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Warmup Exercise

This is a warm up problem .. do not spend too much time on it. Please provide justified,
rigorous, and simple answers. If needed, you can add assumptions to the problem setup.

Exercise 1. Correlation (3 pts)

We have recorded N = 200000 samples x[1], . . . , x[200000] of a w.s.s. signal. Using the empirical
mean m̂, we observe that the mean of the signal is clearly not zero, i.e., |m̂| � 0.

We would like to compute the empirical correlation R̂X [k] for k = 0, 1, . . . , 4.

Which form of the empirical correlation should we use? (Only one answer is correct, and you
have to justify it precisely)

• Absolutely only the unbiased correlation!

• Absolutely only the biased correlation!

• Either one of the two, it does not make a relevant difference!

Write the chosen expression(s) of the empirical correlation, given the samples x[1], . . . , x[200000]
(both if you choose “either one of the two”).

Solution 1.

• Biased correlation R̂b(k) =
1

N

N−k∑
n=1

x[n+ k]x[n]∗;

• Unbiased correlation R̂u(k) =
1

N − k

N−k∑
n=1

x[n+ k]x[n]∗.

The two equations hold for k ≥ 0, and we set R̂(−k) = R̂∗b(k).

Give that N = 100000 and k = 0, 1, . . . , 4, we have
1

N
≈ 1

N − k
, consequently the two estimates

of the correlation provide values that do not preset a relevant difference.

Exercise 2. Markov Chain (3 pts)

Let X[n] be a Markov chain with 3 possible states. We saw that a Markov chain is a parametric
signal model where the parameters are probabilities, i.e., in [0, 1].

How many of the model parameters can be freely defined (in [0, 1])?

Solution 2.

A 3-state Markov chain is characterised by:

• 3 initial probabilities πi, i = 1, . . . , 3.

• 9 transition probabilities pij, i = 1, . . . , 3, j = 1, . . . , 3.

2



These 12 parameters cannot be all freely defined. Indeed they are constrained:

• 1 constraint for the initial probabilities
∑3

i=1 πi.

• 3 constraints for the transition probabilities
∑3

j=1 pij, i = 1, . . . , 3.

So finally we can freely define 8 parameters (2 of the 3 transition probabilities and 6 of the 9
transition probabilities).

If in addition we consider the constraint on the stationarity of the Markov chain, namely∑3
i=1 pijπi = πj, j = 1, . . . , 3, we can freely define only 5 parameters.
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Main Problems

Here comes the core part of the exam .. take time to read the introduction and each problem
statement. Please provide justified, rigorous, and simple answers. Remember that you are not
simply asked to describe statistical signal processing tools, but rather to describe how to apply
such tools to the given problem. If needed, you can add assumptions to the problem setup. You
are asked to comply with the notation given in the problem.

Exercise 3. Preventive Maintenance of Road Pavement

Preventive maintenance of road infrastructures is of foremost importance in order to guarantee
road safety and to optimally cope with infrastructure ageing and fatigue, therefore limiting
costs and enabling planification of maintenance interventions and budget.

The midterm exam discussed the preventive maintenance of particular road infrastructures,
namely bridges. We saw that an advanced non-destructive inspection method is based on
vibration measurements obtained by an accelerometer.

Here we will focus on another particular road infrastructure, namely, road pavement made of
asphalt. In order to monitor fatigue damages and to detect abnormalities, the characterization
of the pavement response to pressure is needed. This can be done by inserting a strain gauge
(Fig. 1) into the asphalt and by measuring the pavement modifications when pressure is applied
on it.

A typical strain gauge response to the passage of a truck is depicted in Fig. 2. We shall denote
with x[n] the samples of the strain gauge response, i.e., the samples of the pressure measurement
signal.

www.CTLGroup.com

Asphalt Strain Gages

CTLGroup’s Asphalt Strain Gages (ASGs) are designed to withstand the high 
temperatures and compaction loads associated with asphalt pavement 
construction. The ASG 152 (Fig. 1) is used for measuring the horizontal strain 
in asphalt layers whereas ASG-V (Fig. 2) is used for measuring vertical strain 
Both types benefit from field-proven designs that use durable materials to 
ensure accurate long-term data collection. The full-bridge configuration (Fig. 
3) used in our ASGs reduces costs by eliminating the need for expensive 
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while an Abrasion resistant Teflon polymer coating withstands temperatures 
up to 205ºC (400ºF). This all leads to longer sensor life and long-term savings, 
by reducing redundancy in your instrumentation plan.
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Fatigue Life .............................................. <10⁵ repetitions @ +/- 1500 μstrain
Modululs ................................................................................... ≈ 2 340,000 psi
Cell Material ............................................................................. Black 6/6 nylon
Coating ............................. Two-part polysulfide liquid polymer, encapsulated
                          in silicone with butyl rubber outer core

Quality Assurance
Temperature..................................................... -34ºC (-30ºF) to 204ºC (400ºF)
Lead Wire .........................................30 ft of 22 AWG braided shield, four wire

Contact
Ulises Muro, Associate II | CTLGroup
umuro@ctlgroup.com | 847.972.3232

Willis & Timm 
 

 9

 
Figure 4. Typical Strain Response 

 

Data Set Preparation 
Data were collected over eight months from November 2006 until June 2007 for this analysis. For 
each truck pass on every section, the steer axle, tandem axle, and “best hit” single axle were 
converted from voltage to strain measurements. Once processing was completed, the data were 
screened and loaded into a database where approximately 80,000 strain entries were accumulated. It 
should be noted that the strain readings were not adjusted for temperature or season. Thus, the strain 
database and ensuing analysis represents the actual readings and covers a wide range of in situ 
conditions. 
 
Using Microsoft Access, queries were constructed in the database to pair gauges with their 
duplicates in each section by axle type, truck, and pass. For example, Gauges 1 and 10 were 
matched for the steer axles on Truck 1 for the first pass. This methodology was completed for both 
the steer and tandem axles. When comparing single axles, the “best hit” could come from one of 
five axles; therefore, the constructed query only returned gauges where the same axle provided the 
“best hit” for both gauges. This was completed to reduce variability in the dataset due to slightly 
differing axle weights and possible differences in transverse location of differing trucks. 
 

Data Analysis 
Three variables were considered when analyzing factors that influenced between gauge variability: 
gauge orientation, axle type, and pavement condition. These three factors were natural divisions for 
data manipulation based upon the information stored in the master strain database. 
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Fig. 1: Strain gauge. Fig. 2: Strain gauge response to the passage of a truck.

The following parts A, B, and C are independent.

Part A: Analysis of Pressure Measurements (10 points)

We start by focusing on the analysis of the pressure measurement signal.

Fig. 1 shows that, over a defined finite time interval T , the strain gauge signal is characterized
by a countable number of events. Call α that average number of events per unit of time.

A.1) Which stochastic process best describes a countable number of events on a finite time
interval T?
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A.2) Based on such a model, what is the probability of k events in the interval [0, T ]?

Denote with x[n] the samples of the strain gauge measurement. Suppose we can approximate
it to a continuous time signal x(t) corresponding to Dirac pseudo-functions. We would like to
estimate the times at which pressure events have occurred and the amplitudes of such events.

A.3) Propose a parametric method to estimate the times at which pressure events have occurred
and the amplitudes of the corresponding strain gauge measurements. Precisely describe
such method. We consider a recording of the signal x(t) over the time interval [0, T ].
We assume that over that interval a maximum of M pressure events might occur. You
are asked to detail each step as if you have to implement the method on a computer.
Precisely indicate the input and output of each step.

Part B: Characterization of Pressure Events (25 points)

The strain gauge signal x[n] has been recorded during a year on a road where the traffic is
limited to cars. Here each pressure event is represented by a pulse with a certain width and
amplitude (like in Fig. 2).

The passage of a car corresponds to two pressure events (front and rear axles/tires). A total of
K = 100′000 car passages have been identified. The two pressure events corresponding to each
passage have been characterized using the following variables:

• Average intensity of the two pressure events ia[k];

• Intensity difference of the two pressure events id[k];

• Time interval between the two pressure events ti[k];

• Average width of the pressure pulses of the two pressure events wa[k];

• Width difference of the pressure pulses of the two pressure events wd[k];

B.1) Describe in detail, step by step, how to compute the principal components given the
variables v[k] = [ia[k], id[k], ti[k], wa[k], wd[k]], k = 1, . . . , 100′000. We shall denote the
principal components as p1[k], . . . , p5[k], k = 1, . . . , 100′000. Each step should be able
to be interpreted and executed by a computer. In particular the input, the executed
operation with corresponding equations, and the output of each step has to be clear.
Also, clearly indicate the dimensions of the matrices and vectors.

B.2) What do the principal components represent?

After analyzing the variance of the principal components, it clearly appears that 2 principal
components, namely p1[k] and p2[k], k = 1, . . . , 100′000 account for most of the total sample
variation.

B.3) What does it mean, in relation to the variables v, that only 2 principal components
account for most of the total sample variation?

By looking at the 2D plot of the 2 principal components we can isolate 3 different clusters.
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B.4) What does it mean, in relation to the variables v, that the 2D plot of the 2 principal
components presents 3 different clusters?

B.5) Provide a Gaussian Mixture model based on the principal components p1[k] and p2[k],
k = 1, . . . , 100′000, describing the 3 clusters. More precisely, provide its cumulative
distribution function and do not forget that the cluster plot has a total of 100′000 points!

B.6) Propose a method (seen in class) to estimate the center of the clusters. Precisely describe
such method. You are given the realizations p1[k] and p2[k], k = 1, . . . , 100′000 of the
principal components. You are asked to detail each step as if you have to implement the
method on a computer. Precisely indicate the input and output of each step.

Call m1, m2, and m3, respectively, the centers of the 3 clusters.

B.7) What do these centers represent, in relation to the variables v?

B.8) Now that you have the centers of the 3 clusters, let’s go back to the variable v space.
How can you do so? Write the corresponding equations.

B.9) You have now obtained values variable v space. Given that we started with 100′000
measurements of the variables v[k] = [ia[k], id[k], ti[k], wa[k], wd[k]], how can you interpret
the values obtained in B.8)? What do they represent?

Part C: Analysis of the Pavement Response (15 points)

The analysis of the pavement response to specific pressure patterns provides insight on the
pavement structure and on its ageing behaviour.

The specific pressure pattern considered here is a white noise signal W [n]. The pavement
response is obtained by measuring the strain gauge signal X[n].

Pavement Strain Gauge
W [n] X[n]

We collect a very large amount N = 1′000′000 of samples x[n], n = 1, . . . , 1′000′000 of X[n], and
we adopt an advanced periodogram estimation method to obtain a very low variance spectrum,
as depicted in Fig. 3.

Fig. 3: Spectrum of the strain gauge signal in response to a white noise pressure pattern.
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We can model the pavement and the strain gauge as a system with a specific impulse response
h, and therefore a z transform H(z). Assuming the pavement does not have critical resonance
modes, the impulse response h can be taken to be absolutely summable, i.e., h ∈ l1.

Pavement +
Strain Gauge

h

W [n] X[n]

C.1) Given the spectrum above, propose a parametric method to estimate the coefficients of
the z transform H(z). Precisely describe such method. You are given the realizations
x[n], n = 1, . . . , 1′000′000 of X[n]. You are asked to detail each step as if you have to
implement the method on a computer. Precisely indicate the input and output of each
step.

C.2) The method you have just described requires a variable to be defined, namely the order
of the model. Can you estimate the order of the model?

C.3) Is the signal X[n] a w.s.s. process? Justify precisely your answer.

C.4) What kind of process is X[n]? Justify precisely your answer.

Solution 3.

Part A: Analysis of Pressure Measurements (10 points)

Fig. 1 shows that, over a defined finite time interval T , the strain gauge signal is characterized
by a countable number of events. Call α that average number of events per unit of time.

A.1) A (random) countable number of events on a finite interval (0, T ] are best described by a
Poisson process N((0, T ]) defined as follows

– Given the average number of events per unit of time α, the probability of number
of events in (0, T ] is

P (N((0, T ]) = k) =
(αT )ke−αT

k!
;

– Given two disjoint intervals (t1, t2] and (t3, t4], that is, two not overlapping intervals
(t1 < t2 < t3 < t4), the number of arrivals N((t1, t2]) is independent of the number
of arrivals N((t3, t4]).

A.2) Given the average number of events per unit of time α, the probability of k events in the
interval [0, T ] (or equivalently (0, T ]) is given by

P (N((0, T ]) = k) =
(αT )ke−αT

k!
;

A.3) Given the a priori absence of noise, and the fact the the pressure signal has been modelled
as a sequence of Dirac pseudo fonctions, the optimal parametric method to estimate the
positions of the pressure events is the annihilating filter method (simple and computa-
tionally efficient). Over a period of T s, the given maximum number of received pulses is
M . We shall denote the time instant of the pressure events as τk, k = 1, . . . ,M .
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– We have x(t) for 0 ≤ t ≤ T s

– Recalling that the annihilating filter works on harmonic signals, we first need to
transform the sequences of Deltas into a harmonic signal by taking the Fourier
transformation (Fourier series) of x(t) (considered periodic with a period of T s)

x̂[n] =
1

T

∫ T

0

x(t)e−j2πn
t
T =

1

T

M∑
k=1

αke
−j2πn τk

T .

– Targeting the estimation of the position of M spikes, we need an annihilating filter
with impulse response of length M . The corresponding system reads x̂[M − 1] . . . x̂[0]

...
. . .

...
x̂[2(M − 1)] . . . x̂[M − 1]


 h[1]

...
h[M ]

 = −

 x̂[M ]
...

x̂[2M − 1]

 .

By solving the system we obtain h[1], . . . , h[M ] (Toeplitz system, requiring M2 mul-
tiplications), and therefore, with h[0] = 1, we have the impulse response of the
annihilating filter.

– Having the impulse response h[n] we compute the z-transform

H(z) =
M∑
n=0

h[n] = 1 + h[1]z−1 + . . .+ h[M ]z−M .

– Compute the zeros of the z-transform H(z), that we shall call z1, . . . , zM , that is

H(z) =
M∏
k=1

(1− zkz−k) .

– By taking the argument of the zeros we obtain the positions τk, k = 1, . . . ,M , with
the following formula

τk = T
arg(zk)

2π
,

where arg(zk) is constrained in [0, 2π].

Part B: Characterization of Pressure Events (25 points)

B.1) We have 100′000 realizations (data size) of 5 variables, i.e., v[k] = [ia[k], id[k], ti[k], wa[k], wd[k]]
(dimensions 1× 5), k = 1, . . . , 100′000.

The principal components are denoted as p[k] = [p1[k], . . . , p5[k]], k = 1, . . . , 100′000.

Principal Components

– Given v[k] = [ia[k], id[k], ti[k], wa[k], wd[k]] (dimensions 1 × 5), k = 1, . . . , 100′000,
compute the mean of the variables

mv =
1

100′000

100′000∑
k=1

v[k] , (dimensions 1× 5) .
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– Given the mean mv, center the variables

v̄[k] = v[k]−mv , (dimensions 1× 5) , k = 1, . . . , 100′000 .

– Given the centred variables v̄[k], k = 1, . . . , 100′000, compute the empirical correla-
tion matrix of the centred variables

R̂v =
1

100′000

100′000∑
k=1

v̄[k]T v̄[k] , (dimensions 5× 5) .

– Given empirical correlation matrix R̂ diagonalize it

V tR̂vV = Λ , (dimensions 5× 5) ,

where V is the matrix of eigenvectors (dimensions 5× 5).

– Given the the centred variables v̄[k], k = 1, . . . , 100′000 and the matrix of eigenvec-
tors V , compute the principal components

p[k] = v̄[k]V , (dimensions 1× 5) , k = 1, . . . , 100′000 .

B.2) For every k = 1, . . . , 100′000, the 5 principal components p[k] represents the one-to-one
projection of the 5 centred variable v̄[k] into a 5 dimensional orthogonal space (orthogo-
nalisation of the centred variable)

B.3) It means that for each k = 1, . . . , 100′000 the centred version v̄[k] of the 5 variables v[k]
are a linear combination of only 2 of the 5 principal components p[k]. That is, for each
k = 1, . . . , 100′000, the projection of the 5 centred version v̄[k] of the variables v[k] into
the principal component space results in only two components.

B.4) It means that the 100′000 car passages can be divided in 3 groups, as if there are only 3
types of car.

B.5) Provided that each cluster can be modelled as a 2 dimension Gaussian distribution, the
3 2D clusters can be modelled as a 2 dimension Gaussian mixture model. The variables
of the clusters are the two principal components p[k] = [p1[k], p2[k]], k = 1, . . . , 100′000.
They can be considered at the realization of a 2D stochastic process P [k] = [P1[k], P2[k]].
For each k = 1, . . . , 100′000, the cumulative distribution reads

FP [k](p[k]) =
3∑

c[k]=1

P (P [k] ≤ p[k], C[k] = c[k])
Bayes
=

3∑
c[k]=1

P (P [k] ≤ p[k] |C[k] = c[k]) P (C[k] = c[k])

where C[k] is the random variable indicating the cluster, i.e., indicating which one of the
3 types of car (groups) has generated the 2 pressure events at the passage number k.

When we consider all the 100′000 passages and we indicate P = [P [1], . . . ,P [100′000]],
p = [p[1], . . . ,p[100′000]] and C = [C[1], . . . , C[100′000]], we have

FP (p) =
∑
c∈C

P (P ≤ p,C = c)
Bayes
=
∑
c∈C

P (P ≤ p |C = c) P (C = c)

where C represents all the possible combinations of types of car (groups) in the 100′000
passages.

Notice that:
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– We can assume that the types of car passing by, form an independent sequence (no
reason to suppose the contrary), i.e.

P (C = c) =
100′000∏
k=1

P (C[k] = c[k]) ;

– Given the type of car that passed by, the two pressure events can be considered to
be equal to a pair of constant values plus noise, i.e.

P (P ≤ p |C = c) =
100′000∏
k=1

P (P [k] ≤ p[k] |C[k] = c[k]) ,

where P (P [k] ≤ p[k] |C[k] = c[k]) is a Gaussian (bivariate) cumulative distribu-
tion. The latter admits a Gaussian (bivariate) density Gm[c[k]],Σ2[c[k]](p[k]) with mean
m[c[k]] = [m1[c[k]],m2[c[k]]] and covariance matrix Σ2[c[k]];

– Given that the principal components are independent, the covariance matrix is di-
agonal

Σ2[c[k]] =

[
σ2

1[c[k]] 0
0 σ2

2[c[k]]

]
.

Therefore, calling σ2[c[k]] = [σ2
1[c[k]], σ2

w[c[k]]]

Gm[c[k]],Σ2[c[k]](p[k]) = Gm[c[k]],σ2[c[k]](p[k]) ,

and

Gm[c[k]],σ2[c[k]](p[k]) =
1√

2πσ2
1[c[k]]

exp

(
(p1[k]−m1[c[k]])2

σ2
1[c[k]]

)
1√

2πσ2
2[c[k]]

exp

(
(p2[k]−m2[c[k]])2

σ2
2[c[k]]

)
Finally, the cumulative distribution of the (random variables associated to the) two prin-
cipal components p1[k] and p2[k], k = 1, . . . , 100′000, reads

FP (p) =
100′000∏
k=1

3∑
c[k]=1

P (P [k] ≤ p[k] |C[k] = c[k]) P (C[k] = c[k])

100′000∏
k=1

3∑
l=1

P (P [k] ≤ p[k] |C[k] = l) P (C = l]) ,

where P (C = l]), l, 1, . . . , 3, that we shall denote πl, l, 1, . . . , 3, are the mixture propor-
tions. Such a cumulative distribution admits the density

fP (p) =
100′000∏
k=1

3∑
l=1

Gm[l],σ2[l](p[k])P (C = l)

B.6) The center of the 3 clusters are given my the 3 means of the bivariate Gaussian distribu-
tion, i.e., m[l] = [m1[l],m2[l]], l = 1, . . . , 3. Given the realizations of the two principal
components p = [p[1], . . . ,p[100′000]], the means can be obtained by estimating the pa-
rameters of the density fP (p) using the maximum likelihood method.
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– Set the likelihood function

h(p ; θ) =
100′000∏
k=1

3∑
l=1

Gm[l],σ2[l](p[k])πl ,

function of the parameters θ = {m1[l],m2[l], σ2
1[l], σ2

2[l], πl, l = 1, . . . , 3}
– Given the realizations of the two principal components p = [p[1], . . . ,p[100′000]], by

mean of the EM algorithm, compute the set of the parameters that maximises the
likelihood function

θ̂ = arg max
θ

h(p ; θ) .

B.7) Each center represent the value of the principal components p1 and p2 corresponding the
centred version of the variables ia, id, ti, wa, wd describing a characteristic 2 pressure event.

B.8) Set p1[l] = m1[l], p2[l] = m2[l], l = 1, . . . , 3. Then the 3 set of variables v[l] =
[ia[l], id[l], ti[l], wa[l], wd[l]], l = 1, . . . , 3, describing the 3 characteristic 2 pressure events
are given by

v[l] = p[l]V T +mv , (dimensions 1× 5) , l = 1, . . . , 3 .

B.9) The variable given in B.8), i.e.,

v[l] = p[l]V T +mv , (dimensions 1× 5) , l = 1, . . . , 3 ,

represent the three characteristic 2 pressure events. In other words, the 100′000 sets of
variables v[k] = [ia[k], id[k], ti[k], wa[k], wd[k]], k = 1, . . . , 100′000 can be seen as only 3
sets of values v[l] = [ia[l], id[l], ti[l], wa[l], wd[l]] = p[l]V T +mv, l = 1, . . . , 3, plus noise.

Part C: Analysis of the Pavement Response (15 points)

C.1) The spectrum is a smooth spectrum that can be approximated as a rational spectrum

SX(ω) =
1

C(z)
=

σ2
W

|P (z)|2

∣∣∣∣
z=ejω

,

where P (z) = 1 + p1z
−1 + . . . + pMz

−M is assumed strictly minimum phase. Then
H(z) = 1

P (z)
is a stable filter. Given that W [n] is w.s.s., by the fundamental filtering

formula, the process X[n] = H(z)W [n] is w.s.s., and, given its expression, it corresponds
to an autoregressive process.

The parameters of H(z) can be then estimated using the Yule-Walker method for the
estimation of the parameters of an autoregressive process.

– Set the order of the model M .
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– Using the N = 1′000′000 samples x[n], n = 1, . . . , 1′000′000, compute

R̂X [k] =
1

N

N−|k|∑
l=1

x[l + k]x∗[l] , k = 0, . . . , N − 1 .

Notice that a priori an AR is zero mean. Nevertheless, since we work by approxima-
tion, we should then first center the process x[n] before computing the correlation.

– Write the Yule-Walker equations for the estimation of the M parameters and do not
forget that σ2 is given since it is the power of the given specific pressure pattern

R̂X [0]p1 + . . .+ R̂X [M − 1]pM =R̂X [1]

... =
...

R̂X [M − 1]p1 + . . .+ R̂X [0]pM =R̂X [M ]

– Solve the equations to obtain p̂1, . . . , p̂M .

– Then H(z) = 1
1+p̂1z−1+...+p̂Mz−M

C.2) The order of the model can be estimated in two ways:

– Approximately, by considering the number of peaks of the spectrum;

– Statistically, by using the Levinson algorithm. The Levinson algorithm subsequently
estimate the model parameters by starting with a model order of 1 and then increas-
ing it. The analysis of the prediction error enables to determine at which value of
the order model further increasing of the model order does not improve the model
estimation.

C.3) By the fundamental filtering formula the signal X[n] is w.s.s. process. Indeed, the filter
H(z) is stable and the input of the filter is teh w.s.s. process W [n].

C.4) The process is w.s.s. (see point C.3) ) and it satisfy the recursive equation

X[n] + p1X[n− 1] + . . .+ pMX[n−M ] = W [n] .

Recalling the definition of an AR process, i.e., a w.s.s. process satisfying the above
equation, we can affirm that the process X[n] is indeed an autoregressive process.
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Grade Scale.

The exams accounts for a total of 56 points (exact response to each question).

The grading has been done on a 50 points scale (50 points = 6/6), according to the following
formula

grade over 6 = 1 + (5 ∗ points/50)

The result is then constrained to be at maximum 6. The maximum obtained score was 51/50.

The grade of the final exam has been added to the midterm grade and to the mini-project
grades and then rounded to .25 steps, that is

rounded grade over 6 = (round-to-0-digit(4 ∗ grade over 6))/4 .
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