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Warmup Exercise

This is a warm up problem .. do not spend too much time on it. Please provide justified,
rigorous, and simple answers. If needed, you can add assumptions to the problem setup.

Exercise 1. Averaging Periodogram (2pts)

The signal X[n] is a zero mean Gaussian white noise with variance σ2. We have measured N
points of X[n] and would like to use the periodogram PN

X (ω) to estimate the power spectrum
density (PSD).

Now we split the measured signal (X[1], X[2], . . . , X[N ]) into two parts

Y1 = (X[1], . . . , X[N/2]) , Y2 = (X[N/2 + 1], . . . , X[N ]) .

We denote the periodograms of these two parts as PY1(ω) and PY2(ω), respectively. Then we
compute the average of these two periodograms

Q(ω) =
1

2
(PY1(ω) + PY2(ω)).

Q(ω) provides a new estimator of the PSD of X[n]. What is the variance of this estimator
Var(Q(ω))?

Solution 1.

The variables Y1 and Y2 are independent. Therefore the variance of their sum, or of the sum of
a function of them, equals the sum of the variances. Indeed

Var (Q(ω)) =Var

(
1

2
(PY1(ω) + PY2(ω))

)
= E

[∣∣∣∣12(PY1(ω) + PY2(ω))
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1

2
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]∣∣∣∣2
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1

4
E
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2 + 2PY1(ω)PY2(ω)

]
− 1

4

(
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2 + |E [PY2(ω))]|
2 + 2E [PY1(ω)] E [PY2(ω)]

)
=
1

4

(
E
[
|(PY1(ω)|

2
]
+ E

[
|PY2(ω)|

2
]
+ 2E [PY1(ω)] E [PY2(ω)]

)
− 1

4

(
|E [PY1(ω)]|

2 + |E [PY2(ω))]|
2 + 2E [PY1(ω)] E [PY2(ω)]

)
=
1

4

(
E
[
|(PY1(ω)|

2
]
+ E

[
|PY2(ω)|

2
]
− |E [PY1(ω)]|

2 + |E [PY2(ω))]|
2
)

=
1

4
(Var ((PY1(ω)) + Var (PY2(ω))) .

Given that, as seen in class, the variance of the periodogram of a white noise equals the variance of
the white noise, by calling σ2

X such variance we have

Var (Q(ω)) =
1

4
(Var ((PY1(ω)) + Var (PY2(ω))) =

1

4

(
σ2
X + σ2

X

)
=

1

2
σ2
X .

Exercise 2. A filter (4pts)

Consider the following square module of the transfer function H(ejω), i.e., the square module of
the discrete time Fourier transform of the impulse response h[n]. Call H(z) the corresponding
z-transform.
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1) Draw poles and zeros of H(z).

2) Write the expression of H(z) by putting values for whatever can be easily determined
from the above plot.

3) Can H(z) represent the synthesis filter of an AR process? Please justify precisely.

4) Can H(z) represent the analysis filter of an AR process? Please justify precisely.

Solution 2.

1)

2) From the Pole-Zero plot we have z1 = z2 = 0, p1 = αeiπ/2, p2 = αe−iπ/2, where 0 < α < 1.
Hence

H(z) =
z2

(z − p1)(z − p2)
=

1

(1− p1z−1)(1− p2z−1)
=

1

(1− αeiπ/2z−1)(1− αe−iπ/2z−1)

3) The synthesis filter is an all poles stable filter. Hence, H(z) can represent the synthesis
filter of an AR process.

4) The analysis filter is an all zeros filter. Hence, H(z) cannot represent an analysis filter of
an AR process.
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Main Problems

Here comes the core part of the exam .. take time to read the introduction and each problem
statement. Please provide justified, rigorous, and simple answers. Remember that you are not
simply asked to describe statistical signal processing tools, but rather to describe how to apply
such tools to the given problem. If needed, you can add assumptions to the problem setup. You
are asked to comply with the notation given in the problem.

Exercise 3. Rock Monitoring in Climate Change and Global Warming Context

With climate change and global warming we are experiencing high variation of temperature in
short times with exceptionally high temperature at high altitudes. The direct consequence of
such abnormal temperature pattern is a high stress on rock structures (mountains, cliffs, rock
faces) and the melting of the permafrost, causing severe rock falls. Key examples are:

• The major rock fall in Pizzo Cengalo (Graubunden) in August 2017, that obliged to
evacuate 100 inhabitants of Valle Bregaglia;

• The rock slide in Forclaz pass in January 2018, that interrupt the road connection of two
villages for a couple of months;

• The significant rockfall on Trident du Tacul in Mont Blanc massif in September 2018;

• The major rock fall in Matterhorn in August 2019, that killed two alpinists.

The monitoring of rock instability is therefore of foremost importance, both for safety and
research purposes, since it enables to estimate the danger of rock falls in key locations (e.g.,
roads, populated valleys, frequented alpine routes). A rock monitoring device for extreme
environments has been recently developed. It is composed an extensometer, to measure a crack
widening or shrinking, and three accelerometers, to mesure rock movements (tilt, displacement).
The picture below depicts the system on a demo setup (where the side wood represents the
moving rocks).
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The accelerometers can also be used to mesure rock vibrations. Measuring the vibrations in
response to impulses enables the study of the rock structure, while measuring the vibrations in
response to oscillations enables the study of rock characteristics.

In both cases, an acoustic signal y is propagated into the rock from an actuator positioned on
the surface of the rock. The accelerometer is also positioned on the surface, but in another
point, and it measures a signal x.

So the developed device enables for monitoring of rock instability as well as analysis of rock
structure and characteristics. We shall focus here on the analysis features.

Part A, B, C, and D are independent.

Part A: Study of the Rock Structure (8pts)

We consider y(t) to be an impulse i.e., a signal that can be symbolically modelled in continuous
time domain as a Dirac delta δ(t) (we shall work here in continuous time).

The impulse is partially transmitted and partially reflected by each layer. Consequently, the
signal x(t) recorded at the surface is the sum of all the reflections

x(t) =
∞∑
k=1

αkδ(t− τk) ,

where τk, corresponds to the propagation delay between the surface and the boundary between
layer k and k + 1, and αk is linked to the type of material (air or permafrost) between layer k
and k + 1.

The estimation of τk is therefore of foremost importance since it provides an estimation of the
thickness of the layers. Similarly, the estimation of αk provide insights ont the material between
two layers.

We record the signal x(t) over an interval of τ = 0.1 s.

We can assume the maximum number of layers of interest to be 5 and, therefore, a maximum
of 5 reflected spikes. Assuming each layer to have an average thickness of 2 m, and the signal
(sound) propagation to be 300 m

s
, we can take as a recording interval τ = 0.1 s. Therefore

x(t) =
5∑

k=1

αkδ(t− τk) , t ∈ [0, 0.1] s .

We start by assuming that the signal x(t) is recorded in a noise-free environment.

A.1) Assuming the absence of noise, propose a parametric method to estimate the positions
τk, k = 1, . . . , 5, and the amplitudes αk, k = 1, . . . , 5 of the spikes. Precisely describe
such method. You are given τ = 0.1 s of the signal x(t) assuming a maximum of 5 spikes.
You are asked to detail each step as if you have to implement the method in a computer.
Precisely indicate the input and output of each step.

In practice x(t) is recorded in a quite noisy environment. Therefore,

x(t) =
5∑

k=1

αkδ(t− τk) + noise , t ∈ [0, 0.1] s .
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A.2) Considering now the presence of a non-negligible noise, propose a parametric method
(presented in class) to estimate the positions τk, k = 1, . . . , 5, and the amplitudes αk,
k = 1, . . . , 5 of the spikes. Precisely describe such method. You are given τ = 0.1 s of the
signal x(t) assuming a maximum of 5 spikes. You are asked to detail each step as if you
have to implement the method in a computer. Precisely indicate the input and output of
each step.

Part B: Study of the Rock Characteristics (12 points)

We consider the signal y[n] to correspond to a short oscillation at 50 kHz, i.e., a truncated
real sinusoid with frequency 50 kHz (we shall work here in discrete time). The advantage of
using a truncated sinusoid is that it generates all the harmonics (here we will consider the first
harmonic to be the fundamental).

B.1) Write the signal y[n] as a w.s.s. process Y [n] (you can limit yourself to the 10th harmonic).

B.2) Prove that Y [n] is indeed a w.s.s. process (you can limit yourself to the 3rd harmonic for
such computation).

The response of the rock to a short oscillation y[n] is measured using the accelerometer, obtain-
ing a signal x[n]. Rocks have a specific resonance frequency depending on its characteristics.
Therefore, the response signal x[n] is NOT a harmonic signal but rather a signal with energy
mostly distributed around a specific frequency. The estimation of such energy distribution, and
the successive identification of the resonance frequency, provides insight into the characteristics
of the rock. An example of the spectrum Sx(ω) of the signal x[n] is depicted in the figure below

B.3) Propose a parametric method (presented in class) to estimate the spectrum of the signal
x[n] (which is NOT a harmonic signal), assuming to have measured x[1], . . . , x[1000]. The
number of parameters (of the parametric method) should be automatically estimated by
the method itself. Precisely describe such method. You are asked to detail each step as
if you have to implement the method in a computer. Precisely indicate the input and
output of each step.

Part C: Permafrost Analysis (10 points)

The study of the rock structure provided the parameters αk, k = 1, . . . , 5, which are linked to
the type of material (air or permafrost) between layer k and k + 1.
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In particular, the permafrost can be classified based on its (relative) temperature. We can
consider 4 classes of permafrost. Consequently, the type of material can be divided into 5
classes: 1 of air and 4 of permafrost.

We can model the type of material as a realization of a discrete valued process V [n], taking 5
possible values. In addition, we can assume that there is a dependency in the material between
successive layers. Consequently we model V [n] as a Markov chain with 5 states, that is, the 5
possible types of material.

In practice, due to the inhomogeneity of the material between layers and to the measurement
noise, what we obtain is rather a noisy Markov chain S[n] = V [n] +W [n], where W [n] is a
Gaussian white noise. That is, we have a hidden Markov model.

We suppose to have measured the realizations s[1], . . . , s[5000] of the process S[n].

C.1) Develop the expression of the cumulative distribution and the density of process S[n].

C.2) Propose a method to de-noise s[1], . . . , s[5000] in order to estimate v[1], . . . , v[5000]. Pre-
cisely describe such method. You are asked to detail each step as if you have to implement
the method in a computer. Precisely indicate the input and output of each step. Re-
member that first you need to estimate the parameters of the model and then de-noise
the signal.

Part D: Rock Instability Characterization (14 points)

A total of K = 2000 rock faces has been analysed using the rock monitoring device presented
above. In order to characterize the rock instability, for each rock face k, k = 1, . . . , 2000, 5
variables have been taken into account.

• The type of permafrost between the first and second layer p1[k];

• The parameter α1 between the first and second layer a1[k];

• The type of permafrost between the second and third layer p2[k];

• The parameter α2 between the second and third layer a2[k];

• The resonance frequency f [k].

D.1) Describe in detail, step by step, how to compute the principal components given the
variables v[k] = [p1[k], a1[k], p2[k], a2[k], f [k]], k = 1, . . . , 2000. We shall denote the prin-
cipal components as c1[k], . . . , c5[k], k = 1, . . . , 2000. Each step should be able to be
interpreted and executed by a computer. In particular the input, the executed operation
with corresponding equations, and the output of each step has to be clear. Also, clearly
indicate the dimensions of the matrices and vectors.

D.2) What do the principal components represent?

After analyzing the variance of the principal components, it clearly appears that 3 principal
components, namely c1[k], c2[k], and c3[k], k = 1, . . . , 2000 account for most of the total sample
variation.
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D.3) What does it mean, in relation to the variables v, that only 3 principal components
account for most of the total sample variation?

By looking at the 3D plot of the 3 principal components we can isolate 3 different clusters.

D.4) Provide a Gaussian Mixture model based on the principal components c1[k], c2[k], and
c3[k], k = 1, . . . , 2000, describing the 3 clusters. More precisely, provide its cumulative
distribution function and do not forget that the cluster plot has a total of 2000 points!

Call m1, m2, and m3, respectively, the centers of the 3 clusters.

D.5) What do these centers represent, in relation to the variables v?

D.6) Now that you have the centers of the 3 clusters, let’s go back to the variable v space.
How can you do so? Write the corresponding equations.

Solution 3.

Part A: Study of the Rock Structure

A.1) Given the absence of noise, the optimal parametric method to estimate the positions τk
is the annihilating filter method (simple and computationally efficient).

– We have x(t) for 0 ≤ t ≤ 0.1 s with a maximum number of received pulses given by 5.

– Recalling that the annihilating filter works on harmonic signals, we first need to trans-
form the sequences of Deltas into a harmonic signal by taking the Fourier transforma-
tion (Fourier series) of x(t) (considered periodic with a period of τ = 0.1 s)

x̂[n] =
1

τ

∫ τ

0

x(t)e−j2πn t
τ =

1

0.1

5∑
k=1

αke
−j2πn

τk
0.1 .

– Targeting the estimation of the position of 5 spikes, we need an annihilating filter with
impulse response of length 5. The corresponding system readsx̂[4] . . . x̂[0]

...
. . .

...
x̂[8] . . . x̂[4]


h[1]...
h[5]

 = −

x̂[5]...
x̂[9]

 .

By solving the system we obtain h[1], . . . , h[5] (Toeplitz system, requiring 52 multipli-
cations), and therefore, with h[0] = 1, we have the impulse response of the annihilating
filter.

– Having the impulse response h[n] we compute the z-transform

H(z) =
5∑

n=0

h[n] = 1 + h[1]z−1 + . . .+ h[5]z−5 .
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– Compute the zeros of the z-transform H(z), that we shall call z1, . . . , z5, that is

H(z) =
5∏

k=1

(1− zkz
−k) .

– By taking the argument of the zeros we obtain the positions τk, k = 1, . . . , 5, with the
following formula

τk = τ
arg(zk)

2π
= 0.1

arg(zk)

2π
,

where arg(zk) is constrained in [0, 2π].

– Now that we have the values of τk, k = 1, . . . , 5, by exploiting the expression of the
Fourier transform

x̂[n] =
1

0.1

5∑
k=1

αke
−j2πn

τk
0.1 ,

we can write the linear system
1 . . . 1

e−j2π
τ1
0.1 . . . e−j2π

τ5
0.1

...
...

e−j2π4
τ1
0.1 . . . e−j2π4

τ5
0.1



α1

α2
...
α5

 = 0.1


x̂[0]
x̂[1]
...

x̂[4]


which solution provides the amplitudes of the spikes αk, k = 1, . . . , 5.

A.2) Given the presence of the noise, we need to adopt a different parametric method than
the annihilating filter method, since the latter does not work in the presence of noise.
The optimal choice is Music. As for the annihilating filter method, Music applies to
harmonic signals. Therefore the signal x(t), for 0 ≤ t ≤ 0.1 s with a maximum number of
received pulses given by 5, first needs to be transformed into a harmonic signal by taking
the Fourier transformation (Fourier series) of x(t) (considered periodic with a period of
τ = 0.1 s). Music in then applied in the Fourier domain.

x̂[n] =
1

τ

∫ τ

0

x(t)e−j2πn t
τ =

1

0.1

5∑
k=1

αke
−j2πn

τk
0.1 .

To be noticed that the data in the Fourier domain is complex! So Music is applied on
complex data!

Here we have a 5 component harmonic signal and we consider N >> 5 samples, i.e.,
x̂[1], . . . , x̂[N ].

– We shall center the signal and use the biased empirical correlation. That is, mX̂ =
1
N

∑N
k=1 x̂[k],

˜̂x[n] = x̂[n]−mX̂ , and

R̂ ˜̂
X
[k] =

1

N

N−k∑
n=1

˜̂x[n+ k]˜̂x∗
[n] , k = 0, . . . , N − 1 , R̂ ˜̂

X
[−k] = R̂∗˜̂

X
[k] .

Please notice the complex conjugate operator relating the correlation with positive
indexes to the one with negative indexes!
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Set 5 << M << N , The empirical correlation matrix is then given by

R̂M×M˜̂
X

=


R̂ ˜̂

X
[0] R̂ ˜̂

X
[1] · · · R̂ ˜̂

X
[M − 1]

R̂ ˜̂
X
[−1]

. . .
...

...
. . .

...

R̂ ˜̂
X
[−M + 1] · · · · · · R̂ ˜̂

X
[0]

 .

Notice that we set M bigger than the number of positions we are looking for, so to
exploit redundancy for the estimation of the frequencies, and smaller than the number
of samples, so to reduce the extreme lag errors of the correlation.

– Compute the M eigenvalues λ and M eigenvectors g of R̂M×M˜̂
X

.

– CallGM×(M−5) the matrix of theM−5 eigenvectors corresponding to theM−5 smaller
eigenvalues.

– Define the vector eM×1(ω) =
[
1 e−jω . . . e−j(M−1)ω

]T
as a function of the variable

ω.

– Find the 5 values of ω minimizing the equation

eM×1(ω)
H
ĜM×(M−5)ĜM×(M−5)HeM×1(ω) .

– Given that ωk = 2π τk
5
, compute the corresponding values of τk, k = 1, . . . , 5.

– Like for the annihilating filter, now that we have the values of τk, k = 1, . . . , 5, by
exploiting the expression of the Fourier transform

x̂[n] =
1

5

5∑
k=1

αke
−j2πn

τk
5 ,

we can write the linear system
1 . . . 1

e−j2π
τ1
5 . . . e−j2π

τ5
5

...
...

e−j2π4
τ1
5 . . . e−j2π4

τ5
5



α1

α2
...
α5

 = 5


x̂[0]
x̂[1]
...

x̂[4]


which solution provides the amplitudes of the spikes αk, k = 1, . . . , 5.

B.1) A truncated sinusoids with frequency f1 = 50 kHz, observed over a finite period of time,
can be approximated as the sum of infinite harmonics. Notice that here the signal has been
sampled and, therefore, low passed before sampling to avoid aliasing. Limiting ourself
to the10th harmonic automatically implies that the sampling frequency fs is bigger than
twice the 10th harmonics, i.e., fs > 20f1

y[n] =
10∑
k=1

ak
2

(
ei2πk

f1
fs

n + e−i2πk
f1
fs

n
)

The latter, can be written as a harmonic stochastic process.

Y [n] =
10∑
k=1

ak
2

(
ei(2πk

f1
fs

n+Θk) + e−i(2πk
f1
fs

n+Θk)
)
.
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B.2) We consider the harmonic stochastic process limited to the 3rd harmonic

Y [n] =
3∑

k=1

ak
2

(
ei(2πk

f1
fs

n+Θk) + e−i(2πk
f1
fs

n+Θk)
)
.

In order to prove that the model represents a w.s.s. process we need to prove the following:

1) The mean is constant. For the computation of the mean we exploit the linearity,
and, without loss of generality, we can focus on one single complex exponential:

E
[
ei(2πk

f1
fs

n+Θk)
]
=E

[
ei2πk

f1
fs

neiΘk

]
= ei2πk

f1
fs

nE
[
eiΘk

]
=ei2πk

f1
fs

n

∫ 2π

0

1

2π
eiθdθ = ei2πk

f1
fs

n 1

j2π

[
ei2π − ei0

]
= 0

The mean is constant, equal zero.

2) The correlation only depends on the difference of the time lags. For the
computation of the correlation notice that

E [Y [n+ l]Y [n]∗] =

E

[
3∑

k=1

3∑
m=1

ak
2

a∗m
2

(
e
i(2πk

f1
fs

(n+l)+Θk) + e
−i(2πk

f1
fs

(n+l)+Θk)
)(

e
−i(2πm

f1
fs

n+Θk) + e
+i(2πm

f1
fs

n+Θk)
)]

leads to cross products of the type

E
[
e±i(2πk

f1
fs

(n+l)+Θk)e±i(2πm
f1
fs

n+Θm)
]
.

If k ̸= m then the above expectation reads

E
[
e±i(2πk

f1
fs

(n+l)+Θk)e±i(2πm
f1
fs

n+Θm)
]
= E

[
e±i(2πk

f1
fs

(n+l)+Θk)
]
E
[
e±i(2πm

f1
fs

n+Θm)
]
= 0 .

If k = m then the above expectation reads

E
[
e±i(2πk

f1
fs

(n+l)+Θk)e±i(2πm
f1
fs

n+Θm)
]
=



E
[
e+i(2πk

f1
fs

(2n+l)+2Θk)
]
= 0 ,

E
[
e−i(2πk

f1
fs

(2n+l)−2Θk)
]
= 0 ,

E
[
ei2πk

f1
fs

l
]
= ei2πk

f1
fs

l ,

E
[
e−i52πk

f1
fs

l
]
= e−i2πk

f1
fs

l .

Therefore these cross products only depend on the difference l of the time lags.

3) The variance is finite. A straightforward consequence of the fact that the amplitudes
of the sinusoids are finite and that the number of the sinusoids are finite. Indeed:

Var (Y [n]) =E
[
|Y [n]|2

]
− |E [Y [n]]|2 = E

[
|Y [n]|2

]
=E

[
3∑

k=1

3∑
m=1

ak
2

a∗m
2

(
ei(2πk

f1
fs

n+Θk) + e−i(2πk
f1
fs

n+Θk)
)(

e−i(2πm
f1
fs

n+Θk) + e+i(2πm
f1
fs

n+Θk)
)]

By exploiting the results of the correlation computation, with l = 0, we have

Var (Y [n]) =
3∑

k=1

∣∣∣ak
2

∣∣∣2 < ∞ .
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B.3) The signal x[n] is NOT a harmonic signal. It has the energies concentrated around the
resonance frequency and, from the spectrum shown in Fig 2, it can be seen as signal with
smooth spectrum.

We assume the observed measurements x[1], . . . , x[1000] to be the realisation of a w.s.s.
process X[n]

The spectrum can be approximated as a smooth spectrum that, in turn, can be approxi-
mated as a rational spectrum

SX(ω) =
1

C(z)
=

σ2
W

|P (z)|2

∣∣∣∣
z=ejω

.

We therefore have a parametric spectrum, where the parameters p1, . . . , pM , and σW .

P (z) = 1+p1z
−1+ . . .+pMz−M is assumed strictly minimum phase. Then H(z) = 1

P (z)
is

a stable filter. Given thatW [n] is w.s.s., by the fundamental filtering formula, the process
X[n] = H(z)W [n] is w.s.s., and, given its expression, it corresponds to an autoregressive
process.

The parameters of H(z) can be then estimated using the Yule-Walker method for the
estimation of the parameters of an autoregressive process.

It is required that the number of parameters M +1 should be automatically estimated by
the method itself. The order M of the autoregressive model can be estimated by using
the Levinson’s algorithm to solve the Yule Walker equations.

– Fix an error variation threshold ε;

– Center the measurements x[n], n = 1, . . . , 1000, obtaining the cantered values x̄[n],
n = 1, . . . , 1000 (notice that a priori an AR is zero mean. Nevertheless, since we work
by approximation, we should then first center the process x[n]);

– Apply the Levinson’s algorithm on the N = 1000 samples x[n], n = 1, . . . , 1000, that
is, iteratively estimate the parameters using the Levinson’s algorithm equations by
starting with an AR of order M = 1 and by increasing the order at each iteration.

– Check the value of the reflection coefficients/error at every iteration;

– Stop the iteration when the reflection coefficients/error remains stable, i.e. when the
difference of the reflection coefficients/error between two iteration is less than ε. This
will give the set o parameters p1, . . . , pM , and σW for a determined M (the latter
corresponds to the iteration number);

– Then H(z) = 1
1+p̂1z−1+...+p̂Mz−M

Part C: Permafrost Analysis (10 points)

The study of the rock structure provided the parameters αk, k = 1, . . . , 5, which are linked to
the type of material (air or permafrost) between layer k and k + 1.

In particular, the permafrost can be classified based on its (relative) temperature. We can
consider 4 classes of permafrost. Consequently, the type of material can be divided into 5
classes: 1 of air and 4 of permafrost.

We can model the type of material as a realization of a discrete valued process V [n], taking 5
possible values. In addition, we can assume that there is a dependency in the material between
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successive layers. Consequently we model V [n] as a Markov chain with 5 states, that is, the 5
possible types of material.

In practice, due to the inhomogeneity of the material between layers and to the measurement
noise, what we obtain is rather a noisy Markov chain S[n] = V [n] +W [n], where W [n] is a
Gaussian white noise. That is, we have a hidden Markov model.

We suppose to have measured the realizations s[1], . . . , s[5000] of the process S[n].

C.1) Develop the expression of the cumulative distribution and the density of process S[n].

FS[n](s[n]) =P (S[n] ≤ s[n]) =
5∑

k=1

P (S[n] ≤ s[n], V [n] = k)

Bayes
=

5∑
k=1

P (S[n] ≤ s[n]|V [n] = k) P (V [n] = k) .

Notice that Given V [n] = v[n], S[n] = W [n]+v[n] is a white noise, i.e. where P (S[n] ≤ s[n] |V [n] = v[n])
is a Gaussian cumulative distribution with mean m = v[n] and variance σ2

W . The lat-
ter admits a density, i.e., a Gaussian probability density function Gv[n],σ2

W
(s[n]). As a

consequence of the last point, S[n] also admits a density.

fS[n](s[n]) =
5∑

k=1

Gk,σ2
W
(s[n])P (V [n] = k) .

When we consider all the 5000 time instants, and we indicate S = [S[1], . . . , S[5000]],
s = [s[1], . . . , s[5000]], V = [V [1], . . . , V [5000]], and v = [v[1], . . . , v[5000]], we have

FS(s) =
∑
v∈V

P (S ≤ s,V = v)
Bayes
=

∑
v∈V

P (S ≤ s |V = v) P (V = v)

where V represents all the possible combinations of the 5 types of material over the 5000
observations. V [n] is a Markov chain, therefore

P (V = v) =P (V [1] = v[1]) P (V [2] = v[2]|V [1] = v[1]) , . . .

. . . ,P (V [5000] = v[5000]|V [4999] = v[4999])

=πv[1]pv[1],v[2], . . . , pv[4999],v[5000] ;

Nice that, V = v, S = W + v is a White noise process, ie, a sequence of i.i.d. random
variables). Consequently

P (S ≤ s |V = v) =
5000∏
n=1

P (S[n] ≤ s[n] |V [n] = v[n]) .

Finally,

FS(s) =
∑
v∈V

5000∏
n=1

P (S[n] ≤ s[n] |V [n] = v[n])πv[1]pv[1],v[2], . . . , pv[4999],v[5000] .

From the expression of the densityof S[n], we have

fS(s) =
∑
v∈V

5000∏
n=1

Gv[n],σ2
W
(s[n])πv[1]pv[1],v[2], . . . , pv[4999],v[5000] .
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C.2) We have a typical incomplete data problem, where fS(s) is a Gaussian mixture model
with Markovian classes. In order to denoise the signal V [n], i.e., to recover the Markov
chain, we need to

– Estimate the parameters of the probability density function of the observed data fS(s)
using the maximum likelihood approach. That is, find the parameters θ̂ that maximise
the corresponding likelihood function

h(s ; θ) =
∑
v∈V

5000∏
n=1

Gv[n],σ2
W
(s[n])πv[1]pv[1],v[2], . . . , pv[4999],v[5000] .

Maximization is done with respect to the parameters

θ =
{
v[1], . . . , v[5], σ2

W , πi, pi,j, i, j = 1, . . . , 5
}
,

and can be achieved by mean of the EM algorithm.

– Estimate the most probable realisation v[1], . . . , v[5000] of the Markov chain V [n], i.e.,
denoise the hidden Markov chain. This can be done by finding the realisation v̂ that
maximises the a posteriori distribution

v̂ = argmax
v

P (V = v|s) , under the constraints v[n] ∈ {1, 2, 3, 4, 5} , ∀n ,

where, by definition

P (V = v|s) = h(s,v ; θ̂)

h(s ; θ̂)
=

fS(s|V = v)P (V = v)

fS(s)
.

Maximization can be achieved by mean of the Viterbi algorithm.

Part D: Rock Instability Characterization (14 points)

A total of K = 2000 rock faces has been analysed using the rock monitoring device presented
above. In order to characterize the rock instability, for each rock face k, k = 1, . . . , 2000, 5
variables have been taken into account.

• The type of permafrost between the first and second layer p1[k];

• The parameter α1 between the first and second layer a1[k];

• The type of permafrost between the second and third layer p2[k];

• The parameter α2 between the second and third layer a2[k];

• The resonance frequency f [k].

D.1) Computing the principal components

– Given v[k] = [p1[k], a1[k], p2[k], a2[k], f [k]] (dimensions 1 × 5), , k = 1, . . . , 2000,
compute the mean of the variables

mv =
1

2000

2000∑
k=1

v[k] , (dimensions 1× 5) .
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– Given the mean mv, center the variables

v̄[k] = v[k]−mv , (dimensions 1× 5) , k = 1, . . . , 2000 .

– Given the centred variables v̄[k], k = 1, . . . , 2000, compute the empirical correlation
matrix of the centred variables

R̂v =
1

2000

2000∑
k=1

v̄[k]T v̄[k] , (dimensions 5× 5) .

– Given empirical correlation matrix R̂ diagonalize it

V tR̂vV = Λ , (dimensions 5× 5) ,

where V is the matrix of eigenvectors (dimensions 5× 5).

– Given the the centred variables v̄[k], k = 1, . . . 2000 and the matrix of eigenvectors
V , compute the principal components

c[k] = v̄[k]V , (dimensions 1× 5) , k = 1, . . . , 2000 ,

where c[k] = [c1[k], . . . , c5[k]], k = 1, . . . , 2000 .

D.2) What do the principal components represent? For every k = 1, . . . , 2000, the 5 principal
components v[k] represents the one-to-one projection of the 5 centred variable v̄[k] into
a 5 dimensional orthogonal space (orthogonalisation of the centred variable)

D.3) It means that for each k = 1, . . . , 2000 the centred version v̄[k] of the 5 variables v[k]
are a linear combination of only 2 of the 5 principal components p[k]. That is, for each
k = 1, . . . , 100′000, the projection of the 5 centred version v̄[k] of the variables v[k] into
the principal component space results in only two components.

By looking at the 3D plot of the 3 principal components we can isolate 3 different clusters.

D.4) Provide a Gaussian Mixture model based on the principal components c1[k], c2[k],
and c3[k], k = 1, . . . , 2000, describing the 3 clusters. More precisely, provide its
cumulative distribution function and do not forget that the cluster plot has a total
of 2000 points!

Call m1, m2, and m3, respectively, the centers of the 3 clusters.

D.5) What do these centers represent, in relation to the variables v?

D.6) Now that you have the centers of the 3 clusters, let’s go back to the variable v space.
How can you do so? Write the corresponding equations.

We have 100′000 realizations (data size) of 5 variables, i.e., v[k] = [ia[k], id[k], ti[k], wa[k], wd[k]]
(dimensions 1× 5), k = 1, . . . , 100′000.

The principal components are denoted as p[k] = [p1[k], . . . , p5[k]], k = 1, . . . , 100′000.

Principal Components
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– Given v[k] = [ia[k], id[k], ti[k], wa[k], wd[k]] (dimensions 1 × 5), k = 1, . . . , 100′000,
compute the mean of the variables

mv =
1

100′000

100′000∑
k=1

v[k] , (dimensions 1× 5) .

– Given the mean mv, center the variables

v̄[k] = v[k]−mv , (dimensions 1× 5) , k = 1, . . . , 100′000 .

– Given the centred variables v̄[k], k = 1, . . . , 100′000, compute the empirical correla-
tion matrix of the centred variables

R̂v =
1

100′000

100′000∑
k=1

v̄[k]T v̄[k] , (dimensions 5× 5) .

– Given empirical correlation matrix R̂ diagonalize it

V tR̂vV = Λ , (dimensions 5× 5) ,

where V is the matrix of eigenvectors (dimensions 5× 5).

– Given the the centred variables v̄[k], k = 1, . . . , 100′000 and the matrix of eigenvec-
tors V , compute the principal components

p[k] = v̄[k]V , (dimensions 1× 5) , k = 1, . . . , 100′000 .

B.2)

B.3) It means that for each k = 1, . . . , 100′000 the centred version v̄[k] of the 5 variables v[k]
are a linear combination of only 2 of the 5 principal components p[k]. That is, for each
k = 1, . . . , 100′000, the projection of the 5 centred version v̄[k] of the variables v[k] into
the principal component space results in only two components.

B.4) It means that the 100′000 car passages can be divided in 3 groups, as if there are only 3
types of car.

B.5) Provided that each cluster can be modelled as a 2 dimension Gaussian distribution, the
3 2D clusters can be modelled as a 2 dimension Gaussian mixture model. The variables
of the clusters are the two principal components p[k] = [p1[k], p2[k]], k = 1, . . . , 100′000.
They can be considered at the realization of a 2D stochastic process P [k] = [P1[k], P2[k]].
For each k = 1, . . . , 100′000, the cumulative distribution reads

FP [k](p[k]) =
3∑

c[k]=1

P (P [k] ≤ p[k], C[k] = c[k])
Bayes
=

3∑
c[k]=1

P (P [k] ≤ p[k] |C[k] = c[k]) P (C[k] = c[k])

where C[k] is the random variable indicating the cluster, i.e., indicating which one of the
3 types of car (groups) has generated the 2 pressure events at the passage number k.
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When we consider all the 100′000 passages and we indicate P = [P [1], . . . ,P [100′000]],
p = [p[1], . . . ,p[100′000]] and C = [C[1], . . . , C[100′000]], we have

FP (p) =
∑
c∈C

P (P ≤ p,C = c)
Bayes
=

∑
c∈C

P (P ≤ p |C = c) P (C = c)

where C represents all the possible combinations of types of car (groups) in the 100′000
passages.

Notice that:

– We can assume that the types of car passing by, form an independent sequence (no
reason to suppose the contrary), i.e.

P (C = c) =
100′000∏
k=1

P (C[k] = c[k]) ;

– Given the type of car that passed by, the two pressure events can be considered to
be equal to a pair of constant values plus noise, i.e.

P (P ≤ p |C = c) =
100′000∏
k=1

P (P [k] ≤ p[k] |C[k] = c[k]) ,

where P (P [k] ≤ p[k] |C[k] = c[k]) is a Gaussian (bivariate) cumulative distribu-
tion. The latter admits a Gaussian (bivariate) density Gm[c[k]],Σ2[c[k]](p[k]) with mean
m[c[k]] = [m1[c[k]],m2[c[k]]] and covariance matrix Σ2[c[k]];

– Given that the principal components are independent, the covariance matrix is di-
agonal

Σ2[c[k]] =

[
σ2
1[c[k]] 0
0 σ2

2[c[k]]

]
.

Therefore, calling σ2[c[k]] = [σ2
1[c[k]], σ

2
w[c[k]]]

Gm[c[k]],Σ2[c[k]](p[k]) = Gm[c[k]],σ2[c[k]](p[k]) ,

and

Gm[c[k]],σ2[c[k]](p[k]) =
1√

2πσ2
1[c[k]]

exp

(
(p1[k]−m1[c[k]])

2

σ2
1[c[k]]

)
1√

2πσ2
2[c[k]]

exp

(
(p2[k]−m2[c[k]])

2

σ2
2[c[k]]

)
Finally, the cumulative distribution of the (random variables associated to the) two prin-
cipal components p1[k] and p2[k], k = 1, . . . , 100′000, reads

FP (p) =
100′000∏
k=1

3∑
c[k]=1

P (P [k] ≤ p[k] |C[k] = c[k]) P (C[k] = c[k])

100′000∏
k=1

3∑
l=1

P (P [k] ≤ p[k] |C[k] = l) P (C = l]) ,
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where P (C = l]), l, 1, . . . , 3, that we shall denote πl, l, 1, . . . , 3, are the mixture propor-
tions. Such a cumulative distribution admits the density

fP (p) =
100′000∏
k=1

3∑
l=1

Gm[l],σ2[l](p[k])P (C = l)

B.6) The center of the 3 clusters are given my the 3 means of the bivariate Gaussian distribu-
tion, i.e., m[l] = [m1[l],m2[l]], l = 1, . . . , 3. Given the realizations of the two principal
components p = [p[1], . . . ,p[100′000]], the means can be obtained by estimating the pa-
rameters of the density fP (p) using the maximum likelihood method.

– Set the likelihood function

h(p ; θ) =
100′000∏
k=1

3∑
l=1

Gm[l],σ2[l](p[k])πl ,

function of the parameters θ = {m1[l],m2[l], σ
2
1[l], σ

2
2[l], πl, l = 1, . . . , 3}

– Given the realizations of the two principal components p = [p[1], . . . ,p[100′000]], by
mean of the EM algorithm, compute the set of the parameters that maximises the
likelihood function

θ̂ = argmax
θ

h(p ; θ) .

B.7) Each center represent the value of the principal components p1 and p2 corresponding the
centred version of the variables ia, id, ti, wa, wd describing a characteristic 2 pressure event.

B.8) Set p1[l] = m1[l], p2[l] = m2[l], l = 1, . . . , 3. Then the 3 set of variables v[l] =
[ia[l], id[l], ti[l], wa[l], wd[l]], l = 1, . . . , 3, describing the 3 characteristic 2 pressure events
are given by

v[l] = p[l]V T +mv , (dimensions 1× 5) , l = 1, . . . , 3 .

B.9) The variable given in B.8), i.e.,

v[l] = p[l]V T +mv , (dimensions 1× 5) , l = 1, . . . , 3 ,

represent the three characteristic 2 pressure events. In other words, the 100′000 sets of
variables v[k] = [ia[k], id[k], ti[k], wa[k], wd[k]], k = 1, . . . , 100′000 can be seen as only 3
sets of values v[l] = [ia[l], id[l], ti[l], wa[l], wd[l]] = p[l]V T +mv, l = 1, . . . , 3, plus noise.
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Exercise 4. The Movie and the Train Announcement (10 pts)

You are watching a movie on your iPad during a journey in a train and you have forgotten your
noise cancelling headphones. The coach loudspeaker keeps giving announcements in German
at every train station “Wir treffen in Lausanne ein, Ihre nächste Anschluss ...” and they really
annoy you.

Having freshly finished the Statistical Signal and Data Processing course, you decide to design
an adaptive system to cancel the announcement so to be able to focus on the movie.

A microphone M pics up the sound of the iPad and of the announcement loudspeaker, and we
denote its signal by M [n]. The microphone signal has two components. The first and most
important one is the sound of your iPad denoted by W [n]. This is what we would like to listen
to, and thus considered as the desired signal. In addition, there is the sound coming from the
announcement loudspeaker, denoted by V1[n]. We have

M [n] = W [n] + V1[n] = W [n] + (h1 ∗ V )[n].

Note that the announcement loudspeaker emits the signal V [n], but it gets picked up by the
microphone after going through the acoustic propagation channel of the train coach, denoted
by h1[n].

To make things simpler, assume that the sound of the announcement loudspeaker is a single
sinusoid with a random initial phase ϕ uniformly distributed in [0, 2π) and unknown frequency
ωV :

V [n] = sin(ωV n+ ϕ).

Assume also that the sound of your iPad W [n] is a zero-mean i.i.d. Gaussian process with
variance σ2

W = 1 (nice movie!).

1) Show a scheme with an adaptive filter fn[n] that can be used to remove the announcement
loudspeaker sound from M [n], without using any other reference signals. Indicate the
signal that is used for filter coefficients’ adaptation and the quantity J(fn) that the
adaptive filter minimizes. By expanding the expression for J(fn), show that the denoised
signal is indeed the best approximation of W [n] when J(fn) is minimized. Hint: use the
properties of the signals W [n] and V [n].

2) Now assume that another microphone N is positioned in the close proximity of the an-
nouncement loudspeaker and it picks up the sound V2[n], that is only due to the an-
nouncement loudspeaker (it completely suppresses the sounds from the iPad). In other
words, the signal recorded by the second microphone is

N [n] = V2[n] = (h2 ∗ V )[n],

where h2[n] models a propagation path from the announcement loudspeaker to the mi-
crophone N .

The signal N [n] is now available to you in order to improve your announcement loud-
speaker removal from M [n] with an adaptive filter. Devise a scheme for announcement
loudspeaker sound removal with an adaptive filter gn[n] that uses both M [n] and N [n].

Again, draw a block diagram, show the signal that is used for adaptation and give the
quantity J(gn) that the adaptive filter minimizes. Also, by expanding the expression
for J(gn), show that the denoised signal optimally approximates W [n] when J(gn) is
minimized.
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Solution 4.

1) Since E [W [n]W [n− k] = 0, k ≥ 1, one could use the denoising scheme without refer-
ence depicted in the figure below.

Given that W [n] is i.i.d., the delay d can be as short as a single sample. The signal used
for filter coefficients’ adaptation is

E[n] = M [n]− Y [n] = M [n]− (fn ∗M ′)[n] ,

with M ′[n] = M [n− d], d ≥ 1.

The cost function that gets minimized by the adaptive filter is given by:

J(fn) = E
[
E[n]2

]
= E

[
W [n]2

]
+ E

[
(V1[n]− Y [n])2

]
.

One can see that when the filter minimizes J(fn), it actually minimizes the error in the
subspace orthogonal to W [n]. Additionally, the output Y [n] of the adaptive filter fn[n] is
the best approximation of the process V1[n] (announcement sound picked up by the mike)
given its past. Thus, removing the MSE-optimal prediction of the announcement sound
given its past will give the optimally denoised sound.

2) This is an easier case, as it represents the standard adaptive noise cancellation with a
reference depicted in the figure below.

The signal used for filter coefficients’ adaptation is

E[n] = M [n]− Y [n] = M [n]− (gn ∗ V2)[n] .

The cost function that gets minimized by the adaptive filter is given by

J(gn) = E
[
E[n]2

]
= E

[
W [n]2

]
+ E

[
(V1[n]− Y [n])2

]
.

Once again, one can see that the filter operates in the subspace orthogonal to the subspace
generated by W [n], giving the best MSE estimate of V1[n] in the subspace generated by
the reference announcement sound N [n] = V2[n]. Thus, removing the optimally predicted
annoucement sound from N [n] = V2[n] gives the optimally denoised sound in this setup.
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Grade Scale.

The exams accounts for a total of 60 points (exact response to each question).

The grading has been done on a 50 points scale (50 points = 6/6), according to the following
formula

grade over 6 = 1 + (5 ∗ points/50)

The result is then constrained to be at maximum 6. The maximum obtained score was 53.5/50.

The grade of the final exam has been added to the midterm grade and to the mini-project
grades and then rounded to .25 steps, that is

rounded grade over 6 = (round-to-0-digit(4 ∗ grade over 6))/4 .
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