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Warmup exercises

This is a warm up problem .. do not spend too much time on it.

Please provide justified, rigorous, and simple answers.

Exercise 1. One system or more than one system? (4 pts)

Considering the following 3 plots:

• A z-transform in the z-plane (upper left corner), where o denotes the zeros and x the
poles (the poles can in this framework be neglected);

• An impulse response h(n) in the time domain (upper right corner);

• Magnitude of the frequency response |H(ej2πf )| in normalized frequencies (bottom).

According to the plots

1) Do the z-transform and the impulse response h(n) correspond to the same system (that
is, is the plot of the z-plane the plot of the z-transform of h(n))?

2) Do the z-transform and the magnitude of the frequency response |H(ej2πf )| correspond
to the same system (that is, is |H(ej2πf )| the absolute value on the unit circle of the
z-transform represented in the z-plane plot)?

Solution 1.

1) From the z-plane plot we see that the two zeros are z1 = jα and z1 = −jα, where
0 < α < 1 (real). Consequently the z-transform has the form H̃(z) = (1 − z1z−1)(1 −
z2z
−1) = (1 − jαz−1)(1 + jαz−1) = 1 + jαz−1 − jαz−1 + α2z−2 = 1 + α2z−2. The

corresponding impulse response is therefore h̃(0) = 1, h̃(1) = 0, h̃(2) = α2, and h̃(k) = 0
for k ≥ 3. Hence, h̃(n) = h(n) and H̃(z) = H(z).

2) The z-transforms shows two zeros near the unit circle at normalized frequencies f1 = 0.25
and f2 = −0.25. Consequently the magnitude of the corresponding frequency response
|H̃(ej2πf )| should show a minimum of the frequency response at f1 = 0.25 and a minimum
at f2 = −0.25. The plot of |H(ej2πf )| (bottom) shows a maximum at f1 = 0.25 (and for
the symmetry of the spectrum, a maximum at f2 = −0.25). Consequently, |H(ej2πf )| 6=
|H(ej2πf )| and the plot of the z-transform and the plot of the magnitude of the frequency
response |H(ej2πf )| do not correspond to the same system.
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Exercise 2. Colored Noise (4 pts)

Let W [n] be a white noise, that is, a i.i.d. sequence of random variables, with variance σ2 and
mean 0. Let H(z) = 1− az−1 be strictly minimum phase filter.

Consider the stochastic process X[n] defined as X[n]H(z) = W [n] ,

1) Prove that X[n] is a w.s.s. process (without computing mean and correlation!).

2) Compute the expression of its correlation.

3) Compute the expression of its power spectral density.

4) Assuming a to be positive and real, sketch the magnitude of the transfer function H(ej2πf )
in normalized frequencies.

Solution 2.

1) Since H(z) is strictly minimum phase, we can write X[n] = W [n]/H(z). W [n] is w.s.s.
and 1/H(z) is stable (since H(z) is strictly minimum phase). Consequently, by the
fundamental filtering formula, X[n] is w.s.s..

2) The process reads X[n]− aX[n− 1] = W [n]. Then, for k ≥ 0,

(X[n+ k]− aX[n+ k − 1])X[n]∗ = W [n+ k]X[n]∗ .

By taking the expectation of the left side

E [(X[n+ k]− aX[n+ k − 1])X[n]∗] = RX(k)− aRX(k − 1) ,

and on the right side
E [W [n+ k]X[n]∗] = σ2δk .

Finally we obtain the expression of the correlation (structure)

RX(k)− aRX(k − 1) = σ2δk .

3) By the fundamental filtering formula Sx(f) = σ2/|H(ej2πf )|.

4) By assumption a > 0 and, since H(z) is minimum phase, a < 1. The system has only
one zero, on the positive real axis. Consequently, the magnitude of the transfer function
has the following shape:
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Main exercises

Here comes the core part of the exam .. take time to carefully read each problem statement.

Please provide justified, rigorous, and simple answers.

Exercise 3. Ultra Wide Band Radar for Heart Monitoring (28pts)

The principle of a radar is to emit a signal and then to receive its reflection. Measuring the
delay between the emission and the reception of the reflection, as well as how the signal has
been distorted, it is possible to identify the position of objects as well as to get information on
their nature.

Ultra Wide Band Radars has recently found many applications in non contact physiological
monitoring, including heart rate monitoring. The working principle is simple:

• The radar emits a sequence of periodic pulses (constant interval between two pulses), at
positions Tn = KT , K = 0, 1, . . . where T is the constant interval between pulses;

• The pulses are reflected by the surface (membrane) of the heart;

• The delay between an emitted pulse and the received one indicates the distance between
the radar and the heart membrane;

• Given that the heart beats, i.e. it changes its size, the distance between the radar and
the heart membrane changes over time. Consequently the delay between a transmitted
pulse and the corresponding received pulse changes over time;

• Given that the transmitted pulses are regularly spaced and that the delay between trans-
mitted and received pulses changes over time, the interval between two consequent re-
ceived pulses changes over time according to the heart beat.

The picture below describes the setup of a UWB radar for hear rate monitoring.

We suppose that the pulses are of very short duration and the they can be approximated to
Dirac deltas. We call y(t) the received sequence of pulses, where y(t) =

∑∞
k=1 δ(t− τn), and τn,

n = 1, . . . are the positions in time of the received pulses (Dirac deltas).

The characteristics of the UWB radar for hear rate monitoring are the following:
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• Pulses transmitted at a frequency of f = 1/T = 500Hz;

• Targeted heart rate between 30 and 220 beats per minute.

You are asked to develop the signal processing algorithms of the UWB heart rate monitoring
system. Notice that parts A, B and C are independent.

Part A: Received Pulses

First of all, it is necessary to detect the positions τn of the received pulses.

1) In class we have seen a computationally efficient parametric method for the estimation
of UWB pulse positions. Precisely describe how to apply such method on a 10 seconds
recording of the received signal. As usual you are required to detail each step of the
methods as if you have to implement it in a computer. Recall that the input of the
method is a 10 seconds recording of y(t) and that the output are the positions τn of the
pulses.

Part B: Heart Rate

Secondly, we compute the interval between successive received pulses, that is, the difference
between successive positions τn. Such signal, that we consider regularly sampled and we denote
as x[n], is the cardiac UWB component (see figure above) and it represents the beating of the
heart.

One can select the maximum or the minimum values of such signal as reference for computing
the HR (the figure above depicts the choice of the minimum values as HR trigger).

Unfortunately the signal x[n] you have obtained appears to be very noisy (additive white noise),
complicating the detection/choice of the HR trigger. Such a signal is NOT w.s.s., but it can
assumed to be w.s.s. over short intervals of maximum 2 seconds.

In an interval of 10 seconds, we have computed (measured) x[1], . . . , x[5000]

2) Precisely describe how to apply an optimal de-noising method for w.s.s. signals to the
signal x[n]. Describe every step of the methods. Please notice that the input of the
method is a sequence of samples of x[n] (length of the sequence to be determined) and
that the output is the denoised signal x̃[n].

Once the signal denoised, it is simple to detect the HR trigger and compute the HR, instanta-
neous heart rate and averaged heart rate: The instantaneous heart rate is simply the inverse of
the interval between to heart beats (measured in beats per seconds) while the averaged heart
rate is the average of the instantaneous heart rate over a defined interval of time.

Part C: RR Intervals

The signal composed of the values of the time intervals between successive heart beats is called
RR signal. The analysis of the spectrum of the RR signal is of foremost importance since it
provides insight on the health status and well being (stress, fatigue, resting capability).

More precisely, it is interesting to analyze the spectral power (integral of the spectrum) over two
frequency intervals. The picture below depicts a typical RR spectrum and the two frequency
interval of interest, namely LF and HF.
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Call RR[n] the RR signal and rr[1], . . . , rr[10000] the samples obtained via the heart beat
asurement. We suppose such signal to be regularly sampled and to be a w.s.s. process.

3) Propose a parametric spectral estimation method to estimate the spectrum of the RR
signal in view of the analysis of the spectral power of the LF and HF frequency intervals.
Justify precisely your answer.

4) Given that we have measured rr[1], . . . , rr[10000], describe in detail the method, step by
step, from the measured samples to the estimated spectrum, like if each step has to be
interpreted and executed by a computer (in particular the input, the executed operation
with corresponding equations, and the output of each step has to be clear). Recall that the
input of the method is the measured RR signal rr[1], . . . , rr[10000] and that the output
is the spectrum SRR(f), where f is in normalized frequencies.

Solution 3.

1) The optimal parametric method to estimate the position of pulses (Diracs) is the annihi-
lating filter method.

Prior to apply the method we need to determine the maximum number of received pulses
that might fall in a 10 second interval.

Given that a pulse is transmitted every T = 1/f = 1/500, in a 10 seconds interval the
transmitter will emit a maximum of 500 × 10 = 5000 pulses. Due to the heart beating,
the received signal will have intervals between pulses that are sometimes slightly bigger
than T and sometimes slightly smaller than T . Over a period of τ = 10 seconds, the
maximum number of received pulses can be assumed to also be 5000.

– We have y(t) for 0 ≤ t ≤ 10 (seconds)

– Recalling that the annihilating filter works on harmonic signals, we first need to
transform the sequences of Deltas into a harmonic signal by taking the Fourier
transformation (Fourier series) of y(t) (considered periodic with a period of τ = 10
seconds)

ŷ[n] =
1

τ

∫ τ

0

y(t)e−j2πn
t
τ =

1

10

5000∑
k=1

e−j2πn
τk
10 .
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– Targeting the estimation of the position of 5000, we need an annihilating filter with
impulse response of length 5000. The corresponding system readsŷ[4999] . . . ŷ[0]

...
. . .

...
ŷ[9998] . . . ŷ[4999]


 h(1)

...
h(5000)

 = −

ŷ[5000]
...

ŷ[9999]

 .

By solving the system we obtain h(1), . . . , h(5000) (Toeplitz system, requiring 50002

multiplications), and therefore, with h(0) = 1, we have the impulse response of the
annihilating filter.

– Having the impulse response h(n) we compute the z-transform

H(z) =
5000∑
n=0

h(n) = 1 + h(1)z−1 + . . .+ h(5000)z−5000 .

– Compute the zeros of the z-transform H(z), that we shall call z1, . . . , z5000, that is

H(z) =
5000∏
k=1

(1− zkz−k) .

– By taking the argument of the zeros we obtain the positions τk, k = 1, . . . , 5000,
with the following formula

τk = τ
arg(zk)

2π
= 10

arg(zk)

2π
,

where arg(zk) is constrained in [0, 2π].

2) In order to consider the measured signal a w.s.s. signal, we need to divide it into blocks
of maximum2 seconds. Having measured 5000 samples in 10 seconds, by taking the block
length equal to 2 seconds we have 5000 × 2/10 = 1000 samples in each block. Call
xl[1], . . . , xl[1000] the 1000 samples of the k-th block (where in our case k = 1, . . . , 5).

Having a w.s.s. signal corrupted by an additive white noise, the optimal denoising tech-
nique is given by the filtering of the noisy signal with the corresponding Wiener filter.

By calling x̃l[n] the original signal, w[n] the realizations of the noise, we can write xl[n] =
x̃l[n] + w[n] and the expression of the transfer function of the Wiener filter reads

H(ej2πf ) =
SXl(f)− σ2

W

SXl(f)

where SXl(f) is the power spectral density of the measured signal (block) and σ2
W is the

power spectral density of the noise, and f is a normalized frequency ∈ [0, 1].

By considering discrete frequencies (we are implementing the formulas in a computer!),
and replacing the power spectra densities with their estimation based on the samples
xl[1], . . . , xl[1000], the transfer function of the Wiener filter reads

H(ej2π
k

1000 ) =
ŜXl(k)− σ̂2

W

ŜXl(k)
,

where k = 0, . . . , 999.

The for each block (for l = 1 : 5) we do:
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– Compute the estimation of the power spectral density ŜXl(k) of the noisy signal

xl[1], . . . , xl[1000], for instance using the periodogram. Call X̂l the Fourier transform
of the noisy signal xl[1], . . . , xl[1000]

X̂l(k) =
1

1000

1000∑
n=1

xl[n]e−j2π
k(n−1)
1000 ,

then, the periodogram reads

ŜXl(k) =
1

1000

∣∣∣∣∣
1000∑
n=1

xl[n]e−j2π
k(n−1)
1000

∣∣∣∣∣
2

= 1000
∣∣∣X̂l(k)

∣∣∣2 ,
where f is a normalized frequency ∈ [0, 1].

– Estimate the power of the noise σ2
W . As discussed in class, this can be done by com-

puting the energy of the uncorrelated part of the signal, for instance via the diagonal-
ization of the empirical correlation matrix of the noisy signal block xl[1], . . . , xl[1000].

– Compute the transfer function of the Wiener filter

H(ej2π
k

1000 ) =
ŜXl(k)− σ̂2

W

ŜXl(k)
, k = 0, . . . , 999 .

– To compute the block of the denoised signal x̃l[1], . . . , x̃l[1000] we can proceed in two
ways:

a) Convolution in time domain

∗ Compute the impulse response of the Wiener filter as the inverse discrete Fourier
transform of the transfer function

h(n) =
1

1000

999∑
k=0

H(ej2π
k

1000 )ej2π
kn
1000 , n = 0, . . . , 999 .

∗ Compute the block of the denoised signal x̃l[1], . . . , x̃l[1000] as the convolution
between the noisy signal xl[1], . . . , xl[1000] and the corresponding impulse re-
sponse of the Wiener h(0), . . . , h(999) filter

x̃l[n] = h ∗ xl[n] .

b) Multiplication in frequency domain

∗ Compute the inverse Fourier transform of the product between the transfer
function of the Wiener filter and the Fourier transform of the noisy signal

x̃l[n] =
1

1000

999∑
k=0

X̂l(k)H(ej2π
k

1000 )ej2π
k(n−1)
1000 , n = 1, . . . , 1000 .

– Once obtained all the denoised signal blocks x̃l[1], . . . , x̃l[1000], l = 1, . . . , 5, these can
sequentially combined. Alternatively, one can consider overlapping blocks (therefore
more than 5), that are then to be recombined using a weighting window.
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• Given the smooth form of the spectral density and the fact that we aim at computing
and integral, the optimal spectral estimation method is the one based on a polynomial
expression of the spectrum

SRR(f) =
σ2

|P (ej2πf )|2
=

σ2

|1 + p1e−j2πf + . . .+ pMe−j2πfM |2

where the polynomial coefficients p1, . . . , pM and σ2 are estimated using the Yule-Walker
equations. Concerning the order M of the polynomial, it can be assigned empirically
based on the plot of the typical spectrum of a RR signal. You can observe that the
spectrum has at least 5 local maxima that can be associated to 5 poles. As seen in class,
during the Matlab exercise of the estimation of an RR spectrum using AR model, a typical
RR spectrum is associated to an AR of order 8, so let’s take M = 8. Alternatively one
can use the Levinson algorithm (not see in class but in the lecture notes).

• We have computed 10000 samples of the RR signal rr[1], . . . , rr[10000] (regularly sampled
and w.s.s.), and from the typical spectrum of a RR signal (see figure) the order of the
polynomial can be assumed to be M = 8 (p1, . . . , p8).

In order to estimate the spectrum Yule Walker equations we proceed as follows

– Compute the empirical correlation (biased of unbiased version)

R̂RR(k) =
1

10000

10000−k∑
n=1

rr[n+ k] ∗ rr[n] , k = 0, . . . , 8 ,

with R̂RR(−k) = R̂RR(k), k = 1 . . . , 8 (since the RR signal si real).

– Write the Yule Walker equations for the estimation of p1, . . . , p8 and σ2R̂RR(0) . . . R̂RR(7)
...

. . .
...

R̂RR(7) . . . R̂RR(0)


p1...
p8

 = −

R̂RR(1)
...

R̂RR(8)


σ2 = R̂RR(0) + R̂RR(1)p1 + . . .+ R̂RR(8)p8 .

– Solve the equations (Toeplitz symmetric 82 + 8 multiplications) in order to obtain
p1, . . . , p8 and σ2

– Compute the estimation of the spectrum as

ŜRR(f) =
σ2

|1 + p1e−j2πf + . . .+ p8e−j2πf8|2

where the normalized frequency f can be discretized over N points: f = k/N ,
k = 0, . . . , N − 1

ŜRR(k) =
σ2∣∣∣1 + p1e

−j2π k
N + . . .+ p8e

−j2π k
N
8
∣∣∣2 , k = 0, . . . , N − 1 .
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Exercise 4. Letters and words (28pts)

We would like to model a speech signal. Notice that parts A and B are independent.

Part A: Only Vowels

We start with a very simple assumption: A human can only pronounce 3 vowels A, E, I, O,
that is, the words are a sequence of these for vowels.

As an example you consider the word AOIIIEAIEOOIAAAEEOIE. Since the vowels are not
pronounced independently, it is a good idea to model the sequence, as the realization of a
Markov chain X[n], where each vowel is associated to a numerical value so to obtain a numerical
signal x[1], . . . , x[20].

1) Write the likelihood function associated to the observations x[1], . . . , x[20].

2) If you are to use the Lagrange multipliers to estimate the parameter of the Markov chain
via the maximization of the likelihood function, which are the contraints? Which are the
equations to be solved? How many multipliers you have to use?

The words are corrupted by additive Gaussian white noise W [n] (centered, with variance σ2
W ),

obtaining a (numerical) signal Y [n] = X[n] +W [n].

3) Propose a method to denoise the words. Justify precisely your answer.

4) Describe such method in detail, step by step, like if each step has to be interpreted and
executed by a computer. Recall that the input of the method are the measured samples
y[1], . . . , y[20] and that the output are the denoised samples x̃[1], . . . , x̃[20]

Part B: A Continuous Signal Model

The only vowels assumption is way too simple, and yet the model for it way too complicate.

We switch to a complete different approach. We now assume to record a speech (composed
as several words) as a continuous signal s[n]. In a complex speech we have identified 20000
undistinguished words, each of a maximum of 100 samples. To characterize each word, we
process the corresponding samples of continuous signal by computing the following variables

• l[1] = The (normalized) frequency with highest energy;

• l[2] = The mean value;

• l[3] = The maximum value of the absolute amplitude;

• l[4] = The number of signal samples composing the word;

• l[5] = The total power (sum of the square value of the samples).

It is now question to analyze how many different words are in the recorded speech.

First of all, we proceed by checking if the analysis can be simplified by reducing the number of
variables.
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5) Given the received data (20000 words of a maximum of 100 samples each) precisely
describe how to apply the PCA method to reduce the number of variables to be analyzed.
You are asked to detail each step like if you have to implement the method in a computer.
Recall that the input of the method are the variables (for each signal segment), and that
the output are the number of reduced variables K and their expression Z.

In order to provide the number of reduced variables and their expression, you can assume
that two eigenvalues of the variable correlation matrix are distinguishably much greater
than the others.

Secondly we determine the number of different words and the values of their characteristic
variables.

6) Given the reduced set of variables Z, explain in detail, step by step, how we can deter-
mine the number of different words P and the values of the corresponding characteristics
variables l̃n[1], . . . , l̃n[5], n = 1, . . . , P . You are asked to detail each step like if you have
to implement the method in a computer. Recall that the input of the method are the
reduced set of variables Z, and that the output are the number of words P and the values
of the corresponding characteristic variables l̃n[1], . . . , l̃n[5], n = 1, . . . , P .

Solution 4.

We associate numerical values to the vowels as follows A = 1, E = 2, I = 3, O = 4, and we
have observed a word of 20 vowels AOIIIEAIEOOIAAAEEOIE, therefore x[1]x[2] . . . x[20] =
14333213244311122432

1) The parameter of the likelihood functions are the initial probabilities pi = P (x[n] = i),
i = 1, . . . , 4 and the transition probabilities pij = P (x[n] = j | x[n− 1] = i), i, j =
1, . . . , 4, therefore θ = {pi (i = 1, . . . , 4), pij (i, j = 1, . . . , 4)}. The likelihood associated
to a Markov chain realization reads

h(x[1], . . . , x[20] ; θ) = px[1]px[1]x[2]px[2]x[3] . . . px[19]x[20]

= p1p14p43p33p33p32p21p13p32p24p44p43p31p11p11p12p22p24p43p32

= p1p14(p43)
3(p33)

2(p32)
3p21p13(p24)

2p44p31(p11)
2p12p22

with its logarithmic version given by

log h(x[1], . . . , x[20] ; θ) = log p1 + log p14 + 3 log p43 + 2 log p33 + 3 log p32

+ log p21 + log p13 + 2 log p24 + log p44 + log p31 + 2 log p11 + log p12 + log p22

2) The constraints on the parameters θ = {pi (i = 1, . . . , 4), pij (i, j = 1, . . . , 4)} are

4∑
i=1

pi = 1 ,
4∑
i=1

pji = 1 , j = 1, . . . , 4 ,

to be associated to 5 multipliers: λ1, . . . , λ5.

The equations to be solved are
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– Maximization of the constrained log likelihood with respect to the parameters θ

g(θ) = log h(x[1], . . . , x[20] ; θ)− λ1(
4∑
i=1

p1i − 1)− λ2(
4∑
i=1

p2i − 1)

− λ3(
4∑
i=1

p3i − 1)− λ4(
4∑
i=1

p4i − 1)− λ5(
4∑
i=1

pi − 1)

obtaining a set of parameters depending on the Lagrange multipliers;

– 5 Contraints, obtaining the values of the Lagrange multipliers.

3) The signal can be modeled as the realization of a discrete value stochastic process cor-
rupted by noise. Consequently, the noisy signal can seen as the outcome of a mixture of
Gaussian distributions, where the means of the distributions corresponds to the discrete
values of the process. In order to reconstruct the signal, we first need to estimate the
parameters of the mixture of Gaussian distributions (MLE) and then maximise the a
posteriori distribution (MAP). To be noticed that the mixture of Gaussian distribution
is Markovian and not i.i.d..

4) We proceed as follows

– First of all we need to define the mixture model. Given the measured samples
y[1], . . . , y[20], call C = {(c[1], . . . , c[20]) | c[i] ∈ {m1, . . . ,m4}} the set of all pos-
sible 20 combinations of the numerical values m1, . . . ,m4 associated to the vow-
els, and X = [X[1] , . . . , X[20]] the Markov chain modeling the original signal
x = [x[1] , . . . , x[20]]. Then the mixture of distribution reads

fY (y[1], . . . , y[20]) =
∑
c∈C

20∏
n=1

Gc[n],σ2(y[n])P (X = c)

=
∑
c∈C

20∏
n=1

Gc[n],σ2(y[n])pc[1]pc[1]c[2] . . . pc[19]c[20] .

The parameters of the models are

η =
{
σ2,mi (i = 1, . . . , 4), pi (i = 1, . . . , 4), pij (i, j = 1, . . . , 4)

}
Describe such method in detail, step by step, like if each step has to be interpreted
and executed by a computer. Recall that the input of the method are the measured
samples y[1], . . . , y[20] and that the output are the denoised samples x̃[1], . . . , x̃[20]

– Secondly we need to estimate the parameters of the model using the maximum
likelihood approach. The likelihood function is given by

h(y[1], . . . , y[20] ; η) =
∑
c∈C

20∏
n=1

Gc[n],σ2(y[n])pc[1]pc[1]c[2] . . . pc[19]c[20] .

As seen in class, such a maximization needs to be performed using an iterative
algorithm such as the EM algorithm. Call η̂ the parameter estimation.
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– Finally, having the observed samples y = [y[1], . . . , y[20]] and having computed the
model parameter estimation η̂, we need to find the most probable sequence of the
denoised signal x̃ = [x̃[1], . . . , x̃[20]] by maximizing the a posteriori distribution
(MAP)

P (X = x | y) =
complete data likelihood function

marginal likelihood function

=
h(y,x; η̂)

h(y; η̂)
=
fY (y | X = x)P (X = x)

fY (y)

=α
20∏
n=1

Gx[n],σ̂2(y[n])p̂x[1]p̂x[1]x[2] . . . p̂x[19]x[20] .

The maximization is done with respect to x constrained to the discrete values m̂i,
i = 1, . . . , 4 (that is

∑20
n=1

∏4
k=1(x[n]− m̂i) = 0). Therefore

x̃ = arg max
x∈Ĉ

P (X = x | y) .

Such maximization is numerically carried using iterative algorithm such as the
Viterbi algorithm.

5) We have M = 20000 words (dimension of the data). Each word is characterized by 5
variables lk = [lk[1], . . . , lk[5]] (dimensions 1 × 5), k = 1, . . . , 20000, as clearly described
in the problem. In order to apply PCA we need to proceed as follows:

– Center the variables l̄k = lk − 1
20000

∑20000
n=1 ln (dimension 1× 5), k = 1, . . . , 20000.

– Compute the correlations matrix of the centered variables RL = 1
20000

∑20000
k=1 ltklk

(dimensions 5× 5).

– Diagonalize the correlation matrix V tRLV = Λ (dimensions 5 × 5), where V (di-
mensions 5× 5) is the matrix of the eigenvectors of RL.

– As stated in the problem, we assume that two eigenvalues, λ1 and λ2, of the variable
correlation matrix are distinguishably much greater than the others. Consequently,
in order to characterize the data, it is sufficient to compute only 2 of the 5 principal
components. Call V2 the 5× 2 matrix containing the two eigenvector associated to
the two eigenvalues λ1 and λ2. The two principal components are then

(z2)k = [z[1]k, z[2]k] = lkV2 (dimensions 1× 2) , k = 1, . . . , 20000 .

6) From the previous question we have achieved, in the space of the principal components,
a reduction of the variables from 5 to 2. The data is, in the space of the principal
components, characterized by (z2)k = [z[1]k, z[2]k], k = 1, . . . , 20000.

We proceed as follows

– Analyze the two principal components by plotting their (20000) values in a 2 di-
mensional plot (each dimension corresponding to a principal component), that is, by
plotting the couples (z[1]1, z[2]1) , . . . , (z[1]20000, z[2]20000) on the x − y plane. The
data will appear in clusters. The number of the cluster corresponds to the number
of different words P , while the center of each cluster represents the characteristic
values of a word in the principal component space.
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– The clusters can be modeled as a mixture of 2-dimensional i.i.d. Gaussian distribu-
tions, with independent dimensions

f((z[1]1, z[2]1) , . . . , (z[1]20000, z[2]20000)) =

20000∏
n=1

P∑
k=1

πk
1√

2πσ1σ2
exp

(
−(z[1]n −m1k)

2

2σ12k
− (z[2]n −m2k)

2

2σ22k

)
The number of clusters P can be determined using a model order estimation tech-
nique, while the center of the clusters corresponds to the couples (m11,m21), . . . , (m1P ,m2P ).

– Estimate the parameters of the mixture model (EM algortihm), obtaining an esti-
mation of the the center of the clusters (m11,m21), . . . , (m1P ,m2P ).

– The values of the 2 principal components z̃2characterizing the P words (in the space
of the principal components) are

(z̃2)k = [m1k,m2k] , k = 1, . . . , P

or in matrix form

Z̃2 =

m11 m21
...

...
m1P m2P

 , (P × 2)

– The values of the 5 characteristics (centered) corresponding to the P words are then

¯̃L = Z̃2V
t
2 =


¯̃l1
...

¯̃lP

 , (P × 5)

and by adding the mean we obtain

L̃ = ¯̃L+


1

20000

∑20000
n=1 ln

...
1

20000

∑20000
n=1 ln

 =

 l̃1...
l̃P

 ,

Finally, l̃k represents the values of the 5 characteristics associated to the k−th work,
with k = 1, . . . , P .

14



Grade Scale.

The exams accounts for a total of 64 points (exact response to each question).

The grading has been done on a 59 points scale (59 points = 6/6), according to the following
formula

grade over 6 = 1 + (5 ∗ points/59)

and then rounded to .5 steps, that is

rounded grade over 6 = (round-to-0-digit(2 ∗ grade over 6))/2

The result is then constraint to be at maximum 6.
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