
Statistical Signal & Data Processing - COM500

Final Exam

June 24 2024, Duration 3h

Read Me First!

You are allowed to use:

• The given cheatsheet summarizing the most important formulas;

• A pocket calculator.

You are definitively not allowed to use:

• Any kind of support not mentioned above;

• Your neighbor; Any kind of communication systems (smartphones etc.) or laptops;

• Printed material; Text and Solutions of exercises/problems; Lecture notes or slides.

Write solutions on separate sheets, i.e. no more than one solution per paper sheet.

Return your sheets ordered according to problem (solution) numbering.

All the best for your exam!!



Warmup Exercise

This is a warm up problem .. do not spend too much time on it. Please provide justified,
rigorous, and simple answers. If needed, you can add assumptions to the problem setup.

Exercise 1. Just a real sinusoid (2 points)

Consider a sinusoid at frequency f1 = 440 Hz that is sampled with a sampling frequency
fs = 8000 Hz (telephone quality). The theoretical power spectrum is depicted in the picture
below.

f1−f1 fs
2

−fs
2

0

|X(f)|2

f

We mesure N samples of the sinusoid and we use the periodogram to compute its power spectral
density.

1) What is the minimum number of samples that are necessary to correctly distinguish the
two peaks (at frequencies ±f1) in the periodogram?

2) Sketch the spectrum computed using the periodogram with the minimum number of
samples.

Exercise 2. Just an auto-regressive process (2 points)

Consider an auto-regressive process of order 1

X[n] = aX[n− 1] +W [n] ,

where the variance of the white noise is σ2
W .

Prove the expression of its correlation function.
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Main Problem

Here comes the core part of the exam .. take time to read the introduction and each problem
statement. Please provide justified, rigorous, and simple answers. Remember that you are not
simply asked to describe statistical signal processing tools, but you are rather asked to describe
how to apply such tools to the given problem. If needed, you can add assumptions to the problem
setup.

Exercise 3. Acoustic of Organ Pipes

Plots and some contents of this problem are taken from the following two scientific papers:

[1] J. Angster, P. Rucz, A. Miklós. Acoustics of Organ Pipes and Future Trends in the
Research. Acoustics Today, March 2017, Volume 13(1), pp. 12-20.

[2] J. Prezelj, M. Čudina. Quantification of Aerodynamically-induced Noise and Vibration-
induced Noise in a Suction Unit. Journal of Mechanical engineering science- Proceedings
of the institution of mechanical engineers, 2011, Volume: 225(3), pp. 617-624.

The pipe organ produces a majestic sound that differs from all other musical instruments. The
richness and variety of sound color (timbre) produced by a pipe organ is very unique because
of the almost uncountable possibilities for mixing the sounds from different pipes.

Spring 2017  |   Acoustics Today  |  11

The ranks can be activated by a drawstop. The so-called slid-
er (Figure 3) is a wooden plate that has a number of holes 
in it, corresponding to the position of the pipes standing 
in a row. By activating a stop by one of the drawstops, the 
holes of the slider plate let the air flow from the tone chan-
nel into the pipes having the same timbre. All organ pipes 
produce sound by means of air flowing into the pipe so that 
each sounding pipe “consumes” a certain amount of air. A 
tracker action is both the connection between the keys of the 
keyboard and the tone valves in the windchest (sound tract) 
and is also the system for switching the stops (registers; reg-
ister tract). When a key is pressed, the corresponding valve 
in the pallet box opens and air 
flows into the tone channel and 
the pipes selected by the draw-
stops. When the key is released, 
a spring closes the valve, block-
ing the airflow. 

The pressurized air is provided 
by the wind system that consists 
of four essential parts. (1) The 
blower (electrical fan) is the air 
supply of the instrument. The 
blower pumps air into the wind 
system according to the “wind 
consumption” of the instru-
ment. (2) The roller valve regu-
lates the airflow from the blower 
into the bellows. (3) The bellows 
ensure that the pressure in the 
windchest remains constant. 

The required pressure of the wind in the pipe organ is set 
by the organ builder by placing weights on the top of the 
bellows. (4) Finally, the wind duct connects the wind system 
with the pallet box (lower part of the windchest), thereby 
providing the air supply for the pipes. In large pipe organs, 
multiple wind systems can be present and operate at the 
same time, but each provides air to a different set of ranks.

As mentioned above, there are two kinds of pipes that are 
similar in function to other wind instruments: flue (labial) 
pipes (like a recorder or a transverse flute) and reed (lingual) 
pipes (like a clarinet or a saxophone). The sound of a reed 
pipe is produced by a vibrating brass strip known as a reed 
(tongue). Air under pressure (wind) is directed toward the 
reed that vibrates at a specific pitch. This is in contrast to flue 
pipes, which contain no moving parts and produce sound 
solely through the vibration of air (see Figure 2). In a typical 
pipe organ, there are considerably more flue pipes than reed 
pipes. The main parts of a reed and a flue pipe are shown in 
Figure 2. 

In the next sections, the physics of flue pipes is discussed. 
The discussion is based on an earlier publication (Miklós and 
Angster, 2000) complemented by certain results of European 
research projects carried out in cooperation with several or-
gan builder enterprises. In this paper, the reed pipes won’t 
be examined (but see Fletcher and Rossing, 1991; Miklós et 
al., 2003, 2006).

Figure 2. The parts of a reed (lingual; a) and a flue (labial; b) organ 
pipe. As shown in b, the cut-up is the distance between the lower 
and upper lip.

Figure 3. A sketch of a pipe organ and its most important parts. 

A

Ba

c

Fig. 1: A sketch of a pipe organ and its most important parts [1].

The so called stationary spectrum is the spectrum of the sound of a continuously sounding
pipe. Such a sound can be measured by microphones at mouth or at the open end of a pipe.
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Figure 2 depicts the symmetric stationary spectrum of a continuously sounding pipe playing a
C note at 261.63 Hz. Notice that: The amplitude scale is in dB; Only half of the symmetric
spectrum is depicted; Only the informative part of the spectrum is depicted.
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Flue Pipes
Although the main features of the sound of flue organ pipes 
have been investigated extensively (Yoshikawa and Saneyo-
shi, 1980; Verge et al., 1994; Fletcher, 1996), the connection 
between sound character and pipe shape and the dimen-
sions are still not well understood. In the tradition of organ 
building, however, the sound character of the different ranks 
is unambiguously associated with pipe shape, material, and 
dimensions (Töpfer, 1888; Mahrenholz, 1987). Although the 
timbre, and especially the speech (attack) of the pipe (the 
very beginning of the pipe sound), may be changed signifi-
cantly by voicing adjustments (changing the geometrical pa-
rameters of the pipe such as the diameter of the foothole and 
the width of the flue and cutting up the mouth [upper lip]), 
the main characteristics of the sound are quite stable for a 
given rank and primarily depend on the form and progress 
of dimensions with note (scaling) of the pipes. It is of inter-
est to scientists that only a very narrow range of all the pos-
sible dimensions (diameter, wall thickness, cut-up height, 
flue width) and materials are actually used for organ pipes. 
Some of these limitations can be explained by technological 
reasons, but most of them have no basis in science. 

Experimental Results
Although flue pipes offer a very wide variety of sounds, the 
measured properties of these sounds contain several com-
mon elements that can be used to characterize them. To de-
termine such characteristics, three measurements are used: 
the stationary spectra (the spectrum of the sound of a con-
tinuously sounding pipe) at both the mouth and the open 
end and the attack transient at the mouth. To do this, sta-
tionary spectra are measured by microphones placed close 
(~3-5 cm) to the two openings of the pipes and the attack 
transients at the mouth are analyzed using a special com-
puter program (Angster and Miklós, 1995).

Steady-Sound Characteristic Features 
and Related Physical Phenomena
The stationary spectra of a flue pipe and the characteristic 
features of the sound spectra can be seen in Figure 4. 

The flue pipe ranks are divided into three groups according 
to their characteristic sound. The widest flue pipes (flutes) 
produce tones with the most fundamental and the least har-
monics among flue pipes, and they start to speak the fastest 

(fast attack). The Diapason or principal family produces the 
characteristic sound of the pipe organ and is not intended 
to imitate any other instrument or sound. They are medium 
scaled and are often prominently featured in the façades 
of pipe organs. They can be characterized by their strong 
second partial, especially in the attack. String pipes are the 
narrowest flue pipes. They produce a bright sound that is 
low in fundamentals and rich in upper partials. One of the 
most common string stops is named Salicional. String stops 
are often named after bowed string instruments such as the 
Violoncello, the Gamba, and the Geigen (from the German 
Geige, for violin; see http://acousticstoday.org/flue). They 
have very bright sounds with more than 20 harmonic par-
tials but with a slow attack (Miklós and Angster, 2000).

The characteristic features of the sound spectra of a flue or-
gan pipe can be listed and the related physical phenomena 
can be explained as follows. 

A Series of Harmonic Partials
It is well-known from the elements of the Fourier theory 
(Korn and Korn, 1975) that the spectrum of a periodic sig-
nal contains a series of harmonic components (partials). 
These partials can be seen in Figure 4. 

Acoustics of Organ Pipes

Figure 4. Typical stationary spectrum of a flue organ pipe at the open 
end (a) and at the mouth (b). See text for details.

Fig. 2: Typical stationary spectrum of a flue organ pipe
at the open end (a) and at the mouth (b) [1].

The spectrum is composed of:

• The spectrum of a harmonic signal XS[n] corresponding to the played note and composed
of a fundamental frequency (here at 261.63 Hz) and its harmonics;

• The spectrum of a harmonic signal XE[n] corresponding to the acoustic eigen-modes of
the pipe, that is, to the presence of standing waves. A so-called standing wave occurs in
a pipe when the sound waves reflected back and forth in the pipe are combined such that
each location along the pipe axis has constant but different amplitude. The locations
with minimum and maximum amplitude are called nodes and antinodes, respectively.

4



The frequency of the standing wave is the resonance frequency or eigen-frequency of the
tube. Standing waves occur in a tube on several frequencies. Notice that the standing
waves frequencies are not harmonically related because of the signal shape at the
mouth of the pipe (see Fig. 3).
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A Second Series of Smaller and Wider Peaks That Are 
Not Harmonically Related But Are Slightly Stretched 
in Frequency
The small, broad peaks shown in the spectrum demonstrate 
the presence of acoustic eigenmodes (standing waves) of the 
pipe. (A so-called standing wave occurs in a pipe when the 
sound waves reflected back and forth in the pipe are com-
bined such that each location along the pipe axis has con-
stant but different amplitude. The locations with minimum 
and maximum amplitude are called nodes and antinodes, 
respectively. The frequency of the standing wave is the res-
onance frequency or eigenfrequency of the tube. Standing 
waves occur in a tube on several frequencies.) The presence 
of eigenmodes can be tested experimentally by using ex-
ternal acoustic excitation. If a pipe is placed in the sound 
field generated by a loudspeaker, the pipe will amplify the 
frequency components that correspond to the eigenreso-
nances. Placing a small microphone in the pipe and using 
an excitation in a wide frequency range, the eigenresonance 
spectrum can be determined. Such a spectrum 
is shown in Figure 5 for a cylindrical tube. The 
eigenresonances are slightly stretched; the ei-
genfrequencies are a bit higher than the har-
monics of the first eigenresonance. 

The stretching of the eigenfrequencies is much 
more pronounced in open organ pipes. In the 
spectrum of a Diapason pipe (Figure 4a), the 
ninth eigenresonance lies about halfway be-
tween the ninth and tenth harmonic partials. 
The stretching becomes larger for larger diam-
eter-to-length ratios and for smaller openings 
at the pipe ends. The measured spatial distribu-
tion of the first, third, and fifth eigenmodes in a 

fairly wide flute pipe is shown in Figure 6. It can be observed 
that the standing waves lay asymmetric in the pipe; they are 
shifted toward the mouth. Moreover, the half wavelength of 
the first eigenmode (and n times the half wavelength of the 
nth eigenmode) is longer than the length of the resonator. 
The difference can be regarded as an “end correction” for 
practical calculations.  
These experimental facts can be understood by taking into 
account the physical properties of the organ pipe as an 
acoustic resonator. The air column in the pipe has several ei-
genmodes (standing wave patterns) with characteristic reso-
nance frequencies (eigenfrequencies). Their frequencies are 
not harmonically related because of the end correction (Nel-
kon and Parker, 1970), which decreases with the frequency 
(Fletcher and Rossing, 1991). Because the end correction is 
proportional to the pipe diameter, the stretching of the ei-
genfrequencies is larger for wide pipes than for narrow ones. 
Moreover, the end correction for a small opening (mouth) 
is larger than that of the larger open end. Therefore, the ei-
genfrequency stretching of an organ pipe is larger than that 
of a tube with the same length and diameter. Because of the 
different end corrections at the openings, the standing wave 
is located asymmetrically inside the organ pipe (Angster and 
Miklós, 1998). Therefore, the sound spectra at the mouth 
and at the open end are different, as shown in Figure 4. 

A Frequency-Dependent Baseline
The baseline of the spectrum (see Figure 4) is determined 
by the broadband noise at the mouth of the pipe. This 
noise is produced by the airflow at the flue and the upper 
lip (Fabre et al., 1996). Because the resonator amplifies this 
noise around the eigenresonances, the amplified noise may 
dominate the sound of the pipe in the high-frequency range, 

Figure 6. Standing waves in an organ pipe. Sound pressure distributions of the first, 
third, and fifth eigenmodes in a wide pipe are shown.

Figure 5. Eigenresonances of a tube that is 60 cm long and 31 mm 
in diameter. The harmonic partials are marked by v-shaped cursors.

Fig. 3: Standing waves in an organ pipe. Sound pressure distributions of the first,
third, and fifth eigen-modes in a wide pipe are shown.

• A frequency-dependent baseline, corresponding to the “colored” noise WC [n] that is pro-
duced by the airflow at the mouth of the pipe (called aerodynamically-induced noise).
Such a noise is typical of air blowers. It is “colored” in the sense that it does not corre-
spond to a flat spectrum (baseline). Figure below depicts the typical spectrum of such a
noise. 

 

 

Figure 5: Spectra of aerodynamically induced noise at different flow rates. A brake 
was applied on the rotor to prevent rotation of the impeller as a turbine. 

 

 

Figure 6: Sound pressure level in different frequency ranges at different flow rates 

 

The rate of exponential growth depends on the frequency. In the lower frequency 

range there is a structural resonance, visible as the spectrum peak around 700 Hz. At 

this frequency the sound pressure level reaches almost stable level at 22 l/s. By 

increasing the flow up to 60 l/s the amplitude will increase only for additional 5 dB. 

The curve indicates a saturation effect which occurs at 22 l/s. The amplitude of the 

noise around 2 kHz depends on the flow rate more steadily. By increasing the air 

flow, the amplitude of sound continuously increases tracking the exponentially 

growing curve. The amplitude of the sound pressure in a broad frequency range from 

3 kHz to 5 kHz follows to the continuously and exponentially growing theoretical 

Fig. 4: Spectrum of air flow noise at different flow rates [2].
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The following three parts are independent.

Part A: Modelling and Analysis (18 pts)

We proceed to the modelling of the signal generated by a continuously sounding pipe.

A.1 Based on the spectrum of Fig. 1 (please notice that the amplitude scale is in dB), provide
a w.s.s. model for each of the three signals:

– XS[n] (based on Fig. 1, try to set, approximately, the order of the model);

– XE[n] (based on Fig. 1, try to set, approximately, the order of the model);

– WC [n] (to model a colored noise consider the filtering of a noise with an all poles
filter, and based on Fig. 1, try to set, approximately, the order of the model).

A.2 Prove that the models for xE[n] (limited to 2 harmonics) and WC [n] describe indeed a
w.s.s. process.

Then we proceed to the analysis.

We suppose to be able to mesure the three signals xS[n], xE[n] and WC [n] separately.

A.3 Propose a method to estimate the parameters of the model of the signal xE[n]. You are
asked to detail each step as if you have to implement the method in a computer. Precisely
indicate the input and output of each step.

A.4 Propose a method to estimate the parameters of the model of the signal WC [n]. You are
asked to detail each step as if you have to implement the method in a computer. Precisely
indicate the input and output of each step.

Part B: Characterization (20 pts)

Although the main features of the sound of organ pipes have been investigated extensively,
the connection between sound character and pipe shape and the dimensions are still not well
understood.

We would like to characterize different pipes, corresponding to the same note, but made with
different material, dimensions, shape, etc. etc..

We therefore proceed in testing M = 1000 pipes corresponding to the note C at 261.63 Hz.
Each pipe is continuously played and the generated sound x[n] recorded.

For each recorded sound the spectrum and the following characteristics are computed (please
refer to Fig. 1)

• The average amplitude of the first three harmonics yA3[n];

• The energy of the eigen-frequencies (eigen-modes) yEF [n];

• The energy of the irregularities at high frequencies yI [n];

• The energy of the envelope of the harmonics yEH [n];

• The energy of the frequency dependent (noise) baseline yNB[n];
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Given that we do not if all the characteristics are individually relevant, i.e., independent, we
apply the principal component analysis.

B.1) Describe in detail, step by step, how to compute the principal components given the
variables y[n] = [yA3[n], yEF [n], yI [n], yEH [n], yNB[n]], n = 1, . . . , 1000. We shall denote
the principal components as z1[n], . . . , z5[n], n = 1, . . . , 1000. Each step should be able
to be interpreted and executed by a computer. In particular the input, the executed
operation with corresponding equations, and the output of each step has to be clear.
Also, clearly indicate the dimensions of the matrices and vectors.

B.2) What do the principal components represent?

After analyzing the variance of the principal components, it clearly appears that 2 principal
components, namely z1[n] and z2[n], n = 1, . . . , 1000, account for most of the total sample
variation.

B.3) What does it mean, in relation to the variables y, that only 2 principal components
account for most of the total sample variation?

By looking at the 2D plot of the 2 principal components we can isolate 4 different clusters.

B.4) Provide a Gaussian Mixture model based on the principal components z1[n] and z2[n], n =
1, . . . , 1000, describing the 4 clusters. More precisely, develop its cumulative distribution
function and do not forget that the cluster plot has a total of 1000 points!

Call m1, m2, m3 and m4 the centers of the 4 clusters, respectively.

B.5) What do these centers represent, in relation to the variables y?

B.6) Now that you have the centers of the 4 clusters, let’s go back to the variable y space.
How can you do so? Write the corresponding equations.

B.7) You obtain 4 sets of variables y[n] = [yA3[n], yEF [n], yI [n], yEH [n], yNB[n]], n = 1, . . . , 4.
What do these 4 sets represent? Why do we have 4 sets now and not 1000 as in the
beginning of the exercise?

Part C: Denoising (8 pts)

We would like to get rid of the aerodynamically-induced noise that comes from the wind system.
To do so, we mesure the noise w[n] where the air flow enter the organ (point c in Fig. 1) and
the sound generated by the pipe x[n] at the open end of the pipe (point a in Fig. 1). As clearly
appears from Fig. 2, the frequency content of the noise is different between the open end (a)
and the mouth of the pipe (b), suggesting that the pipe has a particular impulse response h.
We suppose that such impulse response might vary over time being dependent to the intensity
at which each note is played.
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C.1) Provide the scheme (draw a block diagram) of the adaptive filter fn capable of reducing
the aerodynamically-induced noise at the open end of the pipe. Show the signal that is
used for adaptation and give the quantity J(fn) that the adaptive filter minimizes. .

C.2) When implementing the adaptive control system (as adaptive filter), which are the pa-
rameters to be specified in order to ensure the convergence of the algorithm?

C.3) Consider that, as mentioned, the impulse response of the pipe depends on the intensity
at which a note is played. Give an example of a situation where the adaptive filtering
will not work (i.e., it will need time to correctly denoise the sound)
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COM500 CheatSheet 1/2

Stochastic Processes

w.s.s.
E[X[n]]=const. ,Var(X[n])=const.<∞

E[X[k]X∗[l]]=R(k−l) ,∀k,l∈Z ,

PSD: w.s.s. + RX (k)∈ℓ1 (summable)

SX (ω)=
∑∞

k=−∞ RX (k)e−iωk .

Fundamental Filtering Formula
X[n] w.s.s., RX (k)∈ℓ1, and hk∈ℓ1, then

Y [n]=
∑∞

k=−∞ hn−kX[k] , is w.s.s. with

E[Y ]=E[X]
∑∞

k=−∞ hk , RY (k)∈ℓ1

SY (ω)=|H(ω)|2SX (ω) ,H(ω)=DTFT of hk

Markov Chain
{X[n]}n∈Z (considered stationary) with discrete values in D, |

P(X[n]=in | X[n−1]=in−1,X[n−2]=in−2,...)

=P(X[n]=in | X[n−1]=in−1) ,∀in,in−1,...∈D

Hidden Markov Chain
{X[n]}n∈Z Markov chain, {W [n]}n∈Z Gaussian white noise

Y [n]=X[n]+W [n] .

Bayes’ Rule
A and B with discrete values in D,

P(A=k | B=l)=
P(A=k , B=l)

P(B=l)
, k,l∈D .

AR Process
A w.s.s. process X[n], with values in R, |∑M

k=0 pkX[n−k]=W [n] , n∈Z ,

W [n], is a zero mean Gaussian white noise
pk , k=0,...,M bounded coefficients (real or complex). We as-
sume p0=1.

Filtering Interpretation (z−1 delay operator)

P (z)X[n]=W [n]

Canonical form: P (z) strict. min. phase, p0=1.

Correlation:

RX [m]+
∑M−1

k=1
pkRX [m−k]=δmσ2

W , m≥0 .

PSD (fundamental filtering formula):

SX (ω)|P(ejω)|2=σ2
W .

Harmonic Processes

X[n]=
∑K

k=1 αke
j(ωkn+Θk) ,n∈N ,

Θk i.i.d. uniformly distributed over [0,2π].

RX [l]=
∑K

k=1|αk|2ejωkl , SX (ω)=
∑K

k=1|αk|2δ(ω−ωk) .

Poisson Random Process N((0, t])

N((0, t]) obeys the Poisson distribution P(N=k)=
(aλ)ke−aλ

k!
, (λ

is the rate), and given two disjoint intervals (t1, t2] and (t3, t4],
N((t1, t2]) is independent of N((t3, t4]).
Inter-arrival time Sn=Tn−Tn−1 . i.i.d. with density fS(t)=λe−tλ .

Hilbert Spaces

Projection Theorem
E ,S Hilbert spaces with S⊂E, then

∀v∈E ,∃! b∈S |

b=argmin
c∈S

∥v−c∥ , ⟨v−b,c⟩=0 ,∀ c∈S ,

Projection Theorem w.s.s.
E S Hilbert spaces of w.s.s. processes with S⊂E⊆L2(P ), then

∀X[n]∈E ,∃!Y [n]∈S |

Y [n]=argmin
U[n]∈S

E[|X[n]−U [n]|2] ,

E[(X[n]−Y [n])U∗[n]]=0 ,∀ U [n]∈S ,

Empirical Statistics

Bias & Variance
Ŝ(x[1],...,x[N ]) empirical statistics of a probabilistic moment S.
Bias E[Ŝ(X[1],...,X[N ])]−S ,

Variance Var(Ŝ(X[1],...,X[N ])−S) .

Unbiased & Biased Correlation

R̂NB
X (k)= 1

N−|k|
∑N−|k|

n=1 x[n+k]x∗[n] ,

R̂B
X (k)= 1

N

∑N−|k|
n=1 x[n+k]x∗[n] .

Methods

Linear Estimation of w.s.s.: Wiener Filter
Estimation of X[n] given Y [n]

Normal equations RXY [u]=
∑

m∈Z h[m]RY [u−m]

Wiener Filter H(ejω)=
SXY (ω)

SY (ω)

Linear Prediction of w.s.s.: Yule-Walker
Prediction of X[n] as linear combination of X[n−1],...,X[n−N ].
Coefficients ak solutions of


RX [0] ... RX [N−1]

...
. . .

...
RX [N−1] ... RX [0]




a1

...
aN

=


RX [1]

...
RX [N ]

 .

Linear Estimation of AR: Yule-Walker∑N
k=0 pkX[n−k]=W [n] . Coeff. pk solution of

−


RX [0] ... RX [N−1]

...
. . .

...
RX [N−1] ... RX [0]




p1

...
pN

=


RX [1]

...
RX [N ]

 .

σ2
W=RX [0]+RX [1]p1+...+RX [N ]pN

Linear Pretiction of AR: Projection Theorem
H(X,n)=H(W,n) , ∀ n∈Z .

Intuitive property:

Y ∈H(X,n+k) , Y =A+B , A⊥H(X,n) , B∈H(X,n)

orthogonal projection of Y onto H(X,n) is B.

Estimation Param. Prob.: MLE
θ parameters of the prob. function fY , y[1],...,y[N ] realization
of the process Y [n], then

θ̂=argmaxθ fY (y[1],...,y[N ],θ)

Spectral Estimation

Periodogram: General w.s.s. process

PN
X (ω)= 1

N |∑N
n=1 x[n]e−jωn|2= 1

N
|x̂N (ω)|2 ,

Bias ∑N−1
k=−N+1

N−|k|
N

RX [k]e−jωk−SX (ω)

Variance constant
Resolution ∆f> 1

N

Annihilating Filter: Line Spectra
Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in absence of noise
1) Given 2K observations, solve the system

x[K−1] ... x[0]

...
...

x[2K−2] ... x[K−1]




h[1]

...
h[K]

=−


x[K]

...
x[2K−1]


2) Compute H(z) and the zeros of H(z)

3) Compute the argument of the zeros of H(z)

4) Compute ωk from the zeros’ arguments
5) Compute the amplitudes |αk|2 by solving

1 ... 1

ejω1 ... ejωK

...
...

ejω1(K−1) ... ejωK (K−1)





α1e
jΘ1

α2e
jΘ2

...
αKejΘK


=



x[0]

x[1]

...
x[K−1]


MUSIC: Line Spectra
Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in the presence of noise
1) Given M observations with M>>N>K center the process
and compute the empirical correlation matrix

R̂NN
Y = 1

M−N+1

∑M−N+1
n=1 yN1[n]yN1[n]

H
;

2) Compute the eigendecomposition ĜN(N−K) of R̂NN
Y

corresponding to λR
K+1 to λR

N .
3.a) Determine the peaks of

1

eN1(ω)H ĜN(N−K)ĜN(N−K)HeN1(ω)
;

where

eN1(ω) =
[
1 e−jω . . . e−j(N−1)ω

]T
,

3.b) Determine the minimum values of

eN1(ω)HĜN(N−K)ĜN(N−K)HeN1(ω) .

4) Compute the modulus of the amplitudes using

RNN
Y =ENKAKKENKH

+σ2
W INN .

Yule-Walker: Smooth Spectra
1) Given N observations with N>>M center the process and
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compute the empirical correlation

R̂X [k]= 1
N

∑N−k
n=1 x0[n+k]x0[n]∗ , k=0,...,M

2) Solve the Yule Walker equations to obtain p̂1,...,p̂M

3) Compute the estimate of the spectrum as

ŜX (ω)=
σ̂2
W

|P̂ (z)|2

∣∣∣∣∣
z=ejω

.

Mixture Models

Sequence of samples y=[y[1],...,y[N ]], sequence of corresponding
classes c=[c[1],...,c[N ]]

FY (y)=
∑

c∈C P(Y ≤y,C=c)=
∑

c∈C P(Y ≤y |C=c)P(C=c)

=
∑

c∈C
∏N

n=1 P(Y [n]≤y[n] |C[n]=c[n])P(C=c)

i.i.d. Mixtures

P(C=c)=P(C[1]=c[1])...P(C[N ]=c[N ])=πc[1]...πc[N] ,

Markovian Mixtures

P(C=c)=πc[1]pc[1]c[2]...pc[N−1]c[N] ,

Discrete value Process + Noise
Y =X+W where X is a discrete value process and W a white
Gaussian noise.

fY (y)=
∑

x∈C
∏N

n=1 G
x[n],σ2 (y[n])P(X=x) .

Denoising a Discrete Value Process
Estimate the parameters of the mixture model using the max-
imum likelihood approach; Estimate the original signal using
the maximum a posteriori approach, i.e., find x maximizing
the a posteriori distribution

P(X=x |y)=
fY (y |X=x)P(X=x)

fY (y)

PCA

Principal Components Computaiton
M data vectors, each characterized of N variables (realization
of a zero mean w.s.s. process) cm=[cm[1],...,cm[N ]]T , m=1,...,M.
Empirical correlation matrix

R̂c=
1
M

∑M
m=1 cm∗cHm= 1

M
C∗CH , (N×N) , where C=

[
c1 . . . cM

]
,

V solution of the equation R̂cV =V Λ, where Λ=diag(λ1,...,λN )

and V HR̂cV =Λ.
Principal components Z=V TC ,(N×M), uncorrelated.
Invertible transformation C=V Z ,

Analysis
K<<N eigenvalues with highest values (lossy/lossless reduc-
tion of variables)

Adaptive Filtering / Echo cancellation

Wiener-Hopf equations ∑
k∈Z h[n−k]RY (k−l)=RXY (n−l) , ∀ l .

Echo cancellation setup

E[n]=D[n]−fn∗X[n]=S[n]+h∗X[n]−fn∗X[n]=S[n]+(h−fn)∗X[n] .

Cost function & normal equations
Cost function for a k-tap filter

J(fn)=E[|E[n]|2]=E[|D[n]−fn∗X[n]|2] , w.r.t. fn[l] ,l=0,1,...,K

Minimum of the cost function = normal equations∑K
l=0 fn[l]RX (n−l,n−i)=RDX (n,n−i) , RX,nfn=rDX,n .

Iterative solution

f(i+1)=f(i)+µp , i=0,1,... , µ & p such that J(f(i+1))<J(f(i))

Convergence conditions

0<µ<2/λmax , p= 1
2
(rDX−RXf(i)) or p=4R−1

X
(rDX−RXf(i))(Newton)

Convergence rate

• 0≤1−µλj<1, monotonic decay to zero;

• −1<1−µλj<0 oscillatory decay to zero.

• K +1 modes {1− µλj , j = 0, . . . ,K}. The modes with
maximum magnitude (slowest rate of convergence), de-
termine the convergence rate of the algorithm. One can
select µ optimally by minimizing the value of the slowest
mode minµ maxj=0,...,K |1−µλj | , with the constraint that
each of the modes is stable, i.e., |1− µλ| < 1.

Computational burden reduction
Merging interation and adaptation

fn+1=fn+µ(rDX,n+1−RX,n+1fn) ,

fn+1=fn+µR−1
X,n+1

(rDX,n+1−RX,n+1fn) (Newton) ,

Replacing statistics with individual values

fn+1=fn+µXn(D[n]−XT
n fn)=fn+µXnE[n] ,


