Statistical Signal & Data Processing - COM500
Final Exam

June 24 2024, Duration 3h

Read Me First!

You are allowed to use:

e The given cheatsheet summarizing the most important formulas;

e A pocket calculator.
You are definitively not allowed to use:

e Any kind of support not mentioned above;
e Your neighbor; Any kind of communication systems (smartphones etc.) or laptops;

e Printed material; Text and Solutions of exercises/problems; Lecture notes or slides.

Write solutions on separate sheets, 72.e. no more than one solution per paper sheet.

Return your sheets ordered according to problem (solution) numbering.

All the best for your exam!!



Warmup Exercise

This is a warm up problem .. do not spend too much time on it. Please provide justified,
rigorous, and simple answers. If needed, you can add assumptions to the problem setup.

Exercise 1. JUST A REAL SINUSOID (2 POINTS)

Consider a sinusoid at frequency f; = 440 Hz that is sampled with a sampling frequency
fs = 8000 Hz (telephone quality). The theoretical power spectrum is depicted in the picture
below.
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We mesure N samples of the sinusoid and we use the periodogram to compute its power spectral
density.

1) What is the minimum number of samples that are necessary to correctly distinguish the
two peaks (at frequencies £ f;) in the periodogram?

2) Sketch the spectrum computed using the periodogram with the minimum number of
samples.

Exercise 2. JUST AN AUTO-REGRESSIVE PROCESS (2 POINTS)

Consider an auto-regressive process of order 1
X[n] =aX[n — 1]+ W]n],

where the variance of the white noise is 3.

Prove the expression of its correlation function.



Main Problem

Here comes the core part of the exam .. take time to read the introduction and each problem
statement. Please provide justified, rigorous, and simple answers. Remember that you are not
simply asked to describe statistical signal processing tools, but you are rather asked to describe
how to apply such tools to the given problem. If needed, you can add assumptions to the problem
setup.

Exercise 3. AcousTic oF ORCGAN PIPES

Plots and some contents of this problem are taken from the following two scientific papers:

[1] J. Angster, P. Rucz, A. Miklés. Acoustics of Organ Pipes and Future Trends in the
Research. Acoustics Today, March 2017, Volume 13(1), pp. 12-20.

2] J. Prezelj, M. Cudina. Quantification of Aerodynamically-induced Noise and Vibration-
induced Noise in a Suction Unit. Journal of Mechanical engineering science- Proceedings
of the institution of mechanical engineers, 2011, Volume: 225(3), pp. 617-624.

The pipe organ produces a majestic sound that differs from all other musical instruments. The
richness and variety of sound color (timbre) produced by a pipe organ is very unique because
of the almost uncountable possibilities for mixing the sounds from different pipes.
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Fig. 1: A sketch of a pipe organ and its most important parts [1].

The so called stationary spectrum is the spectrum of the sound of a continuously sounding
pipe. Such a sound can be measured by microphones at mouth or at the open end of a pipe.



Figure 2 depicts the symmetric stationary spectrum of a continuously sounding pipe playing a
C note at 261.63 Hz. Notice that: The amplitude scale is in dB; Only half of the symmetric
spectrum is depicted; Only the informative part of the spectrum is depicted.
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Fig. 2: Typical stationary spectrum of a flue organ pipe
at the open end (a) and at the mouth (b) [1].

The spectrum is composed of:

e The spectrum of a harmonic signal Xg[n] corresponding to the played note and composed
of a fundamental frequency (here at 261.63 Hz) and its harmonics;

e The spectrum of a harmonic signal Xg[n| corresponding to the acoustic eigen-modes of
the pipe, that is, to the presence of standing waves. A so-called standing wave occurs in
a pipe when the sound waves reflected back and forth in the pipe are combined such that
each location along the pipe axis has constant but different amplitude. The locations
with minimum and maximum amplitude are called nodes and antinodes, respectively.
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The frequency of the standing wave is the resonance frequency or eigen-frequency of the
tube. Standing waves occur in a tube on several frequencies. Notice that the standing
waves frequencies are not harmonically related because of the signal shape at the
mouth of the pipe (see Fig. 3).

Open end Pipe length Mouth
z 80 e '
= ‘ first eigenmode { o
© 60 |- - = = e
n I ,"" \\
g 40 F , - |
< i “I| third eigenmode mode | ™
= ol N\
-285.0 -142.5 0.0 142.5 285.0

Distance from pipe center [mm]

Fig. 3: Standing waves in an organ pipe. Sound pressure distributions of the first,
third, and fifth eigen-modes in a wide pipe are shown.

e A frequency-dependent baseline, corresponding to the “colored” noise W¢([n| that is pro-
duced by the airflow at the mouth of the pipe (called aerodynamically-induced noise).
Such a noise is typical of air blowers. It is “colored” in the sense that it does not corre-
spond to a flat spectrum (baseline). Figure below depicts the typical spectrum of such a
noise.
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Fig. 4: Spectrum of air flow noise at different flow rates [2].



The following three parts are independent.
Part A: Modelling and Analysis (18 pts)

We proceed to the modelling of the signal generated by a continuously sounding pipe.

A.1 Based on the spectrum of Fig. 1 (please notice that the amplitude scale is in dB), provide
a w.s.s. model for each of the three signals:

— Xg[n] (based on Fig. 1, try to set, approximately, the order of the model);
— Xg[n] (based on Fig. 1, try to set, approximately, the order of the model);

— Weln] (to model a colored noise consider the filtering of a noise with an all poles
filter, and based on Fig. 1, try to set, approximately, the order of the model).

A.2 Prove that the models for xg[n] (limited to 2 harmonics) and We[n] describe indeed a
W.S.S. process.

Then we proceed to the analysis.

We suppose to be able to mesure the three signals xg[n], zg[n] and We[n| separately.

A.3 Propose a method to estimate the parameters of the model of the signal zg[n|. You are
asked to detail each step as if you have to implement the method in a computer. Precisely
indicate the input and output of each step.

A.4 Propose a method to estimate the parameters of the model of the signal W [n]. You are
asked to detail each step as if you have to implement the method in a computer. Precisely
indicate the input and output of each step.

Part B: Characterization (20 pts)

Although the main features of the sound of organ pipes have been investigated extensively,
the connection between sound character and pipe shape and the dimensions are still not well
understood.

We would like to characterize different pipes, corresponding to the same note, but made with
different material, dimensions, shape, etc. etc..

We therefore proceed in testing M = 1000 pipes corresponding to the note C' at 261.63 Hz.
Each pipe is continuously played and the generated sound z[n| recorded.

For each recorded sound the spectrum and the following characteristics are computed (please
refer to Fig. 1)

e The average amplitude of the first three harmonics ya3[n|;
e The energy of the eigen-frequencies (eigen-modes) ygr[nl;

e The energy of the irregularities at high frequencies y;[n];

The energy of the envelope of the harmonics ygy[n];

The energy of the frequency dependent (noise) baseline yypg[n];
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Given that we do not if all the characteristics are individually relevant, i.e., independent, we
apply the principal component analysis.

B.1) Describe in detail, step by step, how to compute the principal components given the
variables y[n] = [yas[n], yer(n], vi[n], yeu(n], ynvs[n]], n = 1,...,1000. We shall denote
the principal components as z[n],..., z5[n|, n = 1,...,1000. Each step should be able
to be interpreted and executed by a computer. In particular the input, the executed
operation with corresponding equations, and the output of each step has to be clear.
Also, clearly indicate the dimensions of the matrices and vectors.

B.2) What do the principal components represent?

After analyzing the variance of the principal components, it clearly appears that 2 principal
components, namely z;[n] and z[n], n = 1,...,1000, account for most of the total sample
variation.

B.3) What does it mean, in relation to the variables y, that only 2 principal components
account for most of the total sample variation?

By looking at the 2D plot of the 2 principal components we can isolate 4 different clusters.

B.4) Provide a Gaussian Mixture model based on the principal components z;[n| and z3[n], n =
1,...,1000, describing the 4 clusters. More precisely, develop its cumulative distribution
function and do not forget that the cluster plot has a total of 1000 points!

Call my, mo, ms and my the centers of the 4 clusters, respectively.
B.5) What do these centers represent, in relation to the variables y?

B.6) Now that you have the centers of the 4 clusters, let’s go back to the variable y space.
How can you do so? Write the corresponding equations.

B.7) You obtain 4 sets of variables y[n] = [yas[n], yer[n], yi[n], yeun],ynsn]]l, n = 1,...,4.
What do these 4 sets represent? Why do we have 4 sets now and not 1000 as in the
beginning of the exercise?

Part C: Denoising (8 pts)

We would like to get rid of the aerodynamically-induced noise that comes from the wind system.
To do so, we mesure the noise w[n] where the air flow enter the organ (point ¢ in Fig. 1) and
the sound generated by the pipe z[n| at the open end of the pipe (point a in Fig. 1). As clearly
appears from Fig. 2, the frequency content of the noise is different between the open end (a)
and the mouth of the pipe (b), suggesting that the pipe has a particular impulse response h.
We suppose that such impulse response might vary over time being dependent to the intensity
at which each note is played.



C.1) Provide the scheme (draw a block diagram) of the adaptive filter f,, capable of reducing
the aerodynamically-induced noise at the open end of the pipe. Show the signal that is
used for adaptation and give the quantity J(f,) that the adaptive filter minimizes. .

C.2) When implementing the adaptive control system (as adaptive filter), which are the pa-
rameters to be specified in order to ensure the convergence of the algorithm?

C.3) Consider that, as mentioned, the impulse response of the pipe depends on the intensity
at which a note is played. Give an example of a situation where the adaptive filtering
will not work (i.e., it will need time to correctly denoise the sound)
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Stochastic Processes
W.S.S.
E[X [n]]=const. ,Var(X[n])=const.<oco

E[X [k]X*[l]]=R(k—1) Vk,l€Z

PSD: w.s.s. + Rx(k)et; (summable)

Sx (W)=E52 _ o Rx (k)e ik,
Fundamental Filtering Formula
X[n] W.8.8., Rx (k)eti, and nyeer, then

Y= hn_kX[k], is w.s.s. with
B[Y]=E[X]X§Z _oo bk, Ry(k)€ly
Sy (w)=|H(w)|2Sx () ,H(w)=DTFT of hy,

Markov Chain

{X[n]}, ey (considered stationary) with discrete values in D, |
P(X[n]=in | X[n—1]=ip_1,X[n—2]=in_2,...)
=P(X[n]=in | X[n—1]=in_1) Vin,in_1,..€D

Hidden Markov Chain

{X[n]}, ez Markov chain, {W[n]}, , Gaussian white noise

Y [n]|=X[n]4+W|n].

Bayes’ Rule
A and B with discrete values in D,
P(A=k | B=l)=%, k,leD.
AR Process
A w.s.s. process X[n], with values in R, |
SilopkX[In—k]=W[n], ne€z,

Win], is a zero mean Gaussian white noise
Pk, k=0,...,M bounded coefficients (real or complex). We as-
sume po=1.
Filtering Interpretation (»—' delay operator)
P(2)X[n]=W n]

Canonical form: p(z) strict. min. phase, po=1.
Correlation:

Rx [m+ S0t pi Ry [m—kl=8mafy, ,
PSD (fundamental filtering formula):

Sx(@)|P(e7) [2=0? .

Harmonic Processes

m>0.

X=X, aped(“xn+Ok) new,

Oy, i.i.d. uniformly distributed over [0,2x].

Rx (=41 lakl?e“k | Sx (@)=F lak|?6(w—wg) -
Poisson Random Process N ((0,¢])
N((0,t]) obeys the Poisson distribution p(n=k)= (0 e™"> ()
is the rate), and given two disjoint intervals (¢1,t2] and (¢s, t4],
N((t1,t2]) is independent of N((ts,t4]).
Inter-arrival time s,, =T, —T,,_; . i.i.d. with density fg@)=re **.

Hilbert Spaces
Projection Theorem
e,s Hilbert spaces with sck, then

YoeE ,31beS |

b=arg min||v—c|| , (v—b,c)=0,V c€S,
ceS

Projection Theorem w.s.s.
E s Hilbert spaces of w.s.s. processes with scecL?(p), then

VX[n]€E,3Y[n]eS |

¥ [n}arg minE[| X [n] U] |?]
Uln]les

B[(X[n]—Y [n]))U* [n]}0 ¥ Ulnles

Empirical Statistics
Bias & Variance

S(x[1],...,z[N]) empirical statistics of a probabilistic moment s.

Bias E[S(X[1],....X[N])]-S,
Variance var(S(x[1],...,X[N])-S8).
Unbiased & Biased Correlation

RYB () =2y =02 aln+kla* [n],

Nil‘k‘ z[n+klz*[n].

RE (=% 52
Methods
Linear Estimation of w.s.s.:. Wiener Filter
Estimation of x[n] given v[n)
Normal equations Rxy [u]=%,,cz hlm]Ry [u—m]
Wiener Filter H(ejw)zsé{%(f:;)
Linear Prediction of w.s.s.: Yule-Walker

Prediction of x[n] as linear combination of X[n—1],...,X[n—N].

Coefficients a;, solutions of

Rx[0] Rx[N—1]| | a1 Rx|[1]
Rx[N—1] Rx[0] an Rx [N]
Linear Estimation of AR: Yule-Walker
SN o peX[n—k]=W[n]. Coeff. p, solution of
Rx[0] Rx[N-1]| | p1 Rx[1]
Rx[N-1] Rx [0] PN Rx [N]

oy =Rx[0+Rx[1]pi+...+Rx[N]py

Linear Pretiction of AR: Projection Theorem
H(X,n)=H(W,n), V n€z.
Intuitive property:

YEH(X,n+k), Y=A+B, ALH(X,n), BEH(X,n)
orthogonal projection of v onto H(x,n) is B.

Estimation Param. Prob.: MLE
6 parameters of the prob. function £y, y[1],...,y[N] realization
of the process v[n], then

6=arg maxg fy (y[1],...,y[N].0)

Spectral Estimation

Periodogram: General w.s.s. process
—j 2 ~
PY(w)=%|Sh_ alnle™ 79 P=F En ()12,
H N-—1 N—|k —j
Bias >N 7'y, Y Ry [kle Ik —5x (w)
Variance constant

Resolution af> 4

Annihilating Filter: Line Spectra

Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in absence of noise

1) Given 2K observations, solve the system

o[K—1] .. z[0] R[1] z[K]
z[2K—2] 2[K—1]| | n[K] z[2K—1]

2) Compute H(z) and the zeros of m(z)

3) Compute the argument of the zeros of H(z)

4) Compute w;, from the zeros’ arguments

5) Compute the amplitudes |a,|? by solving

1 1 a1e7©1 (0]
edw1 eIWK apel®2 z[1]
eJw1(K—1) UK (K1) | |aef9K z[K—1]

MUSIC: Line Spectra
Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in the presence of noise
1) Given m observations with m>>~N>k center the process
and compute the empirical correlation matrix

RYN = ey S Y N gy M g
2) Compute the eigendecomposition GNN=K) of RYN
corresponding to )\ﬁﬂ to AR,
3.a) Determine the peaks of

eN1<w)H/G\N(N7K)1/G\N(N—K)HENl(w) i
where
eNl(w) = [1 e v eij(N*l)“’]T ,
3.b) Determine the minimum values of
eN1(W)H GN(N—K)GN(N—K)H N1,y

4) Compute the modulus of the amplitudes using

R¥N:ENKAKKENKH+U‘2/VINN.

Yule-Walker: Smooth Spectra
1) Given ~ observations with nN>>Mm center the process and
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compute the empirical correlation

Rx[k=2% SN_F eolntklzo[n]*, k=0,..,M
2) Solve the Yule Walker equations to obtain pi,....5a
3) Compute the estimate of the spectrum as

52

Sx (@)= pp
z

—=elW
Mixture Models
Sequence of samples y=[y[1],...,y[N]], sequence of corresponding
classes c=[c[1],...,c[N]]
Fy (1)=Yccc P(Y<y,C=c)=Y.cc P(Y<y| C=c)P(C=c)
=Y eec [T1=1 P(Y[n]<y[n] | Cn]=c[n])P(C=c)
ii.d. Mixtures
P(C=c)=P(C[1]=c[1])...P(C[N]=c[N])=m¢[1].--Tc[N] »
Markovian Mixtures

P(C=c)=m[1]Pc[1]c[2] *-Pc[N —1]e[N] »

Discrete value Process + Noise
Y=x+w where x is a discrete value process and w a white
Gaussian noise.

Fy W)=Y ecc [IN=1 Gy, 02 WIRDP(X =) .
Denoising a Discrete Value Process
Estimate the parameters of the mixture model using the max-
imum likelihood approach; Estimate the original signal using
the maximum a posteriori approach, i.e., find = maximizing

the a posteriori distribution

fy (Y| X==)P(X==)
fy ()

P(X=e|y)=
PCA
Principal Components Computaiton
M data vectors, each characterized of ~ variables (realization
of a zero mean w.s.s. Process) cm=[cm(1],....em[N)]T, m=1,...,M.
Empirical correlation matrix

Re=7 SM_, epmrell =3 C+C, (NxN), where C=[e1 ... cu],
v solution of the equation R.v=vA, where A=diag(\1,...,An)
and VHR.V=A.

Principal components z=v7c ,(Nx M), uncorrelated.
Invertible transformation c=v z,

Analysis

K<<N eigenvalues with highest values (lossy/lossless reduc-
tion of variables)

Adaptive Filtering / Echo cancellation
Wiener-Hopf equations 5, . hln—k|Ry (k—1)=Rxy (n—1), VL.
Echo cancellation setup

X([n]

Adaptation algorithm

E[n]=Dn]— fn*X[n]=S[n]+h«X[n]—fr+X[n]=S[n]+(h—fn)*X[n] .
Cost function & normal equations
Cost function for a k-tap filter

J(fn)=E[|E[n]?|=E[|D[n]— fn*X[n]|?], wrt. foll] 1=0,1,....K
Minimum of the cost function = normal equations

o falllRx (n—l,n—i)=Rpx (n,n—i), RX nfn=rpx,n -
Iterative solution
OO =) 4 p i=0,1,..., p & p such that J(FETD)<g(£(D)
Convergence conditions
0<u<2/Amax, P=4(rpx—Rxf®)or p=4R}'(rpx—Rx fV)(Newton
Convergence rate

® 0<1-uX;<1, monotonic decay to zero;

e _1<1-pu);<0 oscillatory decay to zero.

e K +1modes {1—p)\;,j7=0,...,K}. The modes with
maximum magnitude (slowest rate of convergence), de-
termine the convergence rate of the algorithm. One can
select p optimally by minimizing the value of the slowest
mode min, max;—o,. . x |1—pX;|, With the constraint that
each of the modes is stable, i.e., |1 — pA| < 1.

Computational burden reduction
Merging interation and adaptation

frot1=Ffntu(rpx nt1—Rx nt1fn),
f7L+1:f'rL+HR;(}n+1(rDX,n+17RX,‘n,+1fn) (Newton) ,
Replacing statistics with individual values
Frp1=FntpuXn(Dnl =X fo)=Fn+pXnEln],




