y[n] = (z+ h)[n]
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Linear Time Invariant Systems

Proof of the statement y[n] = (z * h)[n]
To prove that the output y[n] to an input z[n] of an LTI system with impulse response
h[n] is given by y[n] = (z * h)[n] we proceed as follows

Write the input z[n] as

+o00
z[n]= > =z[k]é[n-k].
k=—o0

By linearity, the system output to the above sum ¥7°° _ x[k]d[n — k] is given by the
sum of the system outputs to each individual terms z[k]é[n — k].
By linearity and time invariance, the system output to each individual term z[k]d[n - k]
of the sum is given by z[n]h[n - k].
Finally, combining the previous two statements, the system output y[n] to the input
z[n] is given by

+oo

ylnl= 3> z[n]hln-k]=(z+h)[n].

k=—oco
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Linear Time Invariant Systems

Stability Bounded-Input Bounded-Output - BIBO

A system is BIBO stable if a bounded input signal produces a bounded output signal.

A LTI system is BIBO stable if and only if its impulse response h is summable.

LTI system BIBO stable <= Y |h[n]| < oo.

n=—oo

Causal Systems

No output before an input stimulus is received

For a LTI system
Causality < h[n] =0, Vn<O0.

M8

Therefore y[n] = (z * h)[n] = ) z[n - k]h[k].

El
I

0

ﬂ‘ LTI Causal System h[n] }—» il = iyl =
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Linear Time Invariant Systems

Norms

Used to "measure” distances/difference between functions or in general non singleton
elements (data samples, impulse responses)

trenorm [k[n]f = 3 h{n)l (Lasnorm [F(D]r = [ 17()ld)

nez

tzmorm [hn]lz = ( 5 (nIP)" (Bamorm 15l = [ 17 ()Pdt)

nez

Loo-norm ||h[n]]leo = max|h[n]|
nez

Norms & Stability
BIBO stability can be rewritten as

|2]loo < 00 = [yoo < 00 = [hl1 < o0.
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1.3 Transforms
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Transforms

Motivation

Move to a space where certain computations are much easier to perform

f

Get another view of the data

time domain

E
2
4
1
> 0
El
2
2|
1
-3
05

5 6 7
samples x10"

frequency domain

Iyl

i 75 3
normalized frequencies x10°
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Transforms

The Fourier Series - FS
Fourier Coefficients

f(t) T-periodic function with fOT |f(t)|dt < oo or fOT |f(2)|2dt < co. The coefficients
1 T ; n
Cn = T fo f)e™ 2 Tt nelZ,

are called the Fourier coefficients of f, also noted as Cr (f).

Fourier Series Expansion

Suppose ¥,,cz |Cn (f)] < 00 o £, |Cr(f)I? < 0. Then
@) = 3 Cu(f)e?m e,

nez

The above expression is called Fourier series expansion of f.

Notice that if fOT | (#)|?dt < oo then ¥,.e7 |Cr (f)|? < o0, and viceversa.

The same does not hold for fOT [f(@®)|dt < o0 or 3,7 |Cr(f)] < .
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Transforms

» The Fourier Series - FS: Interpretation
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Transforms

The Fourier transform - FT

Fourier Transform

F (@) with [|[f(¢)]1 < +o00 or ||[f(t)]2 < +oo (otherwise FT not defined)
Fwy= [~ pwe = ar

Inverse Fourier Transform

F(w) with [ F(w)]1 < +00 or | f(w)]2 < +o0 (otherwise iFT not defined)

f(@) = % [: Flw)e?? dw

Notice that if | f(t)||2 < +oo then |f(w)|2 < +oo, and viceversa.

The same does not hold for || f(t)]|1 < +o0 or || f(w)|1 < +oo.
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Transforms

Discrete Time Fourier Transform - DTFT

Discrete time Fourier transform

z[n] with |z[n]||1 < +o0 or |z[n]|2 < +o0

Z(w) = z[n]e " wel0,2n].

nez

If the DTFT of a certain sequence exists, then it is a 2w-periodic function. This suggests
that we can define a series expansion for a periodic function Z(e?).

Inverse discrete time Fourier Transform
F(e?¥) with |F(w) | < +o0 or [F(w) |, < +o0

1

T o

z[n] /027\— Z(w)e’“"dw .
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Transforms

Discrete Time Fourier Series - DTFS (aka Discret Fourier Transform - DFT)
,z[N], with |z[n]]1 < +o0

N samples z[1],z[2],...
o (n=1)(k-1)
e 927 N , k=1,...,N;

N
Transform: £[k] = > =
n=1

1 N
Inverse Transform: z[n] Z ) )
N o

#18
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Transforms

Discrete Fourier Transform - Meaning

2

1 ,
The formula of the inverse DFT z[n] = N &[k]e’?™
k=1

that the signal can be written as the weighted sum of complex sinusoids.

(n-1)(k-1)
N K

) ) o (n=1)(k=1)
The complex sinusoids are e/2™ N , nk=1,...,N;

N
o (n=1)(k-1)
The weights are £[k] = Y. a[nle >~ |
n=1
That is

(n-1)

(5;[1] +#[2]e727 TN+ #[3]e72"

1 (n-1)2 .
z[n] = N N 4.+ E[N]eIT
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[n]

Transforms 08!

» Discrete Fourier Transform - Meaning

z[n], n=1,...,100, with decomposition as sinusoids:

1 100 o (n=1) (k= 1)
a[n]= — > &[k]e’>" 100, n=1...100. oz
100 &
0
Partial sum of sinusoids: 0 2 s;.i?,,le andff" ® 10
15 ! ito?l1 12 M =1m T alkern R, k=2 1o, A= o K dkler R K=4
1 1
! 08 08
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1o, Flnl = g Tl #He -, K= 1o, 2l = 1y T kg
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Transforms

Discrete Fourier Transform - Matrix Form

N samples z[1],z[2],...,z[N]

N o (n=1) (k1)
Transform: &[k] = > z[n]e™’ N ,k=1,...,N;
n=1
1 N j2w(,L,1)(;€,1)
Inverse Transform: z[n] Z[k]e N ,n=
N3
1 1
_jon L . . %%
Let Wn =€ J2T N and define the matrix Wny = :N
1wt

Transform:

A1 2[1
e e[p]w DD g o1, N, and [ﬁ[ ]]=W[m[z ]]
]

Z[N
Inverse Transform:

N z[1]
Z@ WG o1 LN, and[

z[n] =
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Transforms

Discrete Fourier Transform & Discrete Time Fourier Transform

Consider a signal z[n] with finite number of samples, i.e., N < oo samples
z[1],2z[2],...,2[N]. The corresponding DTFT reads

N .
B(w) =), z[n]e (1)

n=1

Notice that the index of the exponential is (n—1) since we consider z[1] as the initial sample
(1 is therefore the "origin” of the indexes).

When the number of samples are finite, the DFT can be easily obtained by discretizing the

DTFT. Recalling that w € [0,27), by setting w = le\cr_l) for k=1,...,N, we obtain the
DTF.
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Transforms

Fourier Transformation’s Properties: Parseval

The Fourier transform conserves the square norm.
Continuous time Fourier Transform (FT)

[T rmew ar= o [T @6) do

Discrete time Fourier Transform (DTFT)

- * _ 1 27 -
n;W;c [n]y[n] = P fo 7 (w)P(w) dw
Discrete time Fourier Series (DTFS)
N-1 1 N-1
n= O n:O

1/27 and 1/N come from the definition of Fourier transform we have used. Other definitions
exist, where a normalization is introduced to remove these constants.
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Transforms

Fourier Transformation’s Properties: Duality

support (time) <> transform support (frequency)

finite = infinite
infinite < finite
discrete <= periodic
periodic =S discrete
periodic discrete < periodic discrete

When using the DFT both the discrete time signal and the corresponding discrete frequency
transform are considered periodic.

On the Domain of the Fourier Transformation

We commonly consider Fourier transformations to be applications from the time domain to
the frequency domain. In such a framework, we have a clear interpretation of the
transformation. Nevertheless, from a mathematical point of view, as far as the condition of
existence are satisfied, Fourier transformations can be applied to any space.
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Transforms

z-Transform

h[n], n € Z not necessarily absolutely summable. Then, the two-sided (or bilateral)
z-transform is defined as

H(z) = :Zi:o h[n]z™"  zeC.

z-Transform: Region of convergence
The z transform exists if the sum converges
+00
Z |h[n]r™"| < +o0,
n=—oo
The region of convergence is defined by

ROC; £{z: Jio |h[n]z“"|<oo}.

n=—oo

Notice that, by expressing the z variable with magnitude and phase z = re¥, the region of

convergence depends only on the magnitude r of the z variable.
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Transforms

z-Transform & DTFT
The z-Transform is the extension from the unitary circle to the complex plane of the DTFT.

i n ., . . . . . 1 n
Indeed z = €727 N is the restriction of a complex variable to the circle of radius |672’TN | =1.

By expressing the z variable with magnitude and phase z = 7e7“ then z is on a circle of
radius r and

H(re’®)= 3 h[n]r "e™*".

n=—oo

For r=1, i.e., z = e/¥, we obtain the DTFT of h[n].

‘zimag

Zolane At this point,
p / Z= s;m
®=0
L
Zreal
At this point,
Mm=nN=~=T
Unit circle

(where |Z]| = 1)
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1.4 LTI Causal Systems & Transforms
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LTI Causal Systems & Transforms

The Perfect Analysis & Design Tool

The z-Transform and the Fourier Transforms (in particular DTFT & DFT) are the ideal
tools to analyze and design systems.

The Fourier Transform (DTFT) of the impulse response h[n] is called Transfer Function of
the system, and it enables to

Define the effect of the system on the signal, and in particular define the system as a
filter (low pass, band pass, high pass);
Characterize particular systems.

The z-Transform of the impulse response h[n] enables to
Characterize the system in terms of poles and zeros;
Analyze its stability;
Write the system input-output relation as a finite difference equation and characterize
its realizability.
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LTI Causal Systems & Transforms

Fourier Transform: Eigenfunctions of LTI Systems

Consider the output of a LTI system h[n]

y[n] = zk:h[k]x[n -k]=> h[n-k]z[k].

k

y[n] = Zh[k]ejw‘)("fk) = ¢Jwon > h[k]e w0k = gIwom (w0,
k k

The output corresponding to a complex exponential is a complex exponential.

By analogy with eigenvectors and eigenvalues of a linear function, we say that the complex
exponentials are eigenfunctions of linear time invariant system.

Ecole Polytechnique Fédérale de Lausanne - EPFL #30



LTI Causal Systems & Transforms
Fourier Transform: Eigenfunctions of LTI Systems
y[n] = 3 hlk]edwo(n=k) = giwon S p[femIwok = giwon f(edwo),
k k

H(eI*0) represents the eigenvalue of the system and it is the Fourier transform of h[n]
evaluated for w = wg. By linearity we can decompose the input and output signals as a sum
of exponentials.

X(e21)
x[n] ,
X(e77)

FT IFT

Y(ej‘”“) = H(eIwo )X(ej“’o)

Fourier decomposition of LTI filtering (convolution) decomposes the input into
eigenfunctions e, which are weighted by the eigenvalues H (7).

The DTFT of the
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LTI Causal Systems & Transforms

z-transform: Fractional H(z) & Realizable Systems

"
Unitcircle
(where 2] = 1)

A LTI causal system h[n] is realizable if it can be implemented using a finite number of
operations per sample.

A priori, if the impulse response h[n] has an infinite number of values h[0], h[1],..., the
system is not realizable. Nevertheless, if the input-output equation of the system can be
written as a linear constant-coefficient difference equation,

M N
y[n] + Z agy[n-k] = Z brx[n—-k], N,M<oo,
k=1 k=0

the system is realizable. This is equivalent of saying that the z-transform has a rational
form N .
_BG) __INobis

H = =
() A(z) 1+3M agzk

N,M < oo.

)

Notice that when the impulse response h[n] has a finite number of values
h[0],h[1],...,R[N] (h[k] =0 Vk > N), we have A(z) =1.

A realizable system (i.e., with rational z-transform as above) with h[n] having an infinite
number of values is called a Infinite Impulse Response - IIR system, while in the case of a
finite number of values (A(z) = 1), it is called a Finite Impulse Response - FIR system.
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LTI Causal Systems & Transforms

z-transform: Fractional H(z), Realizable Systems, Poles & Zeros e A
(where |2] = 1)
Consider a fractional H(z) corresponding to a realizable system (numerator and
denominator are finite polynomials in z71).
N -k
B B(z) _ Zk-o brz
- - )
A(z) 1+ZQ/£1 apzk

Let’s write the numerator and denominator as polynomials in z

H(z) N,M < oo

bo+bizt+. +byz N 2N (b2 + b1z 7L+ 4+ by)

H = =
(2) l+arzl+. . +apyz™M  2M M ya2M-1 4 tay)
If N> M, then
Hz) 2N (b2 +b12N 1+ L+ by) (boz™ +b12V "1+ +by) B(z2)
z) = = —

M (M a1 2M-1 4 tap)  2ZNM (M 4a2M-1 4 tay) A(z)
If M > N, then
2N (bozN + 12Nt vby)  2M N (bo2N + 012N e+ b)) B(2)

M (M 4 q12M-1 4 t+ap) B (M +a12M-1+ . +ap) S A(z)

H(z) =
The zeros of B(z), i.e. z such that B(z) = 0 are called zeros of H(z).

The zeros of A(z), i.e. z such that A(z) = 0 are called poles of H(z).
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LTI Causal Systems & Transforms

Az

Attnis point,
z-plane. e

S z=eh

w=0
J

z-transform: Fractional H(z), Realizable Systems, Poles & Zeros

At this point,

Uni e

(where 2121
[
A Im(2) z-plane

Re(z)

3D image from DSP First
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LTI Causal Systems & Transforms

Numerical Exercise #1.1: z-Transform & System Design

By choosing the values (or positions) of poles and zeros we can design a LTI system, i.e.,
we can define the transfer function, that is, the effect of the system on the input signal.

The Matlab applicaiton filterDesigner provides an handy tool for system design based
on poles and zeros positioning.
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LTI Causal Systems & Transforms

z-Transform ROC and BIBO stability

Let h[n] be the impulse response of a LTI causal system. The ROC of the corresponding
z-Transform H(z) includes the unit circle if and only if |h[n][1 < oo.

Therefore, the ROC of H(z) contains the unit circle then the system is BIBO stable.

Indeed, BIBO stability implies the existence of the DTFT of the impulse response , and
therefore, the existence of the z-Transform on the unit circle!
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LTI Causal Systems & Transforms

Minimum Phase System

A system with impulse response h[n] is called minimum phase if it is stable, causal and all
zeros are inside or on the unit circle. If all the zeros are only inside the unit circle, we say
that the sequence is strictly minimum phase.

A systems with strictly minimum phase impulse response have always a stable, causal and
minimum phase inverse system.
Zero-Phase System

A zero-phase system is such that the its transfer function has phase equal to zero for any
frequency, i.e.,
) ) . 1
H(e?™)=H*(e’"), orinterms of z-transform H(z) = H*(z—*) .

Spectral Factorization
If H(z) is zero-phase then it can be decomposed as
H(z) = A(2)A(z™Y).

where A(z) and A(z7!) have conjugate pairs of zeros and poles. We can arbitrarily choose
to assign the zeros strictly inside the unit circle to A(z) obtaining a minimum phase
spectral factor.
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LTI Causal Systems & Transforms

Spectral Factorization (Example)
Consider a z-Transform H(z) with poles and zeros given below.

One can easily check that it is zero phase by observing that zeros (and poles) are at
reciprocal positions and zeros on the unit circle have even multiplicity.

The minimum phase spectral factor A(z) is obtained by taking the poles and zeros inside
the unit circle and half of the zeros on the unit circle.

H(z) ) A(z71) ) A(z)
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LTI Causal Systems & Transforms

z Variable as Delay Operator

Consider the output of an LTI causal system h[n]

y[n] = (hxz)[n] =

gk

kol
Il

0

By interpreting 2~ as a delay operator, i.e., z[n]z" = z[n - 1], we have

h[0]z[n] + h[1]z[n - 1]+ h[1]z[n-2]+...
= h[0]z[n] + h[1]z[n]z"t + A[2]z[n]z"2 + ...
[n] (R[O] +A[1]z7" + A[2]272 +...)

y[n]

]
8

h[k]z"% = z[n]H(z).

M8

= o[n]

k=0

where H(z) has to be treated as an operator.

h[k]z[n - k] = h[0]z[n] + h[1]z[n - 1] + h[2]z[n - 2] +.

Be careful that z[n]H(z) is not to be interpreted as the product of a time domain signal

and a z-transform, but as the operator H(z) applied on the time domain signal z[n].
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1.5 Elements of Probability
& Discrete Time Stochastic Processes
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Elements of Probability

Random Variables

A quantity (e.g. a physical measurement), that randomly takes values over a certain set A

(A =R real r.v., A =7 integer valued r.v., A= {0,1} binary r.v.).

Law of a Random Variable (Cumulative Distribution Function)
Fx (a) = P (X < a) describes the probabilistic behavior of a r.v. X.

For continuous value random variables: urF
We can define the probability density function fx (a) = % Then

b
P(Xe(a,b]):[ fx (z)dz, a,beAcR
and in particular Fx (a) =P (X <a) = [%_ fx (z)dz.

For discrete value random variables:
We can compute the probability of taking a particular value as P (X =a). Then

Fx (k)=P(X<k)= ij P(X=n), keAcCTZ

n=—oo

If X is a continuous value random variable that has a probability density function fx (a),

i.e., Fx (a) is differentiable, then P (X =a) =0
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Elements of Probability

Moments of a Random Variable

Moment of order k of X: E [Xk] where we suppose E [|X|k] < oo.
First order moment E [ X] is the expected value

Second order moment is related to the variance Var (X) = E [XQ] -E[X]2
Covariance of two random variables X, and Y:

cov (X,Y)=E[XY*]-E[X]E[Y]*

Independence of Two Random Variables

X and Y are said to be independent if and only if their joint cumulative distribution is
equal to the product of the respective cumulative distributions, i.e.,

Fxy (a,b)=P(X <aand Y <b) =P (X <a)P(Y <b) = Fx (a) Fy (b) .

Independence implies E[ XY ] =E[X]E[Y] and cov (X,Y) =0.

The latter is a necessary condition of independence but, in the general case, it is not a
sufficient condition. It is a necessary and sufficient condition only if X and Y are jointly
Gaussian distributed (try to prove this assertion as an exercise).
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Discrete Time Stochastic Processes

Definition

A discrete time stochastic process is a sequence of random variables {X [n]}, .7, ie.,
X[1],...,X [n],..., where the index n accounts for temporal dependency.

Law

The law of a discrete time stochastic processes is the joint cumulative distribution
functions of (X [k1],...,X [kn]), for every (ki,...,kn) and every n e N, i.e.,

Fxiky]. X[k,] (015 yan) =P (X [k1] <ar,...,.. . X [kn] < an) .
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Discrete Time Stochastic Processes

Correlation and Covariance

The correlation and the covariance are second order moments:
Correlation of the stochastic process at two time indexes

R (k,1) = B[X [K] X" [1];
Covariance of the stochastic process at two time indexes

T (k,1) = cov(X [k], X [1]) = B[ X [K] X* [1]] - B[ x [#]|E[ X [z]]* .

As the name says, the correlation (and similarly, the covariance), provides a measurement of
the inter-dependency of the process at different time instants.

It is therefore the key tool for analyzing patterns, and therefore for statistical signal process-
ing!
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Discrete Time Stochastic Processes

Stationarity

A discrete time stochastic process {X [n]} is said to be stationary if and only if

nez
P(X[k‘l]Sal,...,...X[kn]San):P(X[kl+l]Sal,...,...X[knJrl]San),
for all (k1,...,kn) and for all [,n e N, i.e,

Fxlki]o X[kn] (@15 5an) = FX k1], X[kn+1] (@1, -,an)

for all (k1,...,kn), and for all I,n € N.

Consequences of stationarity (necessary but not sufficient)
E [X [n]k] = constant (independent of n);
E[X [k] X* [1]] = R (k- 1) and cov(X [k], X [1] ) =T (k 1), for every k,L ¢ Z.
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Discrete Time Stochastic Processes

Wide Sense Stationarity - WSS

A discrete time stochastic process {X [n]}, .5 is said to be wide sense stationary if and
only if
E[X [n]] = m constant, independent of n;

E[X [k] X* [l]] = R(k-1), for every k,l € Z,i.e., the correlation depends only on the
time difference. Consequently, cov(X [k],X [l]) =L (k-1).

Var (X [n]) = 62 constant, independent of n, with 02 < co.
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Discrete Time Stochastic Processes

Power Spectral Density of w.s.s. processes

Let X[n] be a wide sense stationary process with correlation Rx (k). Assume that Rx (k)
is absolutely summable. Then, the power spectral density Sx (w) of X[n] is defined as

Sx (@)= 3 Ry (k)e k.

k=—oc0

The power spectral density corresponds to an average of the square Fourier transforms of
the possible realizations of the process and it gives insight on the distribution of the
(average) energy of the process.

The power spectral density does not represent the wide sense stochastic process, but
only its second order characteristics. Indeed, while a deterministic signal can be
obtained from its Fourier transform, it is not generally possible to characterize the
process, i.e., to obtain its law, given its power spectral density;

The power spectral density is the distribution of the energy on the frequency domain
of the correlation, that is of the key tool for pattern analysis.
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Discrete Time Stochastic Processes

Filtering in the “Frequency” domain: The Fundamental Filtering Formula

Let X[n] be a wide sense stationary process, with summable correlation Rx (k), and
power spectral density Sx (w).

Call Y[n] the stochastic process obtained by filtering X[n] with a stable filter h
(BIBO/¢Y), ie.,

Yinl= 3 ho o X[K].

k=—oo
Then
Y [n] is a wide sense stationary process;

E[Y]=E[X]EE o ks
Ry (k) is absolutely summable;

Y [n] has power spectral density
Sy () = |H (W) Sx () ,

where H (w) the discrete Fourier transform of the filter h.
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1.6 Elements of Hilbert Spaces
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Elements of Hilbert Spaces

What is a Hilbert Space?

A Hilbert space is nothing but a collection of elements with very nice properties, over
which we can define two functions:

An inner product < -,- > between two elements.
The inner product is related to the notion of projection of one element onto the other.
When the inner product between two elements is zero, they are said to be orthogonal;

A norm |-| of an element.

The norm is related to the notion of energy.

The norm of the difference between two elements represents the distance between
them, that is, the energy of the error between them.
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Elements of Hilbert Spaces

The Euclidean Space as Hilbert Space (Example)
Call @z, Gy, @, the unit vectors of the Euclidean space R3(z,y, 2).
Given a vector ¥ = vglg + VyGy + V202
: ; 2.,.2 .. 2\3
The norm is the vector length, i.e., [3] = (vZ + vy + v2)2
The inner product between the vector ¥ = vzl + vydy +v2d- and the vector
b =bydqy + bydy + b2 d is their scalar product, e.g.,

< T),B >= |9 HB” cos Oyp = Vzbz + vyby + 0202,

where 6, is the angle between the two vectors ¥ and b.
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Elements of Hilbert Spaces

Random Variables with Finite Variance as Hilbert Space (Example)
Random variables with finite variance form a Hilbert space.

The collection of random variables X such that Var (X) < oo is denoted as L2(P).

The inner product is
(A, B)12(py = E[AB*]

The norm is )
|AlL2(py = BIAP] -

Discrete Time Stochastic Processes as Hilbert Space (Example)
W.s.s. processes form a Hilbert space.

This is just a particular case of the space of random variables with finite variance: For a
w.s.s. process X [n] we have, by definition, E [|X[n]\2] < oo.
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Elements of Hilbert Spaces

The Projection Theorem

Let E and S be two Hilbert spaces such that S c E. Then, for every element v of E it
exists a unique element b of S such that

b is the element of S that minimizes the norm of the difference v — b, that is

b=argmin |v-c|;
ceS

The difference v — b is orthogonal to any element in S, that is
(v-b,c)=0, VceS,

The element b is called the orthogonal projection of v onto S.
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Elements of Hilbert Spaces

The Projection Theorem in the Euclidean Space R3(z,y,z) (Example)

Call b the orthogonal projection of the vector @, defined in the space E = R3(x,y, z), onto
the plane S = R%(z,y) (S c E).

In particular:

b is the vector in the plane that minimizes the norm of the difference & — b
[5-8]<|o-¢| ¥éeR?(z,y);

The difference & - b is orthogonal to any vector in the plane S = R2(x,y).
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Elements of Hilbert Spaces

The Projection Theorem in the Space of w.s.s. Processes

Let E and S be two spaces of w.s.s. signals such that S c E c L2(P). Then, for every
w.s.s. signal X[n] in E it exists a unique w.s.s. signal Y[n] in S such that

Y [n] is the signal in .S minimizing the norm of X[n] - Y [n], that is

Y[n] = argmin E [|X[n] - U[n]|2] ;
Uln]eS

The difference X[n] - Y[n] is orthogonal to any element in S, that is
E[(X[n]-Y[n])U[r]*]=0, ¥V Uln]eS,

The w.s.s. signal Y[n] is the orthogonal projection of X[n] onto S.
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Elements of Hilbert Spaces

The Projection Theorem in the Space of w.s.s. Processes

Consider the particular case of an AR process (of order 3) in canonical form
X[n]=-p1X[n-1]-p2X[n-2] - psX[n-3]+W[n],

where X [n] is, by definition, w.s.s., E[W[n]] =0, E[X[k]W[n]*] =0 for every k <n - 1.

Call E the space generated by X[k], for all k <n, and by W[n].
Call S the space generated by X[k], for all k<n -1, where Sc E.

Then the orthogonal projection of X[n] € E onto S is given by
Y[n]=-p1X[n-1]-p2X[n-2]-psX[n-3].
Indeed, for every vector in S, that is for every X[k] with k <n -1,

<X[n]-Y[n],X[k]>=<X[n]-(-p1 X[n-1] -p2X[n-2] -p3X[n-3]), X[k] >
=< W[n], X[k] >= cov (W[n],X[k]) =0.
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Elements of Hilbert Spaces
Intuitive Property
Let v be a element of E that we can write as
v=b+c

where b € S and c is orthogonal to any element in S. Then, the orthogonal projection of v
onto S is straightforwardly given by b.
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Elements of Hilbert Spaces

Intuitive Property in the Euclidean Space (Example)
Consider a vector
U = Vgply + Vyly + U0z .
Call b= vgdg + Vyly €5 = ]R?'(x,y) and ¢ =v.d., the latter being orthogonal to any vector
in S =R2(z,y).

Therefore, the orthogonal projection of % onto S = R2(z,vy) is given by

b = vzl + vyldy .
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Elements of Hilbert Spaces

Intuitive Property in the Space of w.s.s. Processes (Example)

Let X[n] be a element of E that we can write as X[n] = U[n] + V[n], where U[n] e S
and V[n] is orthogonal to any element in S. Then, the orthogonal projection of X[n] onto
S is straightforwardly given by U[n].

In the specific case of AR process (of order 3) in canonical form

X[n]=-p1X[n-1] -p2X[n-2] -p3X[n-3]+W[n],

we have U[n] =-p1 X[n—-1]-p2X[n-2]-p3X[n-3] €S and V[n] = W[n] orthogonal
any vector in S.

Therefore the orthogonal projection of X[n] onto S gives

Y[n]=U[n]=-p1X[n-1]-p2X[n-2]-psX[n-3].
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Elements of Hilbert Spaces

Intuitive Property in the Space of w.s.s. Processes:
Optimal Predictor as a Projection onto the Past (Example)

Let X[n] be a w.s.s. stochastic process.

Call S=space formed by the linear combinations of X[n —1],...,X[n - N], and E=space
formed by the linear combinations of X[n +k],..., X[n],...,X[n—- N].

To predict X[n + k] € E we use a linear combination of its past
a1 X[n-1]+...+anX[n-N].

Notice that, clearly, such a linear combination belongs to S.

Among all the possible linear combinations we choose as optimal the one that minimizes
the mean square error (MSE)

E[|X[n+k] - (@ X[n-1]+...+ayX[n- N]D[*].

Gosh! Do | now really have to minimize the MSE by computiting all the derivatives
w.r.t. a, and set them to zero?
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Elements of Hilbert Spaces

Intuitive Property in the Space of w.s.s. Processes:
Optimal Predictor as a Projection onto the Past (Example)

No! ... no effort with the Projection Theorem!

Recall that to predict X [n + k] € E we search for the linear combination of its past
a1X[n-1]+...+anyX[n - N] that minimizes the MSE

E[|X[n+k] - (a1 X[n-1]+...+anX[n-N])*].

In Summary: we want to estimate an element of E with the element Y[n] of S that
minimizes the MSE E[|X[n + k] - Y[n]]*].

By the projection theorem
Y [n] is the orthogonal projection of X[n + k] onto S;

Y [n] is such that E[(X[n +k]- Y[n])U[n]*] =0, for all U[n] € S.

Therefore instead of computing annoying derivatives we just have to solve the linear system

E[(X[n+k]-Y[n])X[n-1]*]=0, 1=1,...,N.
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1.7 Empirical Statistics
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Empirical Statistics

Why do we need empirical statistics?

To compute the moments of a w.s.s. process {X[n]}, .5 it necessary to know the law Fx
of the process.

In practice, we observe realizations of the stochastic process, say z[1],...,z[N], but we do
not know F'x.

Estimators for the moments of the stochastic process based on the observed realization
z[1],...,z[ N] = empirical statistics.
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Empirical Statistics

Empirical Mean, Correlation, and Variance

Empirical mean m

Empirical variance 32

_ 1 X _
&2 (2[1],...,z[N]) = N > z[n]? - m?

Empirical correlation

N-k
RA)((k')(‘z“l:lzlv7-77[]\/Y])=Oé CC[’I’L-Fk‘]CC[TL:]*, k=0,...
n=1
where we either have o = ﬁ or a = %
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Empirical Statistics

Empirical Correlation: Meaning

The correlation consists in multiplying each sample with its neighbor at k-positions, and
then compute the average of such multiplications.

= 1 X
For k =0, the correlation corresponds to the power of the signal Rx (0) = N > lz[n])?.
n=1

For k + 0 the correlation gives a measure of the average dependency (similarity) between
each sample its neighbor at k-positions.

The measure of the dependency is particularly true for zero mean signals, in which case a

zero correlation indicates independency between samples.

When the mean is not zero, the correlation value also accounts for the square of the mean.
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Empirical Statistics

» Empirical Correlation: A Visual Example

Rx(0)=a X feln)”

+0] afn +1
. afn +0] . n+1]
5
0.5 T 0.5 T T
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
L z[n] L 2[n]
o 0
0.5 T 0.5 T
) I I . i I
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
R(k), k=0,...,0 R(k), k=0,..., 1
02 (k) 0 (k)
U.ll 019 o
0 0
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Empirical Statistics

» Empirical Correlation: A Visual Example

N-2 N-3
Rx(2)=a ) z[n+2]z"[n], Rx(3)=a z[n +3]z*[n],
n=1 n=1
, ol +2] ) afn +3]
0.5 T T 0.5 T T
1 g 5 0
0o—o—o o 6 0o © 0 6 0 6 0 0 O 06—o ® 0 ® 0 6 0 06 0 6 0 O O
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 2
ol ol
1 1
o 0
0.5 T 0.5 T
, I I . I
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12
R, k=0,..2 RO, E=0,...,
0.2 0.2
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Empirical Statistics

» Empirical Correlation: A Visual Example

N-4 N-5
Rx(4)=a ) z[n+4]z"[n], Rx(5)=a Y z[n+5]z"[n],
n=1 n=1
. afn+ 4] : .
o
0.5 0.5
Dl
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
. z[n] . z[n|
o .
ol s
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
R(E). k=0.....4 R(k), k=0,..., 5
0.2 0.2
U.ll 01% o
o
LT LT,
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Empirical Statistics

Bias and Variance of Empirical Statistics

For each moment different estimator can be proposed, each presenting its own advantages.

Let S(z[1],...,2[N]) be the empirical statistics for a certain probabilistic moment S.

In order to evaluate how good the empirical statistics is, we analyze its bias
E[S(X[1],...,X[N])]-5,

and variance

Var (S (X[1],...,X[N]) - S) .

A good empirical statistics has zero bias, i.e., is unbiased, and has a (low) variance that
decreases as the number of realizations increases.

However, it is not possible in general to obtain such a configuration and often we have to
chose a tradeoff between low bias and low variance.
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Empirical Statistics

Empirical Correlation: Unbiased

The unbiased version of the correlation is defined for a normalizing parameter a =

N[kl
BB - — S afns ke [n]
N -kl 22 ’
At lag k, the correlation E&B(k) is based on the sum of N — |k| multiplications, averaged
over Nilk\'
Pros:

With such a normalizing parameter we have the standard averaging formula for N — |k| elements. For
instance, if [n] = ¢ is constant, the correlation is always equal to ¢? (all the samples are similar).

Cons:
At extreme lags, that is when k is close to N — 1, the average is based on very few elements, making

it inaccurate. For instance

RY(N-2)= % (z[N -1]z*[1] +2[N]2*[2]), and RN(N-1)==z[N]z*[1],

Check that indeed such an estimator is unbiased.
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Empirical Statistics

Numerical Exercise: Empirical Correlation Unbiased
We want to compute the unbiased correlation of a zero mean Gaussian white noise, i.e., a
signal whose samples are independent.

Generate N = 1000 samples of a zero mean Gaussian white noise
(Python Numpy command x = numpy.random.normal(0,1,N) or the Matlab command
x=randn(1,N));

Compute the unbiased correlation
(Python Numpy command R=numpy.correlate(x,x, mode=‘full’) to be scaled, or
Matlab command RxxNB=xcorr(x, ‘unbiased’);

Plot the correlation

What do you remark?
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Empirical Statistics

Empirical Correlation: Biased

The Biased version of the correlation is defined for a normalizing parameter o = N

Ri(k)—— i o[n +kle*[n].

At lag k, the correlation RS % (k) is based on the sum of N —|k| multiplications, averaged

1
over N
Pros:
With such a normalizing parameter N — |k| elements are averaged over N (and not over N — |k|!).
The averaging for extreme lags, that is when k is close to N — 1, is therefore highly penalized (few
elements averaged over N). But at extreme lags the averaging is more inaccurate, so, finally, the
constant factor 1/N reduces its influence.

Cons:

When the signal is deterministic or constant, the constant factor 1/N linearly reduces the amplitude
of the correlation, that is, it introduces a bias.
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Empirical Statistics

Numerical Exercise: Empirical Correlation Biased
Let's repeat the previous numerical exercise by computing the biased correlation of a zero
mean Gaussian white noise.

Generate N = 1000 samples of a zero mean Gaussian white noise
(Python Numpy command x = numpy.random.normal(0,1,N) or the Matlab command
x=randn(1,N));

Compute the biased correlation
(Python Numpy command R=numpy.correlate(x,x, mode=‘full’) to be scaled by
N, or Matlab command RxxNB=xcorr(x, ‘biased’);

Plot the correlation

What do you remark now?
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Empirical Statistics

Empirical Correlation: Biased vs Unbiased

Based on the previous examples, one might think that the biased correlation is the optimal

choice. Well not every time!

In the definition of the correlation we mentioned that it accounts for the mean of the
signal. If the mean is not zero, the constant term 1/N will reduce the influence of the

mean as k increases.

Take the extreme case where the signal is con-
stant, for instance z[n] =1, n=1,...,1000.

All the samples are similar (they are the
same!), therefore, each sample will be equally
correlated with the others. If we compute the
biased correlation we get a linearly decreasing
function as k increases. On the other hand,
the unbiased correlation looks as expected: A
constant!
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Empirical Statistics

Numerical Exercise: Biased vs Unbiased Correlation
Let's apply the correlation to a non zero mean signal (different than a constant!)

Generate N = 1000 samples of a uniform white noise (in the interval [0,1));
Compute the mean;

Compute the biased correlation;

Plot the biased correlation. What do you observe?

Compute the unbiased correlation;

Plot the biased correlation. What do you observe?
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