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Warmup Exercise

This is a warm up problem .. do not spend too much time on it. Please provide justified,
rigorous, and simple answers. If needed, you can add assumptions to the problem setup.

Exercise 1. Approximating a System (6 points)

Consider a system with a transfer function H0(z)|z=ejω having the following magnitude

1) Approximate the system H0(z) with an all zeros system H1(z). Write the expression of
H1(z), and plot the zeros on the z-plane.

2) Approximate the system H0(z) with an all poles system H2(z). Write the expression of
H2(z), and plot the poles on the z-plane.

3) Which of the two systems H1(z) and H2(z) will best approximate H0(z)? Justify your
answer precisely.

Solution 1.

Recall that poles and zeros at the origin do not play any and are used only for order normal-
ization purpose.

1) A way to approximate H0(z) with an all zeros system is to place a zero z1 in the positive
real axis and a zero z2 in the negative real axis, where z1 is closer to the unit circle
than z2. Given that the effect of zeros is usually not very strong (except when placed on
the unit circle), we might consider zeros with higher order. A possible all zero system
approximation is the following

H1(z) =
(z − z1)2(z − z2)2

z2
= (1− z1z−1)2(1− z2z−1)2 ,

where z1 = 0.5 and z2 = −0.25.
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2) A way to approximate H0(z) with an all pole system is to place a pair of conjugate
poles z1 and z2 with phase ≈ ±0.7π and magnitude < 1.. A possible all pole system
approximation is the following

H1(z) =
z2

(z − z1)(z − z2)
=

1

(1− z1z−1)(1− z2z−1)
,

where z1 = 0.75ej0.7π and z2 = 0.75e−j0.7π.

3) When the magnitude of the transfer function is characterized by “peaks”, it is better
represented/approximated using poles. A single pole can have a strong effect, easily
defining the sharpness of the peak.
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Main Problems

Here comes the core part of the exam .. take time to read the introduction and each problem
statement. Please provide justified, rigorous, and simple answers. Remember that you are not
simply asked to describe statistical signal processing tools, but rather to describe how to apply
such tools to the given problem. If needed, you can add assumptions to the problem setup.

Exercise 2. Reflection Seismology

The study of the earth’s subsurface is of great interest, enabling the identification of the different
nappes and the understanding of the plate tectonics.

Nappes in the Swiss Alps.

Reflection Seismology (or seismic reflection) is a method of exploration geophysics that esti-
mates the properties of the earth’s subsurface from reflected seismic waves.

The basic idea is to propagate an acoustic signal y into the ground. Each subsurface layer has
a different acoustic impedance and when the signal encounters a boundary between two layers
some of the energy in the wave will be reflected at the boundary, while some of the energy will
be transmitted through the boundary (impedance mismatch). The signal x recorded at the
surface, will be the sum of all the reflections.
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The goal is to properly use y to get information on the different geological layers (nappes),
their position, and on their acoustic impedance. In particular, the acoustic impedance provides
information on the nappe’s geological characteristics.

We shall first explore different types of signals y (Part A & B) to get such information, and
then model and estimate the acoustic impedance (Part C). The three parts A, B, and C are
independent.

Part A: The signal y is a spike (18 points)

We consider y to be a spike, i.e., a signal that can be symbolically modeled in continuous time
domain as a Dirac delta δ(t) (we shall work here in continuous time domain). In practice this
can be obtained with an explosion at the surface.

The signal x(t) recorded at the surface is therefore

x(t) =
∞∑
k=1

αkδ(t− τk) ,

where τk, corresponds to propagation delay between the surface and the boundary of the k-th
layer and the k-th +1 layer, and αk is linked to the reflection coefficient of the boundary.

The estimation of τk is therefore of foremost importance since it provides an estimation of
the depth of each boundary between two layers. Similarly, the estimation of αk enables the
computation of the acoustic impedance of the layers.

We record the signal x(t) over an interval of τ = 20 s. Assuming each nappe (layer) to have
an average height of 800 m, and the signal (sound) propagation to be 300 m

s
, we can take the

maximum number of layers to be 10 and, therefore, a maximum of 10 reflected spikes, therefore
obtaining

x(t) =
10∑
k=1

αkδ(t− τk) , t ∈ [0, 20] s .

We start by assuming that the signal x(t) is recorded in a noise-free environment.

A.1) Assuming the absence of noise, propose a parametric method to estimate the positions
τk, k = 1, . . . , 10, and the amplitudes αk, k = 1, . . . , 10 of the spikes. Precisely describe
such method. You are given τ = 20 s of the signal x(t) assuming a maximum of 10 spikes.
You are asked to detail each step as if you have to implement the method in a computer.
Precisely indicate the input and output of each step.

In practice x(t) is recorded in a quite noisy environment (outside, on the ground)

A.2) Considering now the presence of a non-negligible noise, propose a parametric method
(presented during the lectures) to estimate the positions τk, k = 1, . . . , 10, and the
amplitudes αk, k = 1, . . . , 10 of the spikes. Precisely describe such method. You are
given τ = 20 s of the signal x(t) assuming a maximum of 10 spikes. You are asked to
detail each step as if you have to implement the method in a computer. Precisely indicate
the input and output of each step.
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Part B: The signal y is a white noise (18 points)

We consider y to be a Gaussian white noise in discrete time, i.e., y[n] = w[n], with variance σ2

(known).

The signal x[n] recorded at the surface can be modeled as

x[n] =
∞∑
k=1

hkw[n− k] .

Notice that now, k does not represent the k-th layer. Here k is linked to the sampling period Ts.
Assuming the signal (sound) propagation to be 300 m

s
, k is linked to a propagation distance of

kTs300 m. Consequently, for those values kTs300 m corresponding to the depth of a boundary
between two layers, the coefficient hk will be linked to the reflection coefficient of the boundary.

Finally, the estimation of the coefficients hk, is of foremost importance since it enables the
computation of the acoustic impedance of the layers and, indirectly, the depth of each boundary
between two layers.

We rewrite the coefficients hk as h[k], and consider the stochastic processes associated to the
measurements, obtaining

X[n] =
∞∑
k=1

h[k]W [n− k] .

Assume h[k] ∈ `1 (absolutely summable) and that the corresponding z-transform H(z) has all
the zeros strictly inside the unit circle.

B.1) Is X[n] a w.s.s. process? Justify precisely your answer (notice there is no need to make
any computation here!).

B.2) What kind of process is X[n]? Justify precisely your answer and, if needed, add some
assumptions.

Assume the sampling frequency to be fs = 1000 Hz and to have measured N = 20000 samples
x[1], . . . , x[20000]. We would like to analyze the coefficients h[k], k = 1, . . ., by analyzing the
module of their Fourier transform, i.e., |H(z)|z=ej2πk/N .

B.3) Propose a parametric method to estimate |H(z)|z=ej2πk/N given x[1], . . . , x[20000]. Pre-
cisely describe such method. You are asked to detail each step as if you have to implement
the method in a computer. Precisely indicate the input and output of each step.

B.4) In the above parametric method, you need to assume that the number of parameters is
known (this is linked to the assumption needed in B.2) ). It there a way to estimate the
number of parameters? Explain.
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Part C: Modeling and estimation of the acoustic impedance (16 points)

Once estimated the depth of each boundary between two layers and the reflection coefficient
of the boundary it is possible to obtain the acoustic impedance. Theoretically, we expect
something like this
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As you can see, the acoustic impedance is a realization of a discrete valued process, that we
shall denote with V [n]. In addition, we can assume that there is a dependency in the sequence
of layers, and therefore we model such process as a Markov chain, where we can assume the
Markov chain V [n] to have 10 states (discrete values of V [n]).

In practice, due to the inhomogeneity of each layer, and to the measurement noise, what we
obtain is rather a noisy Markov chain S[n] = V [n] +W [n], where W [n] is a Gaussian white
noise. That is, we have a hidden Markov model.

We suppose to have computed the realizations s[1], . . . , s[6000] of the process S[n].

C.1) Give the expression of the cumulative distribution and the density of process S[n].

C.2) Propose a method to de-noise s[1], . . . , s[6000] in order to estimate v[1], . . . , v[6000]. Pre-
cisely describe such method. You are asked to detail each step as if you have to implement
the method in a computer. Precisely indicate the input and output of each step. Re-
member that first you need to estimate the parameter of the model and then de-noise the
signal.

Solution 2.

Part A: The signal y is a spike

A.1) Given the absence of noise, the optimal parametric method to estimate the positions τk
is the annihilating filter method (simple and computationally efficient).

Over a period of τ = 20 s, the given maximum number of received pulses is 10.

– We have x(t) for 0 ≤ t ≤ 20 s

– Recalling that the annihilating filter works on harmonic signals, we first need to
transform the sequences of Deltas into a harmonic signal by taking the Fourier
transformation (Fourier series) of x(t) (considered periodic with a period of τ = 20 s)

x̂[n] =
1

τ

∫ τ

0

x(t)e−j2πn
t
τ =

1

20

10∑
k=1

αke
−j2πn τk

20 .
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– Targeting the estimation of the position of 10 spikes, we need an annihilating filter
with impulse response of length 10. The corresponding system reads x̂[9] . . . x̂[0]

...
. . .

...
x̂[18] . . . x̂[9]


 h[1]

...
h[10]

 = −

x̂[10]
...

x̂[19]

 .

By solving the system we obtain h[1], . . . , h[10] (Toeplitz system, requiring 102 mul-
tiplications), and therefore, with h[0] = 1, we have the impulse response of the
annihilating filter.

– Having the impulse response h[n] we compute the z-transform

H(z) =
10∑
n=0

h[n] = 1 + h[1]z−1 + . . .+ h[10]z−10 .

– Compute the zeros of the z-transform H(z), that we shall call z1, . . . , z10, that is

H(z) =
10∏
k=1

(1− zkz−k) .

– By taking the argument of the zeros we obtain the positions τk, k = 1, . . . , 10, with
the following formula

τk = τ
arg(zk)

2π
= 20

arg(zk)

2π
,

where arg(zk) is constrained in [0, 2π].

– Now that we have the values of τk, k = 1, . . . , 10, by exploiting the expression of the
Fourier transform

x̂[n] =
1

20

10∑
k=1

αke
−j2πn τk

20 ,

we can write the linear system
1 . . . 1

e−j2π
τ1
20 . . . e−j2π

τ10
20

...
...

e−j2π9
τ1
20 . . . e−j2π9

τ10
20



α1

α2
...
α10

 = 20


x̂[0]
x̂[1]

...
x̂[9]


which solution provides the amplitudes of the spikes αk, k = 1, . . . , 10.

A.2) In the presence of a non-negligible noise the annihilating filter method cannot be apply.
The parametric method seen in class that fits the problem is MUSIC. Recall that, like
the annihilating filter, MUSIC applies to a harmonic signal. Therefore, in our case, we
apply MUSIC on the data in the Fourier domain

x̂[n] =
1

20

10∑
k=1

αke
−j2πn τk

20 .

8



To be noticed that the data in the Fourier domain is complex! So Music is applied on
complex data!

Here we have a 10 component harmonic signal and we consider N >> 10 samples, i.e.,
x̂[1], . . . , x̂[M ].

– We shall center the signal and use the biased empirical correlation. That is, mX̂ =
1
M

∑M
k=1 x̂[k], ˜̂x[n] = x̂[n]−mX̂ , and

R̂ ˜̂
X

[k] =
1

N

N−k∑
n=1

˜̂x[n+ k]˜̂x∗[n] , k = 0, . . . , N − 1 , R̂ ˜̂
X

[−k] = R̂∗˜̂
X

[k] .

Please notice the complex conjugate operator relating the correlation with positive
indexes to the one with negative indexes!

Set 10 << M << N , The empirical correlation matrix is then given by

R̂M×M˜̂
X

=


R̂ ˜̂
X

[0] R̂ ˜̂
X

[1] · · · R̂ ˜̂
X

[M − 1]

R̂ ˜̂
X

[−1]
. . .

...
...

. . .
...

R̂ ˜̂
X

[−M + 1] · · · · · · R̂ ˜̂
X

[0]

 .

Notice that we set M bigger than the number of positions we are looking for, so
to exploit redundancy for the estimation of the frequencies, and smaller than the
number of samples, so to reduce the extreme lag errors of the correlation.

– Compute the M eigenvalues λ and M eigenvectors g of R̂M×M˜̂
X

.

– Call GM×(M−10) the matrix of the M − 10 eigenvectors corresponding to the M − 10
smaller eigenvalues.

– Define the vector eM×1(ω) =
[
1 e−jω . . . e−j(M−1)ω

]T
as a function of the variable

ω.

– Find the 10 values of ω minimizing the equation

eM×1(ω)
H
ĜM×(M−10)ĜM×(M−10)HeM×1(ω) .

– Given that ωk = 2π τk
20

, compute the corresponding values of τk, k = 1, . . . , 10.

– As for the annihilating filter, now that we have the values of τk, k = 1, . . . , 10, by
exploiting the expression of the Fourier transform

x̂[n] =
1

20

10∑
k=1

αke
−j2πn τk

20 ,

we can write the linear system
1 . . . 1

e−j2π
τ1
20 . . . e−j2π

τ10
20

...
...

e−j2π9
τ1
20 . . . e−j2π9

τ10
20



α1

α2
...
α10

 = 20


x̂[0]
x̂[1]

...
x̂[9]


which solution provides the amplitudes of the spikes αk, k = 1, . . . , 10.
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Part B: The signal y is a white noise

B.1) By the fundamental filtering formula, given that h[k] ∈ `1 and that W [n] is w.s.s., X[n]
is also w.s.s..

B.2) Using z as a delay operator, the process can be (symbolically) written

X[n] =
∞∑
k=1

h[k]W [n− k] =
∞∑
k=1

h[k]W [n]z−k = W [n]
∞∑
k=1

h[k]z−k = W [n]H(z) .

We assume the infinite order polynomial H(z) to be generated by a fractional finite
polynomial, i.e.,

H(z) =
1

P (z)
,

where P (z) is indeed a finite order polynomial. Notice that, given the assumptions on
H(z), P (z) is a stable strictly minimum phase polynomial.

Then, by definition, X[n] is an autoregressive process

X[n]P (z) = W [n] .

B.3) Given the assumption

H(z) =
1

P (z)
,

the estimation of |H(z)|z=ej2πk/N , N = 20000, is equivalent to the estimation of the spec-
trum of an autoregressive process. Therefore, the Yule-Walker method is the optimal
parametric estimation method.

We assume the order of the autoregressive to be M << N = 20000. The value of M
can be deduced by from the periodogram of x[1], . . . , x[20000] or by using the Levinson’s
algorithm (see point B.4).

The M order autoregressive process reads

X[n]P (z) = X[n] +
M∑
k=1

pkX[n− k] = W [n] ,

where W [n] is a centered Gaussian white noise with known variance σ2.

It is characterized by the M coefficients p1, . . . , pM (a total of M parameters).

– Given the samples x[1], . . . , x[20000], compute the (biased) empirical correlation

R̂X [k] =
1

20000

20000−k∑
n=1

x[n+ k]x[n]∗ , k = 0, . . . ,M .

– Write the Yule-Walker equations for the estimation of the M parameters (do not
forget that σ2 is given)

R̂X [0]p1 + . . .+ R̂X [M − 1]pM =R̂X [1]

... =
...

R̂X [M − 1]p1 + . . .+ R̂X [0]pM =R̂X [M ]
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– Solve the equations to obtain p̂1, . . . , p̂M .

– Compute |H(z)|z=ej2πk/N as

|H(z)|z=ej2πk/N =
1

|P (z)|z=ej2πk/N
=

1

1 + p̂1e−j2πk/N + . . .+ p̂Me−j2πMk/N
, k = 0, . . . , N−1 .

B.4) As briefly mentioned in B.2), it is possible to use the Levinson’s algorithm. The latter
provides an iterative solution to the Yule Walker equations for increasing order. It is
sufficient to observe the reflection coefficients of the Levinson’s algorithm and stop the
iterations (and therefore the increasing of the order) as soon as the reflection coefficients
do not significantly change between two iterations (threshold to be fixed).

Part C: Modeling and estimation of the acoustic impedance

Given the process S[n] = V [n] + W [n], call S = [S[1], . . . , S[N ]], V = [V [1], . . . , V [N ]], s =
[s[1], . . . , s[N ]], v = [v[1], . . . , v[N ]], and denote with γ1, . . . , γ10 the ten possible values of the
acoustic impedance, i.e., the ten states of the Markov chain.

C.1) The cumulative distribution of the process S[n] is

FS(s) =
∑
v∈C

P (S ≤ s,V = v)
Bayes
=
∑
v∈C

P (S ≤ s |V = v) P (V = v)

=
∑
v∈C

[
N∏
n=1

P (S[n] ≤ s[n] |V [n] = v[n])

]
P (V = v) , ∀N

where C represents all the possible combinations of the values of the realization v of
the Markov chain, where v ∈ {γ1, . . . , γ10}N . Notice that the above expression should
not only defined by the time index n-uplet 1, . . . , N , ∀N , but also for all the shifts of
such n-uplet 1 + k, . . . , N + k, ∀N, k. Nevertheless, by assuming the Markov chain to be
stationary, we can defined it simply ∀N .

The density corresponding to the cumulative distribution P (S[n] ≤ s[n] |V [n] = v[n]) is
a Gaussian distribution with mean v[n] and variance σ2

W , i.e., Gv[n],σ2
W

(s[n]). Therefore
the density associated to FS(s) reads

fS(s) =
∑
v∈C

[
N∏
n=1

Gv[n],σ2
W

(s[n])

]
P (V = v) ,

where, by subsequently applying Bayes’ rule and exploiting the Markov property

P (V = v) =P (V [N ] = v[N ]|V [N − 1] = v[N − 1]) . . .P (V [2] = v[2]|V [1] = v[1]) P (V [1] = v[1])

=pv[N−1]v[N ] . . . pv[1]v[2]πv[1] ,

with v[n] ∈ {γ1, . . . , γ10}, n = 1, . . . , N .

C.2) We need to adopt the de-noising approach via Mixture models.

The density model reads

fS(s) =
∑
v∈C

[
N∏
n=1

Gv[n],σ2
W

(s[n])

]
pv[N−1]v[N ] . . . pv[1]v[2]πv[1] ,

and, based on the measurements, we have computed s[1], . . . , s[6000].
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– Parameter estimation of the model.
The parameters of the models are

θ =
{
σ2
W , γ1, . . . , γ10,

{
pγiγj

}
i,j=1,...,10

, {πγi}i=1,...,10

}
.

Given s[1], . . . , s[6000], the likelihood function reads

h([1], . . . , s[6000] ; θ) =
∑
v∈C

[
6000∏
n=1

Gv[n],σ2
W

(s[n])

]
pv[N−1]v[N ] . . . pv[1]v[2]πv[1] .

By using an EM algorithm for Markovian mixture models, we can obtain an estima-
tion of the parameter θ̂.

– A posteriori maximization.
Once estimate the parameters θ̂, and given the observations s = [s[1], . . . , s[6000]] we
can proceed to the estimation of the most probable realization of v = [v[1], . . . , v[6000]]
as the argument maximizing the a posteriori function, where the a posteriori func-
tion is defined as

P (V = v | s) =
h(s,v; θ̂)

h(s; θ̂)
=
fS(s |V = v)P (V = v)

fS(s)
∝ fS(s |V = v)P (V = v)

=
6000∏
n=1

Gv[n],σ2
W

(s[n])pv[N−1]v[N ] . . . pv[1]v[2]πv[1] ,

where v[n] ∈ {γ̂1, . . . , γ̂10}, n = 1, . . . , 6000.

The maximization of the a posteriori function can be achieved using the Viterbi
algorithm, with the constraints v[n] ∈ {γ̂1, . . . , γ̂10}, n = 1, . . . , 6000.
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Exercise 3. Noise Cancelling Headphones Quality Control (14 points)

Your work for a company producing noise cancelling headphones. Being extremely concerned
by providing a high quality product, your boss ask you to perform an analysis so to check if
the headphones produced over a trimester have the same properties.

Recall that the principle of a noise cancelling headphone is

noise x[n]

+ s[n] music
+

s[n] + (x ∗ (h− fn))[n]

fn
−

Noise Cancelling Headphones.

Every trimester the company produces 20000 headphones. To analyze the properties you play
some music into the headphones (the Bach cello suites performed by Mstislav Rostropovich),
obtaining the signal s[n], and you add an external white Gaussian noise x[n] with variance
(power) σ2. Notice that we have here the standard audio sampling frequency of 44 kHz.

For each headphone, you record the signal e[n] = s[n]+(x∗(h−fn))[n], obtaining e[1], . . . , e[220000]
samples. For each recording you compute:

• The power of the signal e[n];

• The frequency corresponding to the maximum value of the spectrum of e[n] (we consider
the frequencies between 0 and 22 kHz);

• The power at low frequencies (f ∈ [0, 2] kHz) of the spectrum of ;

• The power at high frequencies (f ∈ [2, 22] kHz).

That is, you compute 4 characteristics, that we shall call c[1], . . . , c[4]

In order to verify whether it is really necessary to consider 4 characteristic and to reduce the
complexity of the analysis, you can use principal component analysis.

1) Describe in detail the principal component analysis method, step by step, from the 4 char-
acteristics c[1], . . . , c[4] computed based on the recorded signal e[1], . . . , e[220000],
to the principal components zm[k], like if each step has to be interpreted and executed by
a computer (in particular the input, the executed operation with corresponding equations,
and the output of each step has to be clear). Also, clearly indicate the dimensions
of the matrices and vectors.
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After analyzing the variance of the principal components, it clearly appears that 1 principal
component, namely zm[1], accounts for most of the total sample variation. When making a
histogram of all the 20000 values of the principal component, the plots appears as a mixture of
two distributions, as depicted in the figure below.

This suggests that the produced 20000 headphones can be divided into two classes, each being
described by a Gaussian distribution.

2) Provide the explicit expression of a two Gaussian mixture model for the principal com-
ponents having as realization zm[1], m = 1, . . . , 20000.

3) Write the corresponding likelihood function.

4) How can we find the two values of the principal component each characterizing one of the
two classes of the produced headphones?

Solution 3.

1) Each headphone is characterize by 4 variables c[1], . . . , c[4]. We shall call cm = [cm[1], . . . , cm[4]]
(dimension 1 × 4), m = 1, . . . , 20000 the variable vectors of the M = 20000 produced
headphones.

In order to reduce the number of variables characterizing the headphones, we apply PCA
as follows.

– Compute the mean of the variables mC =
1

20000

20000∑
m=1

cm.

– Center the variables c̄m = cm −mC (dimension 1× 4).

– Compute the empirical correlation matrix of the variables R̂C =
1

20000

20000∑
m=1

c̄Tm ∗ c̄m
(dimension 4× 4);

– Diagonalize the correlation Matrix V tR̂CV = Λ (dimensions 4× 4), where V is the
matrix of eigenvectors (dimensions 4× 4);

– Compute the principal components zm = c̄mV (dimensions 1×4), m = 1, . . . , 20000.
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2) We have now reduced the complexity from 4 to 1 variable, in the principal components
space. Notice that the reduction of variable is performed in the principal component
space and NOT in the original space! At this point, is not interesting to go back to the
original space, since the variables are a linear combination of a (reduced) set of principal
components.

The histogram shows that the principal component zm[1], m = 1, . . . , 20000 can be
modeled as the outcome of an i.i.d. mixture of two Gaussian distributions. Call Z =
[Z1[1], . . . , Z20000[1]] the sequence of random variables (stochastic process) associated to
the outcomes z = [z1[1], . . . , z20000[1]]. The density (model) is then

fZ(z) =
20000∏
m=1

(
π1

1√
2πσ2

1

exp

(
−(zm[1]− µ1)

2

2σ2
1

)
+ π2

1√
2πσ2

2

exp

(
−(zm[1]− µ2)

2

2σ2
2

))

3) The parameters of the density are θ = {π1, π2, µ1, µ2, σ
2
1, σ

2
2}, and the corresponding

likelihood function reads

h(z ; θ) =
20000∏
m=1

(
π1

1√
2πσ2

1

exp

(
−(zm[1]− µ1)

2

2σ2
1

)
+ π2

1√
2πσ2

2

exp

(
−(zm[1]− µ2)

2

2σ2
2

))

4) The two values of the principal component correspond to the two means µ1 and µ2 of the
mixture model. They can be estimated by estimating the parameters θ via the maximum
likelihood approach.
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Grade Scale.

The exams accounts for a total of 72 points (exact response to each question).

The grading has been done on a 61 points scale (61 points = 6/6), according to the following
formula

grade over 6 = 1 + (5 ∗ points/62)

and then rounded to .25 steps, that is

rounded grade over 6 = (round-to-0-digit(4 ∗ grade over 6))/4 .

The result is then constraint to be at maximum 6.
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