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Warmup exercises

This is a warm up problem .. do not spend too much time on it.

Please provide justified, rigorous, and simple answers.

Exercise 1. Averaging Periodogram (3pts)

The signal X[n] is a zero mean Gaussian white noise with variance σ2. We have
measuredN points ofX[n], and would like to use the periodogram PN

X (ω) to estimate
the power spectrum density (PSD). We know that the variance of this estimator is

Var
(
PN
X (ω)

)
= σ2 ,

i.e., a constant variance, no matter how many points N you have measured!

Now we split the measured signal (X[1], X[2], · · · , X[N ]) into two parts

Y1 = (X[1], · · · , X[N/2]) , Y2 = (X[N/2], · · · , X[N ]) .

We denote the periodograms of these two parts as PY1(ω) and PY2(ω), respectively.
Then we compute the average of these two periodograms

Q(ω) =
1

2
(PY1(ω) + PY2(ω)).

Q(ω) provides a new estimator of the PSD of X[n]. What is the variance of this
estimator Var(Q(ω))? (Hint: Y1 and Y2 are independent with each other.)

Solution 1.

Var(Q(ω)) = E |Q(ω)− EQ(ω)|2

=
1

4
E |PY1(ω)− EPY1(ω) + PY2(ω)− EPY2(ω)|2

=
1

4
(Var(PY1(ω)) + Var(PY2(ω)))

=
1

2
σ2

The third equality is due to the independence between Y1 and Y2 (and thus PY1(ω))
and PY2(ω))).

Exercise 2. Probabilities and Stochastic Processes (3pts)

These are simple true/false questions, each counting 0.6 points.
NOTE: Don’t answer randomly: Each wrong answer will count for -0.6 points!
(score of the exercise: 0 to 3)

Let X, Y, Z be continuous-valued random variables. Without further conditions, the
following statements are true or false?
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1) If X admits a probability density function fX(a), then P(X = a) = fX(a).

2) If Z = X + Y , the cumulative distribution function of Z can be derived by
convolution, i.e., FZ(a) = FX(a) ∗ FY (a).

3) If E[XY ] = E[X]E[Y ], then X and Y are independent.

Let X[n], Y [n] and Z[n] be a stochastic processes. Without further conditions, the
following statements are true or false?

4) If E[X[n]] = 1 and E[X[k]X[l]∗] = k − 2l, then X[n] is wide sense stationary.

5) If X[n] and Y [n] are i.i.d. Poisson distributed with mean λ, Z[n] = X[n]+Y [n]
has Poisson distribution with mean 2λ.

Solution 2.

1) False. P (X = a) = 0.

2) False. The condition that X and Y are independent is required.

3) False. It is true only when X and Y are jointly Gaussian.

4) False. In this case, the autocorrelation is not a function of time difference k−l.

5) True.
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Main exercises

Here comes the core part of the exam .. take time to read the introduction and each
problem statement.

Please provide justified, rigorous, and simple answers.

Exercise 3. Alp Horn Concert (20pts)

During a Concert, an alp horn orchestra plays for 5 seconds a combination of tones
(each tone is played for 5 seconds), so to provide a signal that can be considered
stationary. We have recorded 100000 samples [X[1], . . . , X[100000]] at 20KHz and
the corresponding periodogram SX reads
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Notice that such a spectrum presents two spikes at 0.02 and 0.1 (normalized fre-
quencies) and a constant baseline.

1) What kind of signal has generated such spectrum? (it can be the sum of
different signals)

The spectrum suggests that the alp horn orchestra have played at least 2 tones

2) Recalling that the sampling frequency is 20KHz, and that the two spikes are,
in normalized frequencies, at 0.02 and 0.1, provide the frequencies in Hz of the
two tones.

3) Recalling that we have recorded 100000 samples, is it possible that the alp
horn orchestra played more than two tones? Is yes, what are the possible
frequencies of the additional tones? if no, why?

We make another recording of the alp horn orchestra. The orchestra plays another
combination of tones, but this time, we record only 1 second instead of 5 (each tone
is played for 1 seconds). We keep the same sampling frequency as before (20KHz).
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We do not know exactly how many tones the orchestra has played but we assume
that at maximum is has played 5 different tones. We assume that the recording in
made with noise-free microphones.

4) Propose a parametric method to estimate the frequencies (only the frequen-
cies!) of the played tones and justify you choice.

5) Precisely describe such method: You are given the samples corresponding to
a recording of 1 second at 20KHz and you are asked to detail each step like if
you have to implement the method in a computer.

6) What happens if the recording is corrupted by noise? Which of the steps that
you have precisely described is affected?

Solution 3.

1) The signal that has generated the spectrum is the sum of a two sinusoids
(spikes at 0.02 and 0.1) and a white noise (constant baseline), that is

X[n] = ei2πn0.02+Θ1 + e−i2πn0.02+Θ1 + ei2πn0.1+Θ2 + e−i2πn0.1+Θ2 +W [n] .

where Θ1 and Θ2 are independent random variables uniformly distributed over
[0, 2π].

2) f1 = 0.02× 20KHz = 400Hz, and f1 = 0.1 × 20KHz = 2KHz.

3) Yes, it depends on the spectral resolution. Here the spectral resolution is
1/100000, therefore any tone (spectral line) in the intervals [0.02− 1

100000
, 0.02+

1
100000

] and [0.1 − 1
100000

, 0.1 + 1
100000

] will not be visible in the periodogram
estimate of the power spectral density.

4) Here the spectral estimation method to be used is the annihilating filter. In-
deed, we want to estimate the position of spectral lines (frequencies) and the
data is assumed to be noiseless. Any other method will not directly, optimally,
and precisely provide the position of the spectral lines.

5) We now have recorded 20000 samples, i.e., x[1], . . . , x[20000], and we assume
that the orchestra has played at most 5 different tones. Therefore, we look for
a filter h with 10 coefficients such that (x ∗ h) [n] = 0. The steps for estimating
the frequencies with the annihilating filter approach are:

1) Write (x ∗ h) [n] = 0 in matrix form
x[10] . . . x[1]
x[9] . . . x[2]

...
...

x[1] . . . x[10]



h[1]
h[2]

...
h[10]

 = −


x[11]
x[7]

...
x[20]


obtaining a linear system. Notice that there the samples are x[1], . . . and
NOT x[0], . . ..
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2) Solve the linear system (the matrix is Toeplitz, therefore its solution
requires K2 computations), obtaining h[1], . . . , h[5].

3) Compute the z transform H[z] = 1 + h[1]z−1 + . . .+ h[10]z−10.

4) Find the zeroes of H[z] = 1 +h[1]z−1 + . . .+h[10]z−10, i.e., the solutions
(roots) of the equation 1 + h[1]z−1 + . . .+ h[10]z−10 = 0. Call a1, . . . , a10

the zeroes, giving H(z) = (1− a1z
−1) . . . (1− a10z

−1).

5) Through the relations a1 = ei2πf1 ,. . . ,a10 = ei2πf10 we can compute the
(normalized) frequencies f1,. . . ,f10: The frequency is given by the ar-
gument of the complex exponential divided by 2π, i.e., fn = ln an/i2π
(to account for numerical errors providing non unitary roots, we can use
fn = arg an/2π.

6) If the recording is corrupted by noise the zero finding (1 + h[1]z−1 + . . . +
h[10]z−10 = 0) becomes a very critical operation, since highly affected by
the noise. The 10 roots we obtain using noisy data present a large error
when compared to the roots we would have obtained using noiseless data.
Consequently, the 10 frequencies we obtain from the 10 roots might be quite
different form the true frequencies.
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Exercise 4. Noise cancelation

Consider a pilot in an airplane giving an announcement to the passengers. When
the pilot speaks into a microphone, the engine noise in the cockpit combines with his
voice signal. This additional noise makes the resultant signal heard by passengers
of low quality.

The goal of this exercise is to design a system that reduced the engine noise from
the microphone signal and tries to output the pilot’s voice only. To this end, we are
also given a sample of the engine noise directly from the engine itself, see Figure
below.

Pilot’s 

voice

Engine noise 

in the cockpit

Engine noise 

recorded at 

the engine

Output 

signal

Microphone 

signal

1) Design an adaptive filtering system that will perform engine noise cancellation
and output the pilot’s voice.

1.1) Draw a schematic of this system and mark clearly the input processes,
the output process, and the error process E[n] of the adaptive filter.

1.2) What signal statistics your system need? Propose a method to learn
about these statistics.

1.3) Propose an adaptation algorithm and show that your noise cancellation
scheme will indeed cancel the engine noise. Justify the answer by writing
the expression for the error process E[n].

2) Assume you choose the LMS adaptation algorithm. Write a filter coefficient
update procedure.

3) Assuming that you are not given any information about the statistics of the
noise signal in advance, propose a method to estimate an appropriate range
form the step size µ of the LMS algorithm.

4) Compare the performance of LMS with RLS in terms of the speed and com-
putational complexity.

5) Propose a variation of LMS algorithm and explain what the advantages of this
variation are. At what cost we have these advantages? (Hint: Remember the
computer exercise.)
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Solution 4. Noise cancelation

1) 1.1) Let us denote the signal recorded at the microphone by D[n] and the
engine noise recorded directly at the engine as X[n].

The input processes of the adaptive filter are: 1) the signal X[n]; and 2)
the error process E[n] = D[n]− f ∗X[n].

The output of the adaptive filter is Y [n] = f ∗X[n] and it represents the
estimated engine noise that should be subtracted from the microphone
signal.

1.2) We need the correlation matrix RX and RDX , which we can estimate
empirically. For the ease of notation we assume a stationary case:

R̂X [k] =
1

M − k

M−k−1∑
i=0

x[n− i]x[(n− i)− k]

R̂DX [k] =
1

M − k

M−k−1∑
i=0

d[n− i]x[(n− i)− k].

(1)

1.3) Let us denote the pilot’s voice by S[n] and the engine noise that is
recorded by microphone inside cockpit by V [n]. Assuming that the pilot’s
voice is uncorrelated with the engine noise we propose an adaptation al-
gorithm that will minimize the following error in the mean squared sense:

E[E[n]2] = E[(D[n]− Y [n])2] = E[(S[n] + V [n]− Y [n])2]
= E[S[n]2] + 2E[S[n](V [n]− Y [n])] + E[(V [n]− Y [n])2]
= E[S[n]2] + E[(V [n]− Y [n])2]

(2)
As we can see, by minimizing E[n] we are going to minimize E[(V [n] −
Y [n])2, that is, our adaptive filter will estimate the engine noise recorded
at the microphone and we will subtract that from the microphone signal.

2)
fn+1 = fn + µXnE[n], (3)

f0 = initial guess. (4)

3) A range of µ that is frequently used is given by

0 < µ <
2

LSX,max

, (5)

where SX,max is the maximum value of the power spectral density SX(ω) of
the process X[n].

4) The RLS algorithm converges faster but it has higher computational complex-
ity. The computational complexity of LMS is O(L) and of RLM is O(L2)
where L is the filter length.

5) We can propose a normalized LMS method, nLMS. The advantages of nLMS
over LMS is that it has an adaptive step size that adjusts depending on the
signal energy. However, It has a slightly higher complexity but still within the
same order of O(L) as LMS.

9



Exercise 5. Transmitting Pulses (26pts)

A transmitted signal is composed of a sequence of spikes. The interval between each
spike codes the information to be transmitted. In particular, the interval is a when
a bit 0 is transmitted, and 2a when a bit 1 is transmitted.

We observe the spikes over an interval [0,T].

1) Knowing that in such an interval there are at the most 100 spikes, precisely
describe a method to estimate the positions of the spikes and then the interval
between the spikes.

Markov Coding

Using the method you have described, we have been able to decode the information
and we have obtained the following sequence of bits: 00011010110110111011, where
x[1] = 0 and x[20] = 1. The coding is a Markovian one, that is, the process X[n]
that generates the bits {0, 1} is a Markov chain.

2) Write the likelihood function associated to the observations x[1], . . . , x[20].

3) Using the maximum likelihood and the Lagrange multipliers, estimate the
parameters of the Markov chain based on the observations x[1], . . . , x[20].

The channel corrupts the transmission with an additive Gaussian white noise W [n]
(centered, with variance σ2

W ). The decoded signal can be the written as Y [n] =
X[n] +W [n].

4) Write the probability distribution and then the probability density function of
Y [n].

5) Using Baye’s rule, write the joint probability density function of Y [1], . . . , Y [10].

Transforming Spikes into Pulses

Engineers are not sure if transmitting spikes with the information 0 1 coded into the
spike distance is an optimal method. They decide to transmit pulses and to increase
the coding symbols: instead of only 0 and 1, the information is coded into different
symbols and for each symbol there is a different pulse shape.

At the receiver end each shape is received as a sequence of 30 samples, and a total of
20000 shapes are received. The problem now is that at the receiver end the number
of possible different shapes (and therefore of coding symbols) is unknown and has
to be determined. That is, the 20000 shapes received need to be analyzed so to
understand of how many different shapes the transmission is composed.

6) Given the received data (20000 shapes of 30 samples each) precisely describe a
method seen in class that enables to simply understand of how many different
shapes the transmission is composed. You are asked to detail each step like if
you have to implement the method in a computer.
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Solution 5.

1) The signal has the form x(t) =
∑100

k=1 αkδ(t−τk) , t ∈ [0, T ], where τ1, . . . , τ100

are the positions of the spikes. The corresponding Fourier transform reads

x̂[n] =
1

T

100∑
k=1

αke
−j2πnτk/T =

1

T

100∑
k=1

αke
−jωkn , ωk = 2πτk/T .

The position of the spikes can be estimated using the annihilating filter ap-
proach. That is, we look for the filter h such that (x̂ ∗ h) [n] = 0, where h has
100 coefficients. In Matrix form we obtain

x̂[99] . . . x̂[0]
x̂[100] . . . x̂[1]

...
...

x̂[198] . . . x̂[99]



h[1]
h[2]

...
h[100]

 = −


x̂[100]
x̂[101]

...
x̂[199]


The solution of such a linear system provides h[1], . . . , h[100] and therefore
H[z] = 1 + h[1]z−1 + . . . + h[100]z−100. Call the a1, . . . , a100 the roots of the
latter equation, then the equalities a1 = ei2πτ1/T ,. . . ,a100 = ei2πτ100/T we can
compute the positions τ1, . . . , τ100.

2) The likelihood function for a 20 samples observation x[1], . . . , x[20] of a Markov
chain X[n] reads

h(x[1], . . . , x[20]; Θ) =P (X[1] = x[1], . . . , X[20] = x[20])

=πx[1]px[1]x[2]px[2]x[3] . . . px[19]x[20] ,

and in our case 00011010110110111011

h(x[1], . . . , x[20]; Θ) = P (X[1] = 0, . . . , X[20] = 1)

= π0p00p00p01p11p10p01p10p01p11p10p01p11p10p01p11p11p10p01p11

= π0p
2
00p

6
01p

6
11p

5
10 .

3) We need to maximize h(x[1], . . . , x[20]; Θ) or log h(x[1], . . . , x[20]; Θ) with re-
spect to πi and pij, i, j = 0, 1 under the constraints π0 + π1 = 1, p00 + p01 = 1,
and p10 + p11 = 1. Using the Lagrange maximizers and the log likelihood we
have to maximize

log(h(x[1], . . . , x[20]; Θ))− λ1(π0 + π1)− λ2(p00 + p01)− λ3(p10 + p11)

that is

log π0+2 log p00+6 log p01+6 log p11+5 log p10−λ1(π0+π1)−λ2(p00+p01)−λ3(p10+p11) .

Maximization w.r.t.:

– π0 and π1 gives π0 = 1

– p00 gives 2/p00−λ2 = 0, i.e. p00 = 2/λ2, and w.r.t. p01 gives 6/p01−λ2 =
0, i.e. p01 = 6/λ2. Considering the constraint p00 + p01 = 1 we obtain
λ2 = 8 and therefore p00 = 1/4 and p01 = 3/4.
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– p10 gives 5/p10−λ3 = 0,i.e. p10 = 5/λ3, and w.r.t. p11 gives 6/p11−λ3 = 0,
i.e. p11 = 6/λ3. Considering the constraint p10 + p11 = 1 we obtain
λ3 = 11 and therefore p10 = 5/11 and p11 = 6/11.

4)

FY [n](y) = P (Y [n] ≤ y) =
∑
x∈0,1

P (Y [n] ≤ y,X[n] = x)

Bayes
=

∑
x∈0,1

P (Y [n] ≤ y | X[n] = x)P (X[n] = x)

=
∑
x∈0,1

P (W [n] + x ≤ y)P (X[n] = x)

= P (W [n] ≤ y)P (X[n] = 0) +P (W [n] + 1 ≤ y)P (X[n] = 1)

= P (W [n] ≤ y) π0 +P
(
W̃ [n] ≤ y

)
π1 ,

where W [n] is a centered Gaussian process with variance σ2
W and W̃ [n] is

a Gaussian process with mean 1 and variance σ2
W . The probability density

function then reads

fY [n](y) = G0,σ2
W

(y)π0 + G1,σ2
W

(y)π1 .

where Gm,σ2(y) denotes a Gaussian probability density function with mean m
and variance σ2.

5) Notice that, as seen in class, in order to compute the probability density
function we first need to compute the cumulative distribution function.

Call X = {(x[1], . . . , x[10]) | x[i] ∈ {0, 1}} the set of all possible combinations
of 0 and 1 so to form a vector of length 10.

Then the joint cumulative distribution of Y = [Y [1], . . . , Y [10]] reads

FY (y) = P (Y ≤ y) =
∑
x∈X

P (Y ≤ y,X = x)

Bayes
=

∑
x∈X

P (Y ≤ y | X = x)P (X = x) .

P (Y ≤ y | X = x) is the distribution of Y = x+W (distribution of Y given
that X is known), i.e., distribution of i.i.d. Gaussian random variables, with
the same variance σ2

W and means given by the vector x.

P (Y ≤ y | X = x) = FW+x(y) =
10∏
n=1

FW [n]+x[n](y[n]) ,

which in terms of probability density reads

fW+x(y) =
10∏
n=1

Gx[n],σ2
W

(y[n]) , and fY (y) =
∑
x∈X

10∏
n=1

Gx[n],σ2
W

(y[n])P (X = x) .

Given that
P (X = x) = πx[1]px[1]x[2] . . . px[9]x[10] ,
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we have

fY (y) =
∑
x∈X

(
10∏
n=1

Gx[n],σ2
W

(y[n])

)
πx[1]px[1]x[2] . . . px[9]x[10]

6) We need here to apply PCA. Call

ym = [y[1]m, . . . , y[30]m]T , m = 1, . . . , 20000 , (M = 20000 , N = 30) .

the vector containing the 30 samples of the m-th shape. Then

– Create zero mean data by averaging all the M=20000 shapes, that is

ymean =
1

20000

20000∑
m=1

ym .

For every m, center the m-th shape by subtracting the mean

ỹm = ym − ymean .

– Compute the empirical correlation matrix (using the centered data ỹm)

R̂y =
1

20000

20000∑
m=1

ỹm ∗ ỹHm

– Compute the unitary matrix V of eigenvectors of R̂ and the eigenvalues
by solving the equation

R̂yV = V Λ

where Λ = diag(λ1, . . . , λN) is the eigenvalues diagonal matrix and V HR̂yV =
Λ.

– Look at the eigenvalues and select those with highest values, for instance,
λ1, . . . λk, where k < N (usually k << N).

– Compute the principal components

zm = V Tym , for m = 1, . . . , 20000 .

– Select the principal components corresponding to the eigenvalues with
highest values, for instance, z[1]m, . . . ,z[k]m, m = 1, . . . , 20000, and plot
them in a k-dimensional plot so to recognize the clusters and therefore
the number of different shapes.
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Grading

The complete solution of the exam provides 76 points. To obtain a grade 6 is enough
to obtain 68 points out of 76.

The grade of the final exam is computed using the following formula

1 + 5 ∗ points

68
,

and then rounded to multiples of .5.
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