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Chapter 1

Review Material

1.1 Linear Algebra

Exercise 1. Matrix properties

(a) Consider the following matrix:

X =

[
5
4

−
√
3

4
−
√
3

4
7
4

]

What are the eigenvalues of X? Is it possible to diagonalize the matrix? Can X be the
correlation of a random vector of length 2?

(b) What are the eigenvectors of the matrix A:

A =

[
cos π

4 sin π
4

− sin π
4 cos π

4

] [
2 0
0 1

] [
cos π

4 − sin π
4

sin π
4 cos π

4

]
?

Suppose a real symmetric matrix B has eigenvalues equal to 5 and 3. Given the matrix A
above, what is the determinant of AB?

(c) Consider the following matrix:

X =


1 2 3 2
2 1 2 3
3 2 1 2
2 3 2 1


What type of matrix is this? How would you diagonalize it without computing the eigen-
values and eigenvectors?

Solution 1. Matrix properties
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(a) The eigenvalues are obtained by solving the equation det(X − λI) = 0, which is true for
λ = 1 and λ = 2.

If all eigenvalues are different, which is the case, then X can be diagonalized (although the
opposite is not necessarily true!) into a matrix D such that D = V−1XV, where V is a
matrix with the eigenvectors as columns.

We may also notice that X = XT , which is a sufficient condition for X to be diagonalizable.

If all the eigenvalues of X are non-negative, which is the case, in addition to being a
symmetric matrix, then X can represent a correlation matrix of a random vector of length
2. A matrix of this type is called positive semidefinite.

(b) If V is a matrix with the eigenvectors of A as columns, and D is a diagonal matrix with
the eigenvalues of A in the diagonal, then A = VDV−1. We then notice that

D =

[
2 0
0 1

]
and V =

[
cos π

4 sin π
4

− sin π
4 cos π

4

]

and thus v0 =

[
cos π

4
− sin π

4

]
and v1 =

[
sin π

4
cos π

4

]
are the eigenvectors of A.

Real symmetric matrices are diagonalizable by orthogonal matrices, and thus B = TGT−1

where T is orthogonal and G is a diagonal matrix with the eigenvalues 5 and 3. In the
case of A, the matrix V is also orthogonal. Thus, applying the determinant property
det(AB) = det(A) det(B), we get

det(AB) = det(A) det(B)

= det(VT ) det(D) det(V) det(TT ) det(G) det(T)

= det(VTV) det(D) det(TTT) det(G)

= det(I) det(D) det(I) det(G)

= det(D) det(G)

= (2 · 1) · (5 · 3) = 30

(c) Since X is a real symmetric matrix, it is diagonalized by an orthogonal matrix. However,
the matrix is also circulant, and thus X is diagonalized by the DFT matrix (in this case,
of size 4).
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1.2 Hilbert Spaces

Exercise 2. Parseval’s equality.
Given a finite dimensional space W = RN and an orthonormal basis

{
v(i)
}
, i = 0, . . . , N − 1,

verify that for any x ∈ W

∥x∥22 =

N−1∑
i=0

∣∣∣< x,v(i) >
∣∣∣2 .

Solution 2. Parseval’s inequality
Let x ∈ W , then x =

∑N−1
i=0 αiv

(i), αi =< x,v(i) >. Therefore

∥x∥22 =< x,x >=< x,
∑N−1

i=0 αiv
(i) >=

∑N−1
i=0 α⋆

i < x,v(i) >,

Now, changing αi =< x,v(i) >, we have

∥x∥22 =
∑N−1

i=0 < x,v(i) >⋆< x,v(i) >=
∑N−1

i=0

∣∣< x,v(i) >
∣∣2.
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Exercise 3. Optimal approximation.

Consider a Hilbert space H and a subspace W spanned by an orthonormal basis
{
v(i)
}
, i ∈ I

(one can assume a finite dimensional case for simplicity). Prove that the approximation x̂ ∈ W
of x ∈ H given by:

x̂ =
∑
i∈I

< x,v(i) > v(i)

satisfies:

(a) (x− x̂) ⊥ x̂;

(b) ∥x− x̂∥22 is minimum among all linear approximations in W .

Solution 3. Optimal approximation

(a) From the property of the orthogonality we know that

(x− x̂) ⊥ x̂ ⇔ < x− x̂, x̂ >= 0,

Proof by writing out:

< x− x̂, x̂ > = < x, x̂ > − < x̂, x̂ >

= < x,
∑
i∈I

< x,v(i) > v(i) > −∥x̂∥2

=
∑
i∈I

< x,v(i) >⋆< x,v(i) > −∥x̂∥2

=
∑
i∈I

∣∣∣< x,v(i) >
∣∣∣2 − ∥x̂∥2

= ∥x̂∥2 − ∥x̂∥2 = 0

where the last equation holds from the Parseval’s equality. Note that
∑

i∈I

∣∣< x,v(i) >
∣∣2 equals

∥x̂∥2 and not ∥x∥2, because it represents the projection of x onto the orthonormal basis
{
v(i)
}
,

which has less elements then those that would be required to fully represent x.

(b) x̂ is a linear combination of the basis approximation x̂ =
∑

n∈I βnv
(n) for some βn. For

simplicity, we can assume that βn ∈ R. The case where βn ∈ C can be analyzed in a similar way
considering the real and the imaginary part of βn.
We want to find the coefficients βn for which we have the minimum of ∥x− x̂∥22. Therefore,

∂
∂βi

∥x− x̂∥22 = 0

Thus,
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∂

∂βi
∥x− x̂∥22 =

∂

∂βi
< x− x̂,x− x̂ >

=
∂

∂βi
(< x,x > − < x, x̂ > − < x̂,x > + < x̂, x̂ >)

=
∂

∂βi

(
< x,x > −

∑
n∈I

βn < x,v(n) > −
∑
m∈I

βm < v(m),x >

+
∑
n∈I

∑
m∈I

βnβm < v(n),v(m) >

)

=
∂

∂βi

(
< x,x > −

∑
n∈I

βn < x,v(n) > −
∑
m∈I

βm < v(m),x > +
∑
n∈I

β2
n

)
= 0

From which,

− < x,v(i) > − < v(i),x > +2βi = 0 ⇒ βi = Re
{
< x,v(i) >

}
as claimed.
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Exercise 4. Hilbert Spaces in Probability.
Consider the random variables X0, X1, X2 defined on the same probability space. Suppose that
the mean of each variable is 0 and the joint correlation matrix is

RX = E[[X0X1X2]
T [X0X1X2]] =

 8 4 1
4 8 4
1 4 8

 .

Let us define Hilbert space H as the space generated by all the linear combinations of the
variables X0, X1, and X2, i.e.

H = {a0X0 + a1X1 + a2X2, a0, a1, a2 ∈ R}.

(a) Determine an orthogonal basis, {Y0, Y1} for the subspace W generated by X0 and X1.

(b) Find the best approximation of the variable X2 in the subspace W , i.e. the random variable
Y that minimizes E[|Y −X2|2], with Y ∈ W . (Hint: apply the projection theorem.)

Solution 4. Hilbert Spaces in Probability.
This exercise may seem strange at a first glance, but it is actually a standard exercise of linear
algebra. One should just replace the scalar product used in RN with

⟨X,Y ⟩ = E[XY ],

where X and Y are random variables defined on the same probability space. One could easily
verify that this product is actually a valid scalar product. The scalar product always induces a
norm, defined by

∥X∥ =
√

⟨X,X⟩.

With these definitions, the space H is actually a Hilbert space. (One could verify that all the
properties valid for vector spaces hold for the set H and also that H is complete.)
The space H is generated by the random variables X0, X1, X2 which represent a basis of the
space. They are the vectors of the space and one can apply the usual vector operations on them.

(a) The subspace W is the subspace of H generated by the vectors (i.e. the random variables)
X0 and X1. To determine an orthogonal basis, one can apply the Gram-Schmidt procedure:

Y0 = X0

∥X0∥
Y1 = X1−⟨X1,Y0⟩Y0

∥X1−⟨X1,Y0⟩Y0∥ ,

and replace the scalar product and the norm with the definitions that we presented earlier.
We obtain,

Y0 = X0

2
√
2

Y1 =
X1−⟨X1,

X0
2
√

2
⟩ X0
2
√

2

∥(X1−⟨X1,
X0
2
√

2
⟩ X0
2
√

2
∥

= − 1
2
√
6
X0 +

1√
6
X1.

(b) To determine the best approximation ofX2 inW , say X̂2, we write it as a linear combination
of X0 and X1 (or equivalently of Y0 and Y1),

X̂2 = b0X0 + b1X1.
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The error of the approximation is given by

E = X2 − X̂2

To apply the projection theorem we impose that the approximation error is orthogonal to
W . This correspond to the two equations:

⟨E,X0⟩ = 0
⟨E,X1⟩ = 0,

which gives the linear system:{
⟨X0, X0⟩b0 + ⟨X1, X0⟩b1 = ⟨X2, X0⟩
⟨X0, X1⟩b0 + ⟨X1, X1⟩b1 = ⟨X2, X1⟩.

The solution of the system is
b0 = − 1

6
b1 = 7

12 ;

therefore, X̂2 = −X0/6 + 7X1/12.
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Exercise 5. Fourier basis.
Consider the Fourier basis {w(k)}k=0,...,N−1, defined as:

w(k)
n = e−j 2π

N nk.

(a) Prove that it is an orthogonal basis in CN . The inner product is define as in l2 space.

(b) Normalize the vectors in order to get an orthonormal basis.

(c) Propose the best least square approximation ŷ ∈ CN of a general vector y ∈ CN+1.

Solution 5. Fourier basis
(a) Fourier basis is a sequence of N-dimensional vectors{

w(k) =
(
w

(k)
0 , w

(k)
1 , ..., w

(k)
N−1

)}
k=0,...,N−1

.

Recall that the set of N non-zero orthogonal vectors in an N -dimensional subspace is a basis for
the subspace. Therefore, we need to prove the orthogonality across the vectors

{
w(k)

}
k=0,...,N−1

.

Let us compute the inner product, that is:

< w(k),w(h) > =

N−1∑
n=0

w(k)
n w(h)⋆

n =

N−1∑
n=0

e−j 2π
N nkej

2π
N nh

=

N−1∑
n=0

e−j 2π
N n(k−h) =

{
N if k = h
0 otherwise

Since the inner product of the vectors is equal to 0 for k ̸= h, we conclude that they are
orthogonal. However, they do not have a unit norm and therefore are not the orthonormal
vectors.

(b) In order to obtain the orthonormal basis we normalize the vectors with the factor 1/
√
N ,

having:

< w(k)
norm,w(h)

norm > =

N−1∑
n=0

1√
N

e−j 2π
N nk 1√

N
ej

2π
N nh

=
1

N

N−1∑
n=0

e−j 2π
N n(k−h) =

{
1 if k = h
0 otherwise

(c) In order to use the projection theorem we need to define a new space S that is a subspace of
CN+1. A natural extension from CN to CN+1 is to define S =

{
(cT , 0)T , c ∈ CN

}
. In that case,

the orthonormal basis for the space S isw
(k)
s =

(
w

(k)T
norm, 0

)T
. Now, the best linear approximation

of y ∈ CN+1 on the subspace S, which minimizes the norm ∥y − ŷ∥, is obtained by projecting y

onto an orthogonal basis w
(k)
s ,

ŷ =

N−1∑
k=0

< y,w(k)
s > w(k)

s
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Exercise 6. Coding: Fourier series series approximation
Using Matlab or Python (numpy.fft), plot a step function together with it approximation using
k first elements of it’s Fourier series. For example, you can take a length 100 sequence, where
first 100 elements are equal to 1 and the rest is 0. Generate plots for different k. What do you
observe?

Solution 6.
If you take signal of the length 100, then it can be decomposed as follows:

x[n] =
1

100

100∑
k=1

x̂[k]ej2π
(n−1)(k−1)

100 , n = 1 . . . 100

By truncating this series, we can approximate this series with different number of of sine waves,
in the examples below 1, 2, 6 and 20:

You can observe that even though the approximations gets closer and closer to the step function
in general, there are regions where the difference stays large: the sine waves are not well suited
for approximating discontinuities.
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Exercise 7. Circulant matrices.
Prove that the Fourier basis vectors (1, e−j 2π

N k, . . . , e−j 2π
N (N−1)k)T are eigenvectors of an N ×N

circulant matrix.

Solution 7. Circulant matrices
Let’s write the N ×N circulant matrix as

C =


c0 c1 · · · cN−1

cN−1 c0 · · · cN−2

...
...

. . .
...

c1 c2 · · · c0

 =


cT0
cT1
· · ·

cTN−1

,
i.e., each row cTi is a right shifted version of the first row cT0 of the matrix C.
By definition, eigenvector satisfies the following equality

y = Cwk = λkwk

The product Cw results in a column-vector y of length N , where the entry yi, corresponds to
the inner product of the vector w and the row cTi .
Since

wk =
(
1, e−j 2π

N k, ..., e−j 2π
N (N−1)k

)T
and the row cTi of the matrix C is

(cN−i, cN−i+1, ..., cN−1, c0, c1, ..., cN−i−1)
T
,

the element yi of y is then

yi = cTi wk =

N−1∑
m=N−i

cme−j 2π
N (m−(N−i))k +

N−i−1∑
m=0

cme−j 2π
N (m+i)k

Now, knowing that the complex exponential term e−jw is periodic with period 2π, we can write
the following

e−j 2π
N mk = e−j 2π

N (m+N)k

and the exponential terms of the first sum then reads e−j 2π
N (m−(N−i))k = e−j 2π

N (m+i)k. Finally,
the inner product yi is given by

yi =

N−1∑
m=0

cme−j 2π
N (m+i)k = e−j 2π

N ik
N−1∑
m=0

cme−j 2π
N mk = e−j 2π

N ikC[k]

where C[k] is the k-th Fourier coefficient of the sequence c0. Therefore, the product y is given
by:

y = Cwk = C[k]
(
1, e−j 2π

N k, ..., e−j 2π
N (N−1)k

)
= C[k]wk = λkwk

The Fourier basis vector wk is, therefore, eigenvector with the corresponding Fourier coefficient
C[k] as its eigenvalue.
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1.3 Basics of discrete signal processing

Exercise 8. Discrete sinc function
A discrete sinc function is the inverse DFT (IDFT) of the indicator function IM [n] of an interval
[−M,M ], that is:

IM [n] =

{
1 −M ≤ n ≤ M

0 otherwise.
(1.1)

Assume that 2M is a divisor of N , with N the length of the IDFT.

(a) Derive a formula for sincM [n].

(b) Using Matlab, compute the discrete sinc function and compare it with the result from (a).

Solution 8.
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Exercise 9. Shannon and orthonormal basis
Shannon’s sampling theorem states: A real bandlimited signal f(t) having no spectral compo-
nents equal or above ωm is uniquely defined by its samples taken at twice ωm, often called the
Nyquist frequency. By denoting Ts = π/ωm, a reconstruction formula that complements the
sampling theorem is:

f(t) =

+∞∑
n=−∞

f(nTs)sincTs(t− nTs), (1.2)

where

sincTs(t) =
sin(πt/Ts)

πt/Ts
. (1.3)

An alternative interpretation of the sampling theorem is as a series expansion of bandlimited
signals on an orthonormal basis. Define:

φn,Ts
(t) =

1√
Ts

sincTs
(t− nTs). (1.4)

(a) Show that {φn,Ts
(t)}n∈Z form an orthonormal set, i.e.

< φn,Ts
, φm,Ts

>= δnm. (1.5)

(b) Show that any continuous-time signal f(t) bandlimited to ωm can be represented in the
orthonormal basis {φn,Ts

(t)}n∈Z . That is, another way to write the interpolation formula
(1.2) is

f(t) =

+∞∑
n=−∞

< φn,Ts
, f >∗φn,Ts

(t).

Solution 9. Shannon and orthonormal basis
(a) To prove that ⟨φn, φm⟩ = δnm, we use the Parseval’s relation,

⟨φn, φm⟩ =

∫ +∞

−∞
φn (t)φ

∗
m (t) dt

=
1

2π

∫ +∞

−∞
Ψn (ω)Ψ

∗
m (ω) dω

where Ψ (ω) is the Fourier transform of φ (t). We also know that the sinc function is equivalent
to a rectangular function in the Fourier domain,

F {sincTs
(t)} =

{
Ts , − π

Ts
< ω < π

Ts

0 , otherwise

and therefore,

Ψn (ω) = F

{
1√
Ts

sincTs
(t− nTs)

}
=

{ √
Tse

−jωnTs , − π
Ts

< ω < π
Ts

0 , otherwise
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Using this result in the Parseval’s relation, we get

1

2π

∫ +∞

−∞
Ψn (ω)Ψ

∗
m (ω) dω =

1

2π

∫ + π
Ts

− π
Ts

√
Tse

−jωnTs
√

Tse
+jωmTsdω

=
Ts

2π

∫ + π
Ts

− π
Ts

ejω(m−n)Tsdω

=
Ts

2π
· 1

j (m− n)Ts

[
ejω(m−n)Ts

]+ π
Ts

− π
Ts

=
1

2πj (m− n)

[
ejπ(m−n) − e−jπ(m−n)

]
=

sin [π (m− n)]

π (m− n)

= sinc (m− n) = 0 , m ̸= n

For n = m, we get

Ts

2π

∫ + π
Ts

− π
Ts

ejω(m−n)Tsdω =
Ts

2π

∫ + π
Ts

− π
Ts

1dω

=
Ts

2π
[ω]

+ π
Ts

− π
Ts

=
Ts

2π

[
π

Ts
+

π

Ts

]
= 1

Therefore,

⟨φn, φm⟩ = 1
2π

∫ +∞
−∞ Ψn (ω)Ψ

∗
m (ω) dω = δnm

as stated.
(b) We wish to prove that 1√

Ts
⟨φn, f⟩∗ = f (nTs). We can easily do this by using the Parseval’s

relation, such that

1√
Ts

⟨φn, f⟩∗ =

(
1

2π
√
Ts

∫ + π
Ts

− π
Ts

√
Tse

−jωnTsF ∗ (ω) dω

)∗

=
1

2π

∫ +ωm

−ωm

F (ω) ejωnTsdω

= f (nTs)

by definition of the Fourier transform.
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Exercise 10. Discrete time processing
Consider the following system:

C/D

xc(t) r(t)y
D/C

T

y[n]

T

x[n]

Discrete−time

system

where the discrete-time system is a squarer, i.e., y[n] = x2[n].
What is the largest value of T such that yr(t) = x2

c(t)? Assume that xc(t) has the maximal
frequency fmax.

Solution 10. Discrete time processing
Using the convolution-multiplication property, we have

y[n] = x2[n]

Y (ejw) = X(ejw) ⋆ X(ejw)

Therefore, Y (ejw) will occupy twice the frequency band that X(ejw) does if no aliasing occurs.
Hence, Y (ejw) ̸= 0 for −π < w < π, implies X(ejw) ̸= 0 for −π

2 < w < π
2 . If we denote by fmax

the maximum frequency of X(ejw), then

π

2
≥ 2πTfmax

and

T ≤ 1

4fmax
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Exercise 11. Downsampling
Consider x[n] and y[n] = x[nN ] as two sampled versions of the same continuous-time signal,
with sampling periods T and NT , respectively. Prove that

Y (ejω) =
1

N

N−1∑
k=0

X(ej(ω−2πk)/N ) (1.6)

by going back to the underlying time-domain signal and resampling it with an N -times longer
sampling period.
Hint: Recall that the discrete-time Fourier transform X(ejω) of x[n] is:

X(ejω) = XT

(ω
T

)
=

1

T

∞∑
k=−∞

XC

(
ω

T
− k

2π

T

)
, (1.7)

where T is the sampling period. Then Y (ejω) = XNT (ω/NT ) (since the sampling period is now
NT ), where XNT (ω/NT ) can be written similarly to (1.7). Finally, split the sum involved in
XNT (ω/NT ) into k = nN + l, and gathering terms, (1.6) will follow.

Solution 11. Downsampling
Consider x[n] and y[n] to be obtained from sampling xc(t) with sampling periods T and NT ,
respectively.

Y (ejw) = XNT

( w

NT

)
=

1

NT

∑
k

Xc

(
w

NT
− k

2π

NT

)

=
1

NT

N−1∑
l=0

∞∑
n=−∞

Xc

(
w

NT
− (nN + l)

2π

NT

)
by defining n and l through k = nN + l

=
1

N

N−1∑
l=0

[
1

T

∞∑
n=−∞

Xc

(
w − 2πl

NT
− n

2π

T

)]

=
1

N

N−1∑
l=0

X(ej(w−2πl)/N )
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Exercise 12. Sampling & Quantization
We consider that each one of the two music instruments plays a tone. Consequently, the micro-
phone will output a signal x(t) composed of the sum of two tones, one at frequency f1 and the
other at frequency f2, that is, x(t) = A cos(2πf1t) +B cos(2πf2t).
As a numeric example we will consider f1 = 440.00 Hz (a A4 note) and f2 = 523.25 Hz (a C5
note), and A = B = 1.
This is just an example, and the acquisition system does not know a priori these numerical
values.
The output of the microphone is sampled using a sampling frequency fs = 1 kHz, obtaining a
digital signal x[n].

a) Sketch the magnitude of the spectrum of the analog signal x(t).

b) Sketch the magnitude of the spectrum of the digital signal x[n] and clearly indicate the
period (of length fs) of such spectrum (choose the period that is symmetric with respect
to the origin).

c) Using the sampling frequency fs = 1 kHz, is the signal correctly sampled? (that is, is the
information of the signal preserved?). Precisely justify your answer.

d) Given the digital signal x[n] (sampled with fs = 1 kHz), we reconstruct the analog signal
using a [− fs

2 ,
fs
2 ] low pass filter. What kind of signal do we obtain? Which are the

frequencies of the two tones of the reconstructed signal? Precisely justify your answer.
Call fa and fb such frequencies.

Solution 12.

a) Magnitude of the spectrum of the analog signal:

f1−f1 f2−f2 0

X(f)

f

b) Magnitude of the spectrum of the digital signal x[n] (one replica)

−fs fs− fs
2

fs
2

0

X(f − fs) +X(f) +X(f + fs)

f
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The period is

− fs
2

fs
2

f1−f1 fs − f2−fs + f2

0

X0(f)

f

c) In order to preserve the information of the analog signal, the latter must be sampled with a
sampling frequency greater (or equal) than two times its maximum frequency fs ≥ 2×fmax.

Here we have fs = 1 kHz < 2× fmax = 2×523.25 Hz. Consequently the information of the
analog signal is not preserved. It is indeed the case since the spectrum of the analog signal
differs form the period of the spectrum of the sampled signal (see previous questions).

d) A [− fs
2 ,

fs
2 ] low pass filtering will provide an analog signal with a spectrum given by the

period of the spectrum of the sampled signal. The so obtained analog signal corresponds
to two sinusoids with frequencies fa = f1 = 440.00 Hz and fb = fs − f2 = 1000− 523.25 =
476.75 Hz, i.e., x̃(t) = A cos(2πfat) +B cos(2πfbt).

e) The signal amplitude goes from a minimum value of −1 to a maximum value of 1 (therefore
the absolute maximum values is 1). The amplitude interval to be quantized is [-1,1], that
is, an interval of length 2.

The 265 target values are the center of intervals of length ∆ = 2/256. The maximum
absolute value of the quantization error is ∆/2 = 1/256.
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1.4 Probability

Exercise 13. Links between definitions
In this exercise we try to tackle what definitions imply other definitions. For each statement
below, show if it is always true or not. (If it is false, a counter-example is sufficient.)

(a) The Power Spectral Density of a real-valued process is also real-valued.

(b) If a stochastic process is SSS, then the random variables in the process are i.i.d.

(c) If two random variables are independent, they are uncorrelated.

Solution 13. Links between definitions

(a) True If a WSS process is real valued, then it’s (auto)correlation is symmetric. Since
the Power Spectral Density is defined as the (Discrete Time) Fourier Transform of the
correlation of the process:

SX(ω) =

∞∑
k=−∞

RX [k]e−ikω,

we can use the property that the Fourier Transform of a symmetric signal is real valued.

Alternatively, we can use the intuition from the lecture, that the Power Spectral Density is
the expected value of the square of the Fourier Transform of the signal, and thus it’s real
valued.

Additional remark, not in the scope of the class: if you want to define the Power Spectral
Density for a non stationary signal, you have to do this locally, because the signal is going
to change over time, and you can’t rely on RX . You can define the Power Spectral Density
as exactly the expected value of the square of the Fourier Transform of the signal on some
interval:

ŜX,N (ω) = E

∣∣∣∣∣ 1√
N

N−1∑
k=0

X[k]e−jkω

∣∣∣∣∣
2

=
1

N
E

(
N−1∑
k=0

N−1∑
m=0

X[k]X∗[m]e−jω(k−m)

)
Then, if you assume that the signal is actually stationary, you can simplify this expression
as follows:

ŜX,N (ω) =
1

N

N−1∑
k=0

N−1∑
m=0

E
(
X[k]X∗[m]e−jω(k−m)

)
=

N−1∑
l=−N+1

N − l

N
RX [l]e−jlω −−−−→

N→∞

∞∑
l=−∞

RX [l]e−jlω

And therefore in the limit we get our “standard” PSD:

ŜX,N (ω) −−−−→
N→∞

SX(ω)

which formalises intuition that the Power Spectral Density is exactly the expected value of
the square of the Fourier Transform.



1.4. Probability 21

(b) False. A SSS process implies that it’s values are indeed identically distributed, but not
always independent. A simple counterexample is the discrete process built as follows:

X[n] = X[0] = Y for every n

where Y is a (non constant) random variable. The process is clearly SSS, the variables Y
are identically distributed, but are dependent.

(c) True It follows from the properties of expected value. If X and Y are independent, then
E(XY ) = E(X)E(Y ), and therefore:

E
(
(X − E(X))(Y − E(Y )

)
= E(XY )− E(X)E(Y ) = 0,

so X and Y are uncorrelated.
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Exercise 14. Gaussian random variable
Suppose that a measurement X[n] is affected by a random noise W1[n] due to external interfer-
ences and by a random noise W2[n] due to a defected measurement device. The noise W1[n] is
i.i.d., distributed as a Gaussian random variable with mean m1 and variance σ2

1 , and the noise
W2[n] is i.i.d., distributed as a Gaussian random variable with mean m2 and variance σ2

2 . Call
W the sum of the two noises, i.e., W = W1 +W2.

(a) Compute the mean and the variance of W ;

(b) Give the joint distribution of W .

Suppose now that we don’t know the law of the process W [n] but we have observed a
realization of it, w[1], . . . , w[K]. We are interested in estimating its mean based on the
observation w[1], . . . , w[K].

(c) Propose an empirical estimator of the mean;

(d) Check if such an estimator is biased.

Solution 14. Gaussian random variable
(a) We compute the mean and the variance as:

E[W ] = E[W1 +W2] = E[W1] + E[W2] = m1 +m2 = m

var(W ) = E
[
|W1 +W2|2

]
− |E [W1 +W2]|2

For simplicity, we assume that W1 and W2 are real. Then,

var(W ) = E
[
|W1|2

]
+ 2E [W1W

∗
2 ] + E

[
|W2|2

]
− |E [W1] + E [W2]|2

= E
[
|W1|2

]
+ 2E [W1]E [W ∗

2 ] + E
[
|W2|2

]
− |E [W1]|2 − |E [W2]|2 − 2 |E [W1]E [W2]|

= var(W1) + var(W2)

(b) The process W [n] is a Gaussian process with mean m = m1+m2 and variance σ2 = σ2
1+σ2

2 .

(c) The natural way to estimate the mean is to compute the average of the realizations w[k],

m̂ (w[1], ..., w[K]) =
1

K

K∑
k=1

w[k]

(d) We analyze the bias

E [m̂ (w[1], ..., w[K])]−m

limN→∞

(
E
[

1
K

∑K
k=1 w[k]

]
−m

)
= limN→∞E

[
1
K

∑K
k=1 w[k]

]
−m = 0

The bias is zero, and we say that the estimator is unbiased.
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Exercise 15. Sum of Poisson RV’s
Consider a sequence of iid random variables Xi, i = 1, . . . , N , where each random variable has a
Poisson distribution with mean λ. Consider now the random variable Y =

∑N
i=1 Xi.

(a) Compute the characteristic function E[eitX ] of a random variable X with a Poisson distri-
bution with mean λ.

(b) Find the distribution of the random variable Y (Hint: You can use the characteristic
function found in (a)).

(c) Find the mean and the variance of the random variable Y .

Solution 15.

(a) The characteristic function of a Poisson random variable X can be determined in the
following way:

E[eitX ] =

∞∑
k=0

P (X = k)eitk =

∞∑
k=0

e−λλk

k!
eitk = e−λ

∞∑
k=0

(λeit)k

k!

= e−λeλe
it

= eλ(e
it−1) (1.8)

(b) Taking Y =
∑N

k=1 Xi, and considering the fact that random variables Xi, i = 1, . . . , N are
iid with Poisson distribution with mean λ, we have

E[eitY ] = E[eit
∑N

k=1 Xk ]
iid
=

N∏
k=1

E[eitXk ] =

N∏
k=1

eλ(e
it−1) = eNλ(eit−1) . (1.9)

Since the characteristic function completely defines the probability distribution of a random
variable, by comparing the final expressions in (1) and (2), we can see that the random
variable Y has a Poisson distribution with mean λY = Nλ.

(c) The mean and the variance of the random variable Y are equal to λY , where λY = Nλ.
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Exercise 16. Neurobiological signal as a Poisson process

Consider the measurement of neurobiological spikes. We model the neurobiological spikes as a
random process wherein the inter-arrival time between two spikes is an exponentially distributed
random variable and is furthermore completely independent of other inter-arrival times. More
precisely, assuming the spikes occur at T1, T2, . . . , TK , the time interval Ti − Ti−1 = t, for i =
1, 2, . . . ,K, (assume that T0 = 0) has the probability density function given by

p(Ti − Ti−1 = t) = λe−λt

for some λ > 0 and is zero for t < 0.

(a) Find the distribution of the number of spikes observed in the time interval [0, t]. More
precisely, if N(t) is the number of spikes in the time interval [0, t], find P{N(t) = k}.

(b) What is the mean and the variance of the number of spikes in the interval [0, t] ?

Furthermore, we define a Poisson process with the rate λ as follows:

The number of events/arrivals N(t) in a finite interval of time t obeys the Poisson distribution

P{N(t) = k} =
(λt)k

k!
e−λt .

Moreover, the number of arrivals N(t1, t2) in the time interval [t1, t2] is independent of the
number of arrivals N(t3, t4) in the time interval [t3, t4], if the time intervals do not overlap.

Assume now that we know that the signal of neurobiological spikes can be described as a Poisson
process with the rate λ.

(c) What is distribution of spikes’ inter-arrival times? Are they independent of each other?

Solution 16.

(a) We want to compute P{N(t) = k}, i.e. the probability that exactly k spikes occur in the
interval [0, t]. Let the first spike occur at instant t1, the second at t2 and so on (the kth

spike occurs at instant tk). Let s1, s2, . . . , sk, sk+1 denote the corresponding inter-arrival
times, which are independent by the problem assumption. Note that sk+1 denotes the
inter-arrival time between the (k + 1)th and kth spike, and that the (k + 1)th spike should
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occur outside the interval [0, t]. Putting it all together, we have:

P{N(t) = k}
= P{t1 ≤ t, t1 ≤ t2 ≤ t, . . . , tk−1 ≤ tk ≤ t, tk+1 > t}

= P{s1 ≤ t, s2 ≤ t− s1, . . . , sk ≤ t−
k−1∑
l=1

sl, sk+1 > t−
k∑

l=1

sl}

= P{s1 ≤ t}P{s2 ≤ t− s1} . . . P{sk ≤ t−
k−1∑
l=1

sl}P{sk+1 > t−
k∑

l=1

sl}

=

∫ t

0

p(s1)

∫ t−s1

0

p(s2) . . .

∫ t−
∑k−1

l=1
sl

0

p(sk)

∫ ∞

t−
∑k

l=1
sl

p(sk+1) dsk+1dsk . . .ds2ds1

=

∫ t

0

λe−λs1

∫ t−s1

0

λe−λs2 . . .

∫ t−
∑k−1

l=1
sl

0

λe−λsk

∫ ∞

t−
∑k

l=1
sl

λe−λsk+1 dsk+1dsk . . .ds2ds1

= λk+1

∫ t

0

e−λs1

∫ t−s1

0

e−λs2 . . .

∫ t−
∑k−1

l=1
sl

0

e−λsk

(
− 1

λ
e−λsk+1

) ∣∣∣∣∞
t−

∑k
l=1

sl

dsk . . .ds2ds1

= λk+1

∫ t

0

e−λs1

∫ t−s1

0

e−λs2 . . .

∫ t−
∑k−1

l=1
sl

0

e−λsk

(
1

λ
e−λ(t−

∑k
l=1 sl)

)
dsk . . .ds2ds1

= λke−λt

∫ t

0

∫ t−s1

0

. . .

∫ t−
∑k−1

l=1
sl

0

dsk . . .ds2ds1

=
λktk

k!
e−λt (1.10)

We can see from (1.10) that the number of spikes in the interval [0, t] has a Poisson distri-
bution with mean λt.

(b) The mean and the variance are both equal to λt.

(c) Call by S the random variable denoting the time interval between two consecutive arrivals.
The event {S > t} is equivalent to the event {N(t) = 0}. Thus, P{S > t} = P{N(t) =
0} = e−λt, which implies that P{S ≤ t} = 1− e−λt. In other words, S is an exponentially
distributed random variable. Furthermore, the inter-arrival times are independent

P{Tk+1 − Tk > t|Tk − Tk−1 = s} = P{Tk+1 − Tk > t} ,

since the number of arrivals in the time interval (Tk+1, Tk] is independent of the number
of arrivals in the time interval (Tk, Tk−1] (the interval (Tk, Tk+1] does not overlap with the
time interval (Tk−1, Tk]).
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Exercise 17. Poisson process
Consider two neurons, A and B. Action of a stimulus to neuron A (respectively, B) generates
a spike train which can be modeled as a Poisson process At (respectively, Bt) with rate λA

(respectively, λB).

1) Assume that the neurons do not interact and behave independently on the action of a
stimulus. Additionally, suppose we stimulate both neurons at the same time. What is the
statistics of the resultant spike train?

2) Assume that neuron B is a complete clone of neuron A. The two neurons fire simultane-
ously, but we suppose to be still able to count two overlapping spikes. What is the statistic
of the resultant spike train? (Hint: Is the process 2At a Poisson process?)

Solution 17.

1) Denote by A(t) and B(t) the number of spikes in the time interval of length t. Since the
two neurons behave independently, we have

P (A(t) +B(t) = k) =

k∑
l=0

P (A(t) = l)P (B(t) = k − l)

=

k∑
l=0

e−tλA(tλA)
l

l!

e−tλB (tλB)
k−l

(k − l)!

=

k∑
l=0

e−tλA(tλA)
l e−tλB (tλB)

k−l

(
k

l

)
1

k!

=
e−tλAe−tλB

k!

k∑
l=0

(
k

l

)
(tλA)

l(tλB)
k−l

=
e−t(λA+λB)

k!
(t(λA + λB))

k .

Thus, the resultant spike train is a Poisson process with mean λA + λB .

2) Since the two neurons are identical, the spike train has the distribution of the random
variable 2A. Clearly, 2A is not a Poisson process. Indeed, P (2A(t) = 2k + 1) = P (A(t) =
k+1/2) = 0, since A takes only non-negative integer values. Thus, 2A has support of only
even numbers. Assuming k = 2n, we get

P (2A(t) = k) = P (A(t) = n) =
e−tλA(tλA)

n

n!
=

e−tλA

(tλA)
k/2

(k/2)!
.

Check that

∞∑
k=0

P (2A(t) = k) =

∞∑
n=0

P (2A(t) = 2n) =

∞∑
n=0

e−tλA(tλA)
n

n!
= 1 .
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Exercise 18.
What is the correlation RX [n] of an independent identically distributed (i.i.d) process X of
variance σ2

X = 1 and zero mean? What is the power spectral density SX(ω)?

Solution 18.
The correlation is [RX [n] = m2

X + σ2
Xδ[n] = δ[n]. The power spectral density is SX(ω) =

F [RX [n]] = 1.
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Exercise 19. Power Spectrum Density
Consider the stochastic process defined as

Y [n] = X[n] + βX[n− 1]

where β ∈ R andX[n] is a zero-mean wide-sense stationary process with autocorrelation function
given by

RX [k] = σ2α|k|

for |α| < 1.

(a) Compute the power spectrum density SY (e
jω) of Y [n].

(b) For which values of β does Y [n] corresponds to a white noise? Explain.

Solution 19. Power Spectrum Density
The process Y [n] is obtained by filtering the wide-sense stationary process X[n], i.e.

Y [n] = H(z)X[n],

with H(z) = 1 + βz−1. Therefore,

SY (ω) = |H(ejω)|2SX(ω).

The function |H(ejω)|2 is given by

|H(ejω)|2 = 1 + 2β cosω + β2.

The PSD of X[n] is computed by taking the DTFT of RX [n], that gives

SX(ω) =

∞∑
k=−∞

RX [k]e−jωk = σ2
X

1− α2

1− 2α cosω + α2
.

Hence, the PSD of Y [n] is

SY (ω) = σ2
X(1− α2)

1 + 2β cosω + β2

1− 2α cosω + α2
.

To have that Y [n] is a white process, we should impose that the spectral density is a constant.
This corresponds to setting β = −α. The interpretation is the following. The process X[n] is
an AR process. In fact, it can be obtained by filtering a white noise W [n], which has variance
σ2
X(1− α2), with the synthesis filter

Hs(z) =
1

1− αz−1
,

which has a pole for z = α. The filter H(z) is an FIR filter (i.e. it has only zeros) and has
exactly one zero at z = −β. We can imagine that the process Y [n] is obtained by filtering W [n]
with the cascade of the filters Hs(z) and H(z). Therefore, to obtain a white noise at the output,
we must have that the zero of H(z) cancels the pole of Hs(z), i.e. −β = α.
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Exercise 20. Stationarity
Consider the following block diagram

The two input processes X1[n], X2[n] are jointly gaussian, uncorrelated, white, with zero mean,
and variance σ2

X1
= 1, σ2

X2
= 2 respectively. The two blocks h1, h2 are linear, time-invariant

filters with transfer functions

H1(z) = 1 + z−1,

H2(z) = 1− z−1,

respectively. The output process Y [n] is obtained by means of the output switch SW .

(a) Suppose that the output switch is constantly on the position “0,” or “2,” what can you say
on the output process Y [n]? Is it stationary in wide and/or strict sense? Is it gaussian?
Compute the correlation and (if it exists) the spectral density of Y [n].

(b) What happens if the switch is on the position “1”? Answer to the same question of the
previous case.

(c) Suppose that the position of the switch changes with the value of the time index n. The
switch takes the position “0,” when n is even and the position “1,” when n is odd. Is
Y [n] stationary in this case? Is it gaussian? Compute the correlation function of Y [n] (be
careful on the definition of the correlation function in this case!)

(d) Suppose that the switch takes a random position among “0” and “1” with equal probability
and independently of the values of X1[n] and X2[n]. Is Y [n] stationary in some sense in
this case? What is the correlation and (if it exists) the spectral density of Y [n]?

Solution 20. Stationarity
(a) The autocorrelation of h1 [n] is given by

rh1
[m] = h1 [m] ⋆ h1 [−m]

= (δ [m] + δ [m− 1]) ⋆ (δ [−m] + δ [−m− 1])

= (δ [m] + δ [m− 1]) ⋆ (δ [m] + δ [m+ 1])

= δ [m] ⋆ δ [m] + δ [m] ⋆ δ [m+ 1]

+δ [m− 1] ⋆ δ [m] + δ [m− 1] ⋆ δ [m+ 1]

= δ [m− 1] + 2δ [m] + δ [m+ 1]

Since X [n] is a white process, rx1
[m] = σ2

xδ [m], and thus

ry1
[m] = rh1

[m] ⋆ rx1
[m]

= (δ [m− 1] + 2δ [m] + δ [m+ 1]) ⋆ σ2
xδ [m]

= σ2
xδ [m− 1] + 2σ2

xδ [m] + σ2
xδ [m+ 1]

= δ [m− 1] + 2δ [m] + δ [m+ 1]
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The power spectral density Sy1 (ω) is the Fourier transform of the autocorrelation function
ry1 [m],

Sy1
(ω) = F {ry1

[m]}
= e−jω + 2 + ejω

= 2 + 2 cosω

Another way of obtaining Sy1
(ω) is by performing all calculations in the z domain:

Sy1
(z) = Sh1

(z)Sx1
(z)

=
[
H1 (z)H1

(
z−1

)]
σ2
x

= (1 + z−1)(1 + z)

= z−1 + 2 + z

and then setting z = ejω for obtaining the Fourier transform:

Sy1
(ω) = e−jω + 2 + ejω

= 2 + 2 cosω

For the second case, we get

ry2 [m] = −2δ [m− 1] + 4δ [m]− 2δ [m+ 1]

Sy2 (ω) = 4− 4 cosω

(b) Since X1 and X2 are uncorrelated, Y1 and Y2 are also uncorrelated, and thus

ry [m] = E [Y [n]Y [n+m]]

= E [(Y1 [n] + Y2 [n]) (Y1 [n+m] + Y2 [n+m])]

= E [Y1 [n]Y1 [n+m]] + E [Y2 [n]Y2 [n+m]]

+E [Y1 [n]Y2 [n+m]] + E [Y2 [n]Y1 [n+m]]

= E [Y1 [n]Y1 [n+m]] + E [Y2 [n]Y2 [n+m]] + 0 + 0

= ry1
[m] + ry2

[m]

= −δ [m− 1] + 6δ [m]− δ [m+ 1]

And the power spectral density is given by

Sy (ω) = F {ry [m]}
= −e−jω + 6− ejω

= 6− 2 cosω

which is equivalent to Sy1
(ω) + Sy2

(ω).
(c) We have four possible cases:
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E [y [k] y [l]] =


E [y1 [k] y1 [l]] , k, l even

E [(y1 [k] + y2 [k]) (y1 [l] + y2 [l])] , k, l odd
E [y1 [k] (y1 [l] + y2 [l])] , k even, l odd
E [(y1 [k] + y2 [k]) y1 [l]] , k odd, l even

which, according to the results above, equals

E [y [k] y [l]] =


ry1

[k − l] , k, l even
ry1

[k − l] + ry2
[k − l] , k, l odd

ry1
[k − l] , k even, l odd

ry1 [k − l] , k odd, l even

which means that the process is not stationary anymore.
(d) In this case, the autocorrelation function ry [k − l] takes into account the random variable
that determines the position of the switch. Since the probability is equally distributed, each
combination of k and l occurs with a probability of 1

4 . Hence,

ry [k − l] =
3

4
ry1 [k − l] +

1

4
(ry1 [k − l] + ry2 [k − l])

= ry1 [k − l] +
1

4
ry2 [k − l]

which means that the process is, in fact, stationary.
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Exercise 21. Coding: Wide Sense Stationary Processes vs. Stationary Processes
The goal of this exercise is to assess the stationarity of a random process via common tools from
the field of descriptive statistics.
Follow the instructions in Stationarity.ipynb.

Solution 21. Coding: Wide Sense Stationary Processes vs. Stationary Processes
For example code see Jupyter notebook, available on Moodle.

2 1 0 1 2 3 4 5
0

100

200

300

400

500

600

k: -2, mean: -0.01, std: 1.00

-4 -3 -2 -1 0 1 2 3 4

4

2

0

2

4

Empirical distribution at each k

By looking at an example histogram of (normalised) skewed distribution (left), we can see that
it’s not symmetric. This will change with k.
Another way to look at the distributions is boxplot (right). It’s sometimes more convenient than
histogram. The orange horizontal lines in the middle are the medians, the boxes depicts the
”middle” 50% of the distributions, the vertical lines cover most of the distribution and the dots
depict ”unlikely” points, outliers. You can see that those distributions change in time, and that
the median and the main mass, that is middle 50% of the distribution does not move that much,
but the placement of the outliers what matters. If you look closely you can see that the median
moves slightly in the opposite direction that the outliers do.

4 3 2 1 0 1 2 3 4

2

1

0

1

2

10 realizations of the process

4 3 2 1 0 1 2 3 4

4

2

0

2

4

500 realizations of the process

If you look at just a few (for example 10) realizations of this process it’s hard to judge if it
a stationary (gaussian) noise, or if it is some more complicated distriburion. If you look at
500 realisations you can see some pattern emerge that distinguish the ”past” and the ”future”
(negative and positive k).
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Exercise 22. Correlation and dependence
Give an example of a two random variables X and Y that are uncorrelated (their covariance is
equal to 0) but they are dependent.

(a) Write down the distribution of pair (X,Y ) and marginal distributions of X and Y .

(b) [Coding] Sample the joint distribution of (X,Y ) and plot those samples. Then sample from
X and Y independently and plot resulting samples. Do those plots look similar?

(b) Explain your example to your neighbour(s).

(c) Check your neighbour’s example. Are their variables dependent?

Hint: it might be easier to come up with discrete distributions.

Solution 22.
Let us consider a very simple pair of two discrete variables, each taking values in {−1, 0, 1}. We
want X to be zero if and only if Y is not zero. This way they are obviously dependent, but we
have E(XY ) = 0. We only need now the product E(X)E(Y ) = 0. For that we just need the
probabilities of X = 1 and X = −1 to be equal.
Based on that we can construct many different pairs, but one of them would be p(x, y):

x
−1 0 1

y
−1 0 0.25 0
0 0.25 0 0.25
1 0 0.25 0

Then the marginal probabilities are the same for X and Y :

p(x) =


0.25 for x = −1

0.5 for x = 0

0.25 for x = 1

We can then plot the joint and product distributions side-by-side and assess their resemblance.
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Another example with Gaussian RVs is described on Wikipedia.

 https://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imp ly_independent
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Exercise 23. Mixture model
Consider an i.i.d. signal X[n] which takes only two possible values, m1 and m2. When we try
to measure such a signal we obtain only a noisy version of it

Y [n] = X[n] +W [n] ,

where W [n] is a centered Gaussian white noise with power σ2
W , independent of X.

(a) Show that Y is wide sense stationary.

(b) Give the distribution of Y [n] (PDF or CDF).

- Hint 1: you can use the law of total probability, which in this case means that:

F (Y [n]) = F (Y [n], X[n] = m1) + F (Y [n], X[n] = m2)

- Hint 2: you can use Bayes’ rule, which in this case means that:

F (Y [n], X[n]) = F (Y [n]|X[n])P (X[n])

(c) Download data file MixtureModel.csv from Moodle. It was generated from this process
using some unknown m2, m1 and σW . The probability of X[n] = m1 was 1

2 . Load the data
in Matlab or Python, and take a look. Why is this called “two class mixture model”?

(d) Guess the parameters mi and propose a method that based on the value of Y [n] guesses a
value of X[n] (no need for a formal description).

(e) Based on your guess of mi calculate σW .

Solution 23.
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Exercise 24. Correlation (4pts)
Let W [n] be a centered white noise with σ2 = 1, taking real values. Given that the process is
i.i.d. and centered, we know that, theoretically,

R(k) = E [W [k + n]W [n]] =

{
σ2 = 1 k = 0 ;

0 k ̸= 0 ;

We have measured N = 1000 samples of the noise w[1], . . . , w[1000] and then we have computed
the correlation R(k), k = −999, . . . , 0, . . . , 999. Here’s the plot of the correlation.

Can you tell if the plotted correlation has been computed using:
The empirical un-biased correlation

R(k) =
1

N − |k|

N−|k|∑
n=1

w[n+ k]w[n] , k = −(N − 1), . . . , (N − 1) ,

or the empirical biased correlation

R(k) =
1

N

N−|k|∑
n=1

w[n+ k]w[n] , k = −(N − 1), . . . , (N − 1) .

Precisely justify your answer.

Solution 24. Correlation
The plotted correlation has been computed using the empirical un-biased correlation:

R(k) =
1

N − |k|

N−|k|∑
n=1

w[n+ k]w[n] , k = −(N − 1), . . . , (N − 1) .

We can tell it by the high variance for k close to 1000, that appears due to smaller number
of measurements k samples apart. The biased correlation would have dumped this variance by
basing the tails towards zero (bias-variance trade-off).



36 Chapter 1.



Chapter 2

ARMA Models

Exercise 25. Projection of AR process
Consider the autoregressive process defined as:

X[n] = X[n− 1]−X[n− 2] + 2X[n− 3] +W [n], (2.1)

where W [n] is white noise. Your task is to find the best linear predictor Y [n − 1] of order 3 of
X[n+ 2] given the past (X[n− 1], X[n− 2], X[n− 3]), using two methods:

(a) by using the projection theorem and solving a system of linear equations,

(b) by recursively expanding the definition of X[n+ 2] and using an intuitive property.

Solution 25.
We will find a predictor of X[n+2] using two different methods and see that they yield the same
result. First, from the definition of X, we know that:

X[n+ 2] = X[n+ 1]−X[n] + 2X[n− 1] +W [n+ 2] (2.2)

(a) Projection theorem.

We want to find Y [n − 1] such that E
(
(X[n + 2] − Y [n − 1])Y [n − k]

)
for k = 1, 2, 3. We

can write Y as:

Y [n− 1] =

3∑
k=1

akX[n− k]

To find a projection, we need to solve the system of equations (for k = 1, 2, 3), so that the
difference between our predictor Y and process X is orthogonal ”to the past”:

E
(
(X[n+ 2]− a1X[n− 1]− a2X[n− 2]− a3X[n− 3])X[n− k]

)
= 0

In order to calculate actual values of ai, we have to first rewrite the system in terms of the
auto-correlation:

RX [2 + k]− a1RX [k − 1]− a2RX [k − 2]− a3RX [k − 3] = 0. (2.3)

37
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On the other hand, for an AR process we have Yule-Walker equations:

RX [m]−
∑
k

pkRX [m− k] = δmS2
W

Where in our case p1 = 1, p2 = −1 and p3 = 2.

From these equations we find RX [m] for m = 0, 1, . . . 5. Those values can then be plugged
into (2.3). Finally, (2.3) can be solved for ai.

(b) Intuitive property.

We again start with (2.2). We need to expand terms dependent on n and n+ 1 and write
them in terms of the past. We first expand X[n+ 1]:

X[n+ 2] = X[n+ 1]−X[n] + 2X[n− 1] +W [n+ 2]

= (X[n]−X[n− 1] + 2X[n− 2] +W [n+ 1])−X[n] + 2X[n− 1] +W [n+ 2]

= X[n− 1] + 2X[n− 2] +W [n+ 1] +W [n+ 2].

The first two terms of the equations are functions of the past, and the last two terms are
innovations that are entirely independent of the past. Therefore, using intuitive property,
we get that Y , the best linear predictor of X is:

Y [n− 1] = X[n− 1] + 2X[n− 2]

We can see that the second solution is much easier on paper.
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Exercise 26. A Simple AR Process
Consider the discrete time stochastic process {X[n]}n≥0 defined by

X[n+ 1] = aX[n] +W [n+ 1], n ≥ 0

where |a| < 1, X[0] is a Gaussian random variable of mean 0 and variance c2, and {W [n]}n≥1 is

a sequence of i.i.d. Gaussian variables of mean 0 and variance σ2, and independent of X[0].

(a) Express X[n] in terms of X[0],W [1], . . . ,W [n] (and a). Give the mean and variance of
X[n];

(b) Suppose now that c2 = σ2

1−|a|2 . Show that with this specific choice for the variance of X[0],

the process {X[n]}n≥0 is strictly stationary.

(c) Give the one-step predictor of X[n]: X̂[n|n− 1].

(d) What is the whitening (or analysis) filter of {X[n]}n∈Z?
What is the generating (or synthesis) filter of {X[n]}n∈Z?

(e) Give the covariance function RX [k] = E [X[n+ k]X[n]∗].

(f) WriteX[n] in terms ofW [n], W [n−1] andX[n−2]. Deduce from this the two-step predictor

of X[n]: X̂[n|n−2], the projection of X[n] onto H (X,n− 2), the Hilbert subspace spanned
by the random variables X[n− 2], X[n− 3], . . ..

Solution 26. A Simple AR Process

(a) The recursion formula

X[n+ 1] = aX[n] +W [n+ 1], n ≥ 0

yields

X[1] =aX[0] +W [1]

X[2] =aX[1] +W [2] = a2X[0] + aW [1] +W [2]

X[3] =aX[2] +W [3] = a3X[0] + a2W [1] + aW [2] +W [3]

...

X[n] =anX[0] + an−1W [1] + an−2W [2] + · · ·+W [n]

=anX[0] +

n−1∑
k=0

akW [n− k].

Hence the mean of X[n] is given by

E [X[n]] = anE [X[0]] +

n−1∑
k=0

akE [W [n− k]] = 0

since both E [X[0]] = 0 and E [W [j]] = 0, ∀j ≥ 0.



40 Chapter 2.

The variance of X[n] is given by

E
[
|X[n]|2

]
= E

(anX[0] +

n−1∑
k=0

akW [n− k]

)anX[0] +

n−1∑
j=0

ajW [n− j]

∗
= |a|2nE

[
|X[0]|2

]
+

n−1∑
j=0

ana∗jE [X[0]W ∗[n− j]]

+

n−1∑
k=0

aka∗nE [W [n− k]X∗[0]]

+

n−1∑
k,j=0

aka∗jE [W [n− k]W ∗[n− j]]

Recall that E
[
|X[0]|2

]
= c2, the sequence of random variables W [n] and X[0] are indepen-

dent and centered, thus E [X[0]W ∗[n− j]] = E [W [n− k]X∗[0]] = 0, ∀0 ≤ j, k ≤ (n − 1)
and E [W [n− k]W ∗[n− j]] = σ2δ[j − k]. Combining these observations, we have

E
[
|X[n]|2

]
= |a|2nc2 + σ2

n−1∑
k,j=0

aka∗jδ[j − k]

= |a|2nc2 + σ2
n−1∑
k=0

|a|2k

= |a|2nc2 + σ2

(
1− |a|2n

1− |a|2

)

(b) If c2 = σ2

1−|a|2 , the variance of X[n] is independent of n and is given by

E
[
|X[n]|2

]
=

σ2

1− |a|2
.

Following the same steps in part (a), one can show that

X[n+ k] = akX[n] + ak−1W [n+ 1] + ak−2W [n+ 2] + · · ·+W [k + n]. (2.4)

Thus 
X[n]

X[n+ 1]
...

X[n+ k]

 = A


X[n]

W [n+ 1]
...

W [n+ k]


The distribution of (X[n],W [n+ 1], · · · ,W [n+ k]) is independent of n ≥ 0, and therefore
the distribution of (X[n], · · · , X[n + k]) is independent of n ≥ 0, therefore {X[n]}n≥0 is
strictly stationary.

(c) Recall that
X[n]− aX[n− 1] = W [n],

thus ⟨X[n] − aX[n − 1], u⟩ = ⟨W [n], u⟩ = 0 for all u ∈ H(X,n − 1) since H(X,n − 1) =
H(W,n− 1) (see Theorem 2.2 in class notes). Recall that, roughly speaking, H(W,n− 1)
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is composed of linear combinations of W [n− 1],W [n− 2], . . . . Note also that aX[n− 1] ∈
H(X,n− 1) (since it is a linear function of X[n− 1]), hence by the projection theorem this

is the best linear approximation (best in least square sense) for X[n], thus X̂[n|n − 1] =
aX[n− 1].

(d) The whitening filter makes {X[n]}n≥0 a white noise, here we have

X[n]− aX[n− 1] = W [n],

so it is clear that P (z) = 1− az−1. The generating filter is given by

Hs(z) =
1

P (z)
=

1

(1− az−1)
=
∑
n≥0

anz−n

and
X[n] = W [n] + aW [n− 1] + a2W [n− 2] + · · ·+ akW [n− k] + . . .

(e) Using (2.4) we obtain

E [X[n+ k]X∗[n]] =E

akX[n] +

k−1∑
j=0

ajW [n+ k − j]

X∗[n]


=akE

[
|X[n]|2

]
+

k−1∑
j=0

ajE [W [n+ k − j]X∗[n]]

=akE
[
|X[n]|2

]
=ak

(
|a|2nc2 + σ2

(
1− |a|2n

1− |a|2

))
where the last equality follows from part (a) and E [W [n+ k − j]X∗[n]] = 0 since W [n +

k − j] and X[n] are independent ∀0 ≤ j ≤ k − 1. Plugging c2 = σ2

1−|a|2 yields

RX [k] = ak
σ2

1− |a|2
.

Note that the above equality together with the fact that E [X[n]] = 0 shows that the

process {X[n]}n≥0 is wide sense stationary with the special condition c2 = σ2

1−|a|2 . Since

the process is wide sense stationary and Gaussian, it is strictly stationary. Recall that
the statistics of a Gaussian process is completely determined by its first and second order
properties.

(f) Again from (2.4), we have

X[n] = a2X[n− 2] + aW [n− 1] +W [n].

thus ⟨X[n]− a2X[n− 2], u⟩ = ⟨aW [n− 1], u⟩+ ⟨W [n], u⟩ = a⟨W [n− 1], u⟩+ ⟨W [n], u⟩ = 0
for all u ∈ H(X,n − 2) since H(X,n − 2) = H(W,n − 2) and the random variables
W [n−2],W [n−3], . . . are independent of W [n−1] and W [n]. Note also that a2X[n−2] ∈
H(X,n − 2), hence by the projection theorem this is the best least square approximation

for X[n] knowing X[n− 2], X[n− 3], . . . , thus X̂[n|n− 2] = a2X[n− 2].
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Exercise 27. Canonical Representation
Let {X[n]}n∈Z be a centered AR signal with power spectral density

SX (ω) =
1

26− 10 cosω

(a) Give the canonical representation of it

P (z)X[n] = W [n]

(give P (z), give the variance σ2 of {W [n]}n∈Z).
Hint: you can use Féjer’s identity, i.e., for all β ∈ C, β ̸= 0, and for all z ∈ C such that
|z| = 1:

(z − β)

(
z − 1

β∗

)
= − 1

β∗ z|z − β|2.

(b) Give the one-step predictor of X[n]: X̂[n|n− 1].

(c) What is the whitening (or analysis) filter of {X[n]}n∈Z?
What is the generating (or synthesis) filter of {X[n]}n∈Z?

(d) Give the covariance function RX [k] = E [X[n+ k]X[n]∗].

(e) WriteX[n] in terms ofW [n], W [n−1] andX[n−2]. Deduce from this the two-step predictor

of X[n]: X̂[n|n−2], the projection of X[n] onto H (X,n− 2), the Hilbert subspace spanned
by the random variables X[n− 2], X[n− 3], . . ..

Solution 27. Canonical Representation

(a)

SX (ω) =
1

26− 10 cosω
=

1

26− 10 ejω+e−jω

2

=
1

26− 5ejω − 5e−jω
=

1

(5ejω − 1)(5e−jω − 1)

=
1

5ejω(1− 1
5e

−jω)5e−jω(1− 1
5e

jω)
=

1

25(1− 1
5e

−jω)(1− 1
5e

jω)

Recalling that

SX(ω) =
1

|P (ejω)|2
σ2

one can choose

P (z) = 1− 1

5
z−1

and σ2 = 1
25 . Note that with this choice P (z) is minimum phase, that is, it is stable, causal

and all its zeros lie inside the unit circle.

(b) With above choice for P (z), we have the following recursion for X[n],

X[n]− 1

5
X[n− 1] = W [n] (2.5)

where {W [n]}n∈Z is white noise sequence with variance σ2 = 1
25 . The exact reasoning in

the Solution of Exercise 3, part (b) will yield X̂[n|n− 1] = 1
5X[n− 1].
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(c) The whitening filter is

P (z) = 1− 1

5
z−1

and the generating filter is

Hs(z) =
1

P (z)
=

1

(1− 1
5z

−1)
=
∑
n≥0

(
1

5

)n

z−n.

(d) Using the above expression for the generating filter yields

X[n] = W [n] +
1

5
W [n− 1] + · · ·+

(
1

5

)k

W [n− k] + . . .

and

X[n+ k] = W [n+ k] + · · ·+
(
1

5

)k

W [n] +

(
1

5

)(k+1)

W [n− 1] + . . .

Since E [W [i]W [j]∗] = σ2δij , the only non-zero terms in E [X[n+ k]X[n]∗] are those with
i = j. Therefore,

RX [k] = E [X[n+ k]X[n]∗] =

(
1

5

)k

σ2

(
1 +

(
1

5

)2

+

(
1

5

)4

+ . . .

)
=

(
1

5

)k
1

25

25

24
.

(e) The recursion in (2.5) yields

X[n] =
1

5
X[n− 1] +W [n] =

(
1

5

)2

X[n− 2] +
1

5
W [n− 1] +W [n].

X̂[n|n − 2] =
(
1
5

)2
X[n − 2] since

(
1
5

)2
X[n − 2] ∈ H (X,n− 2) (it is a linear function

of X[n − 2]) and X[n] −
(
1
5

)2
X[n − 2] = 1

5W [n − 1] + W [n] ⊥ H (X,n− 2) (indeed,
1
5W [n − 1] + W [n] ⊥ H (W,n− 2) and H (W,n− 2) = H (X,n− 2) for the canonical
representation (see Theorem 2.2 in class notes)).
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Exercise 28.

This exercise has a more theoretical flavor (no long computation).

We consider a voice synthesizer based on filtering of a white noise H(z)W [n] = X[n],

where the input W [n] is a real Gaussian white noise, centered, with correlation
RW [n] = δnα (α > 0),

H(z) =
1

1 + a1z−1 + a2z−2

is a minimum phase filter with real coefficients a1 and a2, and X[n] is the process describing the
synthesized voice.

(a) Is X[n] a wide-sense stationary process? Justify precisely your answer.

We are now interested in computing the second order properties of X[n]

(b) Compute the power spectral density of X[n], SX(ω).

(c) Compute the mean of X[n] and express the variance of X[n] as a function of SX(ω).

(d) Give the recursive expression of the correlation of X[n].

(e) Using the recursive expression of the correlation write a system of linear equations that
allows to obtain the variance of X[n] as a function of a1, a2 and α.

Hint : Exploit the fact that X[n] is real.

In real life, the synthesizer is not perfect and its defects can be modelled as an additive white
noise V [n] with variance σ2

V . Finally, the signal we obtain is given by

Y [n] = X[n] + V [n]

where X[n] and V [n] are supposed to be independent. In particular, if we call H(X) the Hilbert
space spanned by X[n] and H(V ) the Hilbert space spanned by V [n], the independence on X
and V implies the orthogonality of the two spaces H(X) and H(V ). Call now H(W ) the Hilbert
space spanned by W [n]

(f) Are the two spaces H(V ) and H(W ) orthogonal? Justify precisely your answer.

By listening the noised synthesized voice, we would like to estimate the characteristics of its
generating system. More precisely:

A) From the process Y [n] we would like to recover the original synthesized voice X[n].

(g) Give the transfer function of a filter to optimally estimate, in the mean square sense, X[n]
from Y [n], and express such a transfer function in terms of a1, a2, α, and σ2

V .

B) From the estimate of X[n] we would like to recover the coefficients a1 and a2 of the transfer
function H(z) and the parameter α of the white noise W [n],

(h) Write the system of linear equations to obtain a1, a2, and α from the correlation of X[n].
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Solution 28.
The first part of the exercise can be straightforwardly solved by applying the fundamental filtering
formula for wide-sense stationary processes. We recall that such formula requires the input
process to be wide-sense stationary with summable correlation and the filter to be stable. The
input process W [n] is a white noise and it is very easy to check that is wide-sense stationary and
with summable correlation. The filter is stable since, by assumption, is minimum phase, and it
is time invariance, since by construction its coefficients are constant.
We remark that, in general, we cannot directly prove properties of X[n] from the fact that X[n]
is a linear combination of W [n]. The key point is the stability of the linear combination, i.e.,
the stability of the filter. If the filter is not stable or not time invariant, X[n] is still a linear
combination of W [n], but X[n] is surely not wide-sense stationary, its mean is surely not zero,
and the Hilbert space its spans is surely not equal to the space spanned by W [n].
We also remark that the exercise clearly asked for precise answers.

1) Yes, X[n] is wide-sense stationary by the fundamental filtering formula for wide-sense
stationary processes.

2) By the fundamental filtering formula

SX(ω) = |H(ω)|2SW (ω)

=
α

(1 + a1e−jω + a2e−2jω)(1 + a1ejω + a2e2jω)
(2.6)

Note that SW (ω) = α since W [n] is a white noise.

3) Again, by the fundamental filtering formula

E [X] = E [W ]

∞∑
k=−∞

h[k].

W [n] is centered, that is E[W ] = 0 and
∑∞

k=−∞ h[k] < ∞ since H(z) is stable, thus
E[X] = 0.

Alternatively, one can study the specific structure of the problem. In symbolic notation,
the filtering by H(z) can be expressed as

X[n] = H(z)W [n]

=
1

1 + a1z−1 + a2z−2
W [n]

which can be equivalently written as

W [n] = (1 + a1z
−1 + a2z

−2)X[n].

Interpreting z−1 as the delay operator we have

W [n] = X[n] + a1X[n− 1] + a2X[n− 2] (2.7)

which also reveals the auto-regressive structure of the process. Taking expectation on both
sides of the above equality gives

E [W [n]] = E [X[n]] + a1E [X[n− 1]] + a2E [X[n− 2]]

0 = E [X] + a1E [X] + a2E [X]
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Thus E [X] = 0. We remark that the right side of equation (2.7) is a finite linear combi-
nation ofX[n]. Therefore, the expectation is just the sum of the expectations of each terms.

The filter H(z) being stable and the correlation of the input process RW [n] = αδ[n] being
summable, the correlation of the output process RX [n] is also summable. Hence, we have
the following relation for the variance of X[n]

Var(X) = RX [0] =
1

2π

∫ π

−π

SX(ω)dω.

The fact that Var(X) = RX [0] is because of the fact that X[n] is centered.

4) The correlation structure of X[n] can be obtained by either using the formulas derived in
class for AR processes, after observing that the process is an AR-process as we already did
in part 3), or one can do the computation explicitly. Using the formula for AR processes
will directly yield

RX [m] + a1RX [m− 1] + a2RX [m− 2] = αδ[m], m ≥ 0 (2.8)

and RX [−m] = RX [m] since X[n] is real.

5) Considering the recursive expression in (2.8) for m = 0, 1, 2 together with the fact that
RX [−m] = RX [m] (since X[n] is real) yields the following system of linear equations

RX [0] + a1RX [1] + a2RX [2] = α

RX [1] + a1RX [0] + a2RX [1] = 0

RX [2] + a1RX [1] + a2RX [0] = 0. (2.9)

The three equations can be easily solved to obtain the three unknowns RX [0], RX [1] and
RX [2]. By recalling that Var(X) = RX [0], the solution of the system gives us the variance.

6) Due to the stability and time invariance of the filter, we know from class notes (see section
“A Hilbert Space Viewpoint of Linear Prediction” of the ARMA chapter - in the current
notes is theorem Theorem 2.2 of Chapter 2) that

H(X) = H(W )

(we remark that the result was presented for the Hilbert spaces spanned by the past, i.e.,
H(X,n), but it is straightforwardly extended to the Hilbert spaced spanned by the whole
processes). Since we know that H(X) and H(V ) are orthogonal, H(W ) and H(V ) are also
orthogonal.

Alternatively, from the fact that W [n] is a finite linear combination of X[n], X[n− 1] and
X[n − 2] (see equation (2.7)) we have H(W ) ⊆ H(X). consequently, the orthogonality
between H(X) and H(V ) implies the orthogonality between H(W ) and H(V ).

7) The filter that optimally estimates X[n] from Y [n], optimally in the sense that it minimizes
the mean squared error, is the Wiener filter whose transfer function is given by

F (ejω) =
SXY (ω)

SY (ω)
. (2.10)

Recall that in our case,
Y [n] = X[n] + V [n]
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and X[n] and V [n] are independent. The cross-correlation of X[n] and Y [n] is given by

RXY [m] = E[X[n+m]Y [n]]

= E[X[n+m](X[n] + V [n])]

= E[X[n+m]X[n]] + E[X[n+m]V [n]]

= RX [m]

sinceX[n] and V [n] are independent. Taking the Fourier transform and using the expression
for SX(ω) given in (2.6), we obtain

SXY (ω) = SX(ω)

=
α

(1 + a1e−jω + a2e−2jω)(1 + a1ejω + a2e2jω)
. (2.11)

The auto-correlation of Y [n] is given by

RY [m] = E[Y [n+m]Y [n]]

= E[(X[n+m] + V [n+m])(X[n] + V [n])]

= E[X[n+m]X[n]] + E[X[n+m]V [n]] + E[V [n+m]X[n]] + E[V [n+m]V [n]]

= E[X[n+m]X[n]] + E[V [n+m]V [n]]

= RX [m] +RV [m].

Taking the Fourrier transform, we obtain

SY (ω) = SX(ω) + SV (ω)

=
α

(1 + a1e−jω + a2e−2jω)(1 + a1ejω + a2e2jω)
+ σ2

V . (2.12)

Note that SV (ω) = σ2
V since V [n] is white. Combining (2.10), (2.11) and (2.12) we obtain

F (ejω) =
α

α+ σ2
V (1 + a1e−jω + a2e−2jω)(1 + a1ejω + a2e2jω)

.

8) Just observe that the system of linear equations in (2.9) can be solved for a1, a2 and α if
the correlation of X[n], that is if RX [0], RX [1] and RX [2] are known. Thus, the desired
system of equations is the one given in (2.9). Note that we have referred this system of
linear equations as Yule-Walker Equations in the class.
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Chapter 3

Prediction and Estimation in the
General Non-ARMA Case

Exercise 29.
The process X[n] is a real AR process of order M .

1) Write the recursion that allows to synthesize the process X[n] from a white noise process
W [n].

2) Write the correlation structure of X.

Suppose that the order M is unknown but an estimate of the correlation function RX [n]
is available for n ≥ 0.

3) Describe precisely a procedure to determine the order M , the parameters of the AR model
and the variance of the input noise W .

4) What is the expression of the power spectral density of X[n], SX(ω) (as a function of the
parameters and the order M)?

Solution 29.

1) The recursion that allows to synthesize the process X[n] from a white noise process W [n]
is:

X[n] = a1X[n− 1] + . . .+ aMX[n−M ] +W [n].

2) The correlation structure of X is.

RX [n] = a1RX [n− 1] + . . .+ aMRX [n−M ] + δ[n]σ2
W .

3) According to Yule-Walker equations, compute the mean square error ∥ϵm∥22 of the linear
prediction for increasing orders m. This error will strictly decrease until order M +1, then
it will be a constant. This is how you compute the order M of the ARMA process. Then
you can solve the Yule-Walker equations of orderM to get the parameters of the AR model.
The mean square prediction error of the predictor of order M corresponds to the variance
of the input noise W .

49
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4)

H(z) =
1

1− a1z−1 − . . .− aMz−M
.

Then X(z) = H(z)W (z). Using the fundamental filtering formula, we obtain

SX(ω) = |H(ejω)|2σ2
W .
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Exercise 30.
The process X[n] is a real AR process of order 2:

X[n] =
1

4
X[n− 1] +

1

8
X[n− 2] +W [n],

where W[n] is a white noise. Using Yule Walker equations, give the best linear predictor of order
1 of X[n]. Compare the obtained coefficient with 1/4 and comment.

Extra Training: Same exercise with X[n] = 0.3X[n− 1] + 0.7X[n− 2]− 0.154X[n− 3] +W [n],
and a linear predictor of order 2. This exercise will make you handle the correlation matrix.

Solution 30.
We are looking for a such that

X̂[n] = aX[n− 1]

and that minimizes
∥ϵ∥22 = E[|X[n]− X̂[n]|2].

According to Yule-Walker equations, a = RX [1]/RX [0].

RX [1] = E[X[n]X[n− 1]]

=
1

4
E[X[n− 1]X[n− 1]] +

1

8
E[X[n− 2]X[n− 1]] + E[WX[n− 1]]

=
1

4
RX [0] +

1

8
RX [1].

We conclude that a = 2/7. 2/7 is slightly larger than 1/4. This can be explained by the positive
covariance between X[n− 1] and X[n− 2]. So this predictor says:

X[n] =
1

4
X[n− 1] +

1

28
X[n− 1].

1
28X[n− 1] predicts the contribution of 1

8X[n− 2].

For the extra question,

a1 ≃ 0.196

a2 ≃ 0.670.

An important thing to know to solve this exercise is:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.
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Exercise 31.
In this exercise, we consider the application of the Wiener filter in reducing additive noise.
Consider a signal X[n] embedded in additive zero mean white Gaussian noise. That is,

Y [n] = X[n] +W [n].

Assume that X[n] and W [n] are uncorrelated.

(a) Derive the transfer function of an optimal non-causal filter.

(b) We define the following signal to noise ratio:

a(ω) =
Rxx(e

jω)

Rww(ejω)
.

How is the Wiener filter response in the case of noise-free frequencies, i.e., a(ωo) ≫ 1? and
in the case of very high noise, i.e., a(ωo) ≈ 0? what can you conclude?

Solution 31.

(a) The expression for the Wiener filter is

H(ejω) =
SXY (ω)

SY (ω)

If Y [n] = X[n] +W [n] and X[n] and W [n] are uncorrelated with W [n] zero-mean, we have

RXY [m] = E [X[n+m](X[n] +W [n])] = E [X[n+m]X[n]] = RX [m]

RY [m] = E [(X[n+m] +W [n+m])(X[n] +W [n])] = RX [m] +RW [m]

hence,

SXY (ω) = SX(ω)

SY (ω) = SX(ω) + SW (ω).

The Wiener filter is thus

H(ejω) =
SX(ω)

SX(ω) + SW (ω)

(b)

H(ejω) =
SX(ω)

SX(ω) + SW (ω)

=
a(ω)

a(ω) + 1
.

If a(ωo) ≫ 1, H(ejω) ≈ 1. That is, the filter applies little or no attenuation to the
noise-free frequency component. If a(ωo) ≈ 0, H(ejω) ≈ 0. That is, the filter applies a
high attenuation to the noisy frequency component. In conclusion, for additive noise, the
Wiener filter attenuates each frequency component in proportion to an estimate of the
signal to noise ratio.
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Exercise 32.
Suppose that X[n] is zero mean white Gaussian noise with variance σ2

X = 1. A desired response
D[n] is obtained by applying X[n] to a linear filter h[n]; Our task is to design a linear filter g[n]
that minimizes a cost function J given by

J = E
[
E2[n]

]
= E

[
(D[n]− Y [n])2

]
. (3.1)

Suppose that h[n] is a 3-tap FIR filter given by [h0, h1, h2]. We want to determine a 2-tap
optimum Wiener filter, which minimizes the cost function J .

(a) Compute the cross correlation vector RDX [n].

(b) Determine an optimal 2-tap filter g[n].

(c) Repeat (a) and (b) for the case when h[n] is an IIR filter with a transfer function given by

H(z) =
1

1− az−1
. (3.2)

Solution 32.

(a) The cross correlation vector RDX [m] is defined as:

RDX [m] = E [D[n]X[n−m]]

= E [(h0X[n] + h1X[n− 1] + h2X[n− 2])X[n−m]]

= h0RX [m] + h1RX [m− 1] + h2RX [m− 2]

= h0δ[m] + h1δ[m− 1] + h2δ[m− 2]

where we have used the fact that X[n] is a white noise with variance σ2
X = 1, Hence we

find that

RDX [m] =


h0 if m = 0

h1 if m = 1

h2 if m = 2

0 otherwise

(b) The optimal filter that estimates D[n] from X[n] is given by the Wiener filter formula:∑
k

g[k]RX [m− k] = RDX [m].

Recall from the derivation of the formula that the equation above is obtained by differan-
tiating with respect to g[m] (say the m’th tap of the wiener filter in the context of this
exercise). Note that in this exercise we are restricted to use a two tap filter whose tap gains
we would like to choose optimally. Thus, in order for the first tap gain g[0] to be optimal,
the filter should satisfy ∑

k

g[k]RX [−k] = RDX [0]

g[0]δ[0] + g[1]δ[−1] = h0δ[0] + h1δ[−1] + h2δ[−2]
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thus g[0] = h0 and the optimality condition for the second tap gain yields∑
k

g[k]RX [1− k] = RDX [1]

g[0]δ[1] + g[1]δ[0] = h0δ[1] + h1δ[0] + h2δ[−1]

hence g[1] = h1.

(c) To calculate RDX [m] we need to use the formula

1

1− az−1
= 1 + az−1 + a2z−2 + ...+ anz−n + ...

Therefore

D[n] =

∞∑
k=0

akX[n− k]

The cross correlation vector RDX [m] is then

RDX [m] = E

[( ∞∑
k=0

akX[n− k]

)
X[n−m]

]

=

∞∑
k=0

akδ[m− k]

=

{
am if m ≥ 0

0 otherwise

And by the same arguments in part (b) one can easily find g[0] = 1 and g[1] = a.
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Exercise 33. Wiener Filter
Suppose that a desired process X[n] is generated by filtering the white gaussian noise W [n]
(centered with variance 1) using a filter h[k], where

H(z) =
1 + 3

4z
−1

1 + 1
2z

−1
. (3.3)

Consider now the signal Y [n] = X[n]+V [n], where V [n] is zero mean white Gaussian noise with
variance 1/2 and uncorrelated with W [n].

(a) Design a Wiener filter for estimating X[n] from Y [n].

(b) Repeat (a) for the case when V [n] is a random variable given by:

V [n] =
1

3
X[n− 1]− 1

9
X[n− 2].

Solution 33.

(a) By filtering the unit-variance white noise with a filter H(ejω), we get an output signal X[n]
with power spectrum:

SX(ω) = |H(ejω)|2.

The Wiener filter that estimates X[n] from Y [n]:

Q(ejω) =
SX(ω)

SX(ω) + SV (ω)

=
|H(ejω)|2

|H(ejω)|2 + (1/2)
.

This is sufficient solution, but if we want to get exact formula, we can start with calculating
the square norm of H(ejω):

|H(ejω)|2 =
1 + 3

2 cos(ω) +
9
16

1 + cos(ω) + 1
4

Let N(ejω) be the numerator of the above expression, and D(ejω) be the denominator of
the expression.

Q(ejω) =
2N(ejω)

2N(ejω) +M(ejω)

=
3 1
8 + 3 cos(ω)

5 3
8 + 4 cos(ω)

(b) In this case, the signal V [n] is not independent of the signal X[n]. Therefore, we can not
apply the formula derived in part (a). We have to calculate the Wiener filter expression
using the general formula, that is:

Q(ejω) =
SXY (ω)

SY (ω)
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We need to calculate SXY and SY . We will first calculate SY in terms of SXY and see how
it simplifies the calculations. Let’s calculate RY in terms of RXY :

RY [m] = E [Y [n](X[n] + V [n])]

= E [Y [n]X[n−m]] +E

[
1

3
Y [n]X[n−m− 1]

]
−E

[
1

9
Y [n]X[n−m− 2]

]
= RXY [m] +

1

3
RXY [m+ 1]− 1

9
RXY [m+ 2].

After taking Fourier transform we get SY :

SY (ω) = SXY (ω)

(
1 +

1

3
ejω − 1

9
e2jω

)
And the Wiener filter is given by:

Q(ejω) =
SXY

SY
=

1

1 + 1
3e

−jω − 1
9e

−2jω
.
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Exercise 34.
The process X[n] is a real AR process:

X[n] = 0.3X[n− 1]− 0.4X[n− 2] + 0.5X[n− 3] +W [n],

where W [n] is a white noise.

(a) What is the order of the above AR process?.

(b) Using Yule Walker equations, give the best linear predictor of order 2 of X[n], i.e. find a
and b in X̂[n] = aX[n− 1] + bX[n− 2] such that the residual ∥ϵ∥22 = E[|X[n]− X̂[n]|2] is
minimized.

Solution 34.

(a) The AR process is of order 3.

(b) According to the Yule-Walker equations,[
RX [0] RX [1]
RX [1] RX [0]

] [
a
b

]
=

[
RX [1]
RX [2]

]
.

Knowing that,

RX [1] = E[X[n]X[n− 1]]

= 0.3E[X[n− 1]X[n− 1]]− 0.4E[X[n− 2]X[n− 1]] + 0.5E[X[n− 3]X[n− 1]] + E[W [n]X[n− 1]]

= 0.3RX [0]− 0.4RX [1] + 0.5RX [2],

and

RX [2] = E[X[n]X[n− 2]]

= 0.3E[X[n− 1]X[n− 2]]− 0.4E[X[n− 2]X[n− 2]] + 0.5E[X[n− 3]X[n− 2]] + E[W [n]X[n− 2]]

= 0.3RX [1]− 0.4RX [0] + 0.5RX [1],

one obtains

a ≃ 0.133

b ≃ −0.333.
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Chapter 4

Adaptive Signal Processing

Exercise 35.
Consider the following schematic diagram:

S0

S1

S2

D

g0

h0

h2

h1

g1

X0

X1

+

+

+

+

The processes S0[n], S1[n], S2[n] are zero mean white processes, uncorrelated and with variance
1. The filters h0, h1, h2 are causal time invariant linear filters. We know that H1(z) = 1 + z−1,
while the filters h0 and h2 are unknown. The filter g0 is also causal and time invariant and the
transfer function has the structure

G0(z) = a0z
−1 + a1z

−2 + a2z
−3,

where a0, a1, a2 are unknown parameters. The filter g1 has transfer function G1(z) = 1 + z−1.
We want to estimate the process D[n]; unfortunately, the elements and the processes inside the
rectangle in dashed line are not accessible. Only the processes X0[n], X1[n] can be measured
and used for the estimation. Some measurements allows to say that the spectral density of the
process X1[n] is given by

SX1
(ω) = 2 + 2 cosω.

59
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(a) Propose a scheme to estimate D[n] based only on the observation of the processes X0[n],
X1[n]. (State clearly the error process E[n] whose variance is to be minimized by the
adaptive filter(s).)

(b) Which is the filter length that you would choose for the adaptive filter(s)? Justify your
answer.

(c) Assume that the lenght of the adaptive filter(s) is L = 4. What is the range of the step-size
that we can consider for the LMS algorithm (steepest-descent range)? Which is a more
conservative range?

Solution 35.

(a) The process D[n] can be estimated by the following adaptive filter which uses the least-
mean-squares (LMS) algorithm.

S0

S1

S2

D

h0

h2

g1

+

+

+

X1

h1

+X0 E[n]

f

D2

D1 −

Y[n]

+
g0

V1

Figure 4.1: Scheme 1.

The cost function to be minimised by the filter is given by

Jn = E[E[n]2] = E[(X0[n]− Y [n])2] = E[(D[n] + V [n]− Y [n])2]
= E[D[n]2] + 2E[D[n](V [n]− Y [n])] + E[(V [n]− Y [n])2]
= E[D[n]2] + E[(V [n]− Y [n])2].

Note that D[n] and (V [n]− Y [n]) are uncorrelated and zero mean processes.

An alternative (and maybe more intuitional) scheme is given in Fig. 4.2, where we first
estimate the process D1[n] by using a Wiener filter and then pass these estimates through
an adaptive filter (LMS) which again minimizes the cost function

Jn = E[E[n]2] = E[(X0[n]− Y [n])2] = E[D[n]2] + E[(V [n]− Y [n])2]

but the input to the adaptive filter is now the estimated process D̂1[n].
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S0

S1

S2

D

h0

h2

g1

+

+

+

h1

D2

D1

+X0

f

−

Y[n]

filter

E[n]
+g0

Wiener

V1

X1 D1cap

Figure 4.2: Scheme 2.

The Wiener filter is given by

W (ejω) =
SD1X1

(ω)

SX1
(ω)

.

We know that the spectral density of the process X1[n] is given by

SX1
(ω) = 2 + 2 cos(ω) = (1 + ejω)(1 + e−jω)

and the cross corelation of the processes D1[n] and X1[n] can be found as

RD1X1 [m] = E [D1[n+m]X1[n]]

= E

[
D1[n+m]

(∑
k∈Z

g1[k](D1[n− k] +D2[n− k])

)]
=
∑
k∈Z

g1[k] (E [D1[n+m]D1[n− k]] +E [D1[n+m]D2[n− k]])

=
∑
k∈Z

g1[k]RD1 [m+ k]

= RD1
[m] +RD1

[m+ 1]

where to obtain the last equality we used the fact that the impulse respose of the filter g1
is given by g1[n] = δ[n] + δ[n − 1]. Taking the Fourier transform of this expression and
using the filtering formula yields,

SD1X1
(ω) = (1 + ejω)SD1

(ω)

= (1 + ejω)|H1(e
jω)|2SS1

(ω)

= (1 + ejω)2(1 + e−jω).

Hence the Wiener filter is given by

W (ejω) =
SD1X1

(ω)

SX1(ω)
= 1 + ejω.
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In part (b) of the exercise we will see that the optimum solution for the adaptive filter in
the first scheme actually decomposes into the structure in the second scheme.

(b) The optimal lenght for the adaptive filters can be determined by looking at the lenght of
the optimal solutions for the filters. We concantrate on the first scheme given in Fig. 4.1.
Let f∗ denote the optimal solution for the adaptive filter in Fig. 4.1 and F (ejω) denote its
transfer function (Fourier transform of f∗). Thus,

F (ejω) =
SX0X1

(ω)

SX1(ω)

and we have

RX0X1 [m] = E [X0[n+m]X1[n]]

= E[(D[n+m] + a0D1[n+m− 1] + a1D1[n+m− 2] + a2D1[n+m− 3])

· (D1[n] +D2[n] +D1[n− 1] +D2[n− 1])]

= a0RD1 [m− 1] + a1RD1 [m− 2] + a2RD1 [m− 3]

+ a0RD1 [m] + a1RD1 [m− 1] + a2RD1 [m− 2].

Note that D[n], D1[n] and D2[n] are uncorrelated processes. Taking the fourier transform,

SX0X1
(ω) = (1 + e−jω)(a0 + a1e

−jω + a2e
−2jω)SD1

(ω).

Recalling that SD1
(ω) = (1 + ejω)(1 + e−jω) = SX1

(ω) we obtain

F (ejω) = (1 + e−jω)(a0 + a1e
−jω + a2e

−2jω) (4.1)

= a0 + (a0 + a1)e
−jω + (a1 + a2)e

−2jω + a2e
−3jω (4.2)

= (1 + ejω)(a0e
−jω + a1e

−2jω + a2e
−3jω) (4.3)

(4.2) shows that the optimal filter f∗ has four taps, hence our choice for the length of
the adaptive filter in Fig. 4.1 should be L = 4, while (4.3) shows that the the optimal
solution for the adaptive filter in Fig. 4.1 decomposes in to the structure in Fig. 4.2 since
F (ejω) = W (ejω)G0(e

jω).

(c)
RX1

[m] = 2δ[m] + δ[m− 1] + δ[m+ 1]

Thus,

RX1 =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2


Using Matlab, one can see that the maximum eigenvalue of RX1

is 3.6180. Hence 0 < µ <
2

λmax
= 0.5528. A more conservative range will be 0 < µ < 2

Lσ2
X1

= 0.25.
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Exercise 36.

Consider the following matlab script

hdeterministic = [1 1]’;

hrandom = 5; % number of random terms that have to be identified

hlen = hrandom + length(hdeterministic) - 1; % length of the filter that

we should identify

BigNumber = 2000; % number of samples that we process

FilterChangeStep = 200; % the filter that we identify changes every

FilterChangeStep samples

eprocess = zeros(BigNumber, 1); % error value for each estimated sample

noisestd = 1e-3; % noise standard deviation

xvector = randn(hlen, 1); % xvector contains the last hlen samples of

the input process

%%% ADD HERE

%initialization of filter f for the first iteration

% (vector of size hlen x 1)

f = zeros(hlen, 1); % this is an example

%%% END ADD

% main loop

for n = 1:BigNumber,

x = randn(1,1); % new sample of the input process

xvector = [x; xvector(1:end-1)]; % update xvector

% check if the filter has to be changed

if rem(n, FilterChangeStep) == 1,

h = conv(hdeterministic, rand(hrandom, 1));

end;

d = h’*xvector + noisestd * randn(1,1); % desired process

y = f’*xvector; % current estimate

e = d - y; % current error

%%% ADD HERE

% update of filter f for next iteration

% YOU ARE NOT ALLOWED TO USE VARIABLE ’h’

f =

%%% END ADD

eprocess(n) = e; % save e for final statistics

end;

figure; plot(eprocess);

fprintf(1, ’The average error variance is %f’, mean(eprocess.^2));
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The goal is to complete the program in order to minimize the variance of the error process
(variable “eprocess”) by finding an appropriate filter “f” according to the following rules:

- You cannot use the variable “h”, which corresponds to the filter that has to be estimated.

- You cannot modify the other variables of the program (only f or your own variables).

- Needless to say, you shall not cheat by playing with the seed of the random number gen-
erator!

This is a ‘free’ exercise, that is, there is no unique correct answer to the problem. One can find
different solutions to this exercise, with different complexity and performances. You should try
to find the best solution for the problem by using all the information that is available to you on
the structure of the identified system.
Do not forget to write comments and if necessary explanations on what your Matlab code does
and give a sample output of your program (as well as the code itself).

Solution 36.
Here is one solution we suggest for the problem but you might come up with solutions that
perform better than the one below:

hdeterministic = [1 1]’;

hrandom = 5; % number of random terms that have to be identified

hlen = hrandom + length(hdeterministic) - 1; % length of the filter that we should identify

BigNumber = 2000; % number of samples that we process

FilterChangeStep = 200; % the filter that we identify changes every FilterChangeStep samples

eprocess = zeros(BigNumber, 1); % error value for each estimated sample

noisestd = 1e-3; % noise standard deviation

sigmax = 1; % input process standard deviation

xvector = randn(hlen, 1); % xvector contains the last hlen samples of the input process

%%% ADD HERE

%initialization of filter f for the first iteration

% (vector of size hlen x 1)

%f = 0.5 * ones(hlen, 1); % this is an example

frandom = 0.5 * ones(hrandom, 1); f = conv(hdeterministic,

frandom);

%%% END ADD

% main loop

for n = 1:BigNumber,

x = sigmax * randn(1,1); % new sample of the input process

xvector = [x; xvector(1:end-1)]; % update xvector

% check if the filter has to be changed

if rem(n, FilterChangeStep) == 1,

h = conv(hdeterministic, rand(hrandom, 1));

end;

d = h’*xvector + noisestd * randn(1,1); % observed process

y = f’*xvector; % current estimate

e = d - y; % current error

%%% ADD HERE

% update of filter f for next iteration

% YOU ARE NOT ALLOWED TO USE VARIABLE ’h’
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xrandom = conv(hdeterministic, xvector);

xrandom = xrandom(length(hdeterministic):end-length(hdeterministic)+1);

mu = 2 / hrandom / (sum(conv(hdeterministic(end:-1:1), hdeterministic)) * sigmax^2) / 2;

% mu = 2 / L / S_max / 2

frandom = frandom + mu * e * xrandom;

if rem(n + 1, FilterChangeStep) == 1,

frandom = 0.5 * ones(hrandom, 1);

end;

f = conv(hdeterministic, frandom);

% f = f + 0.1 * e * xvector; % this is an example

%%% END ADD

eprocess(n) = e; % save e for final statistics

end;

figure; plot(eprocess);

fprintf(1, ’The average error variance is %f’, mean(eprocess.^2));
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Exercise 37.
Consider the following diagram:

S0

S1

h0

h2

h1 g
X0

X1

+
+

Y0

The processes S0[n], S1[n] are jointly Gaussian, uncorrelated, white with zero-mean and unit
variance. The filters h0, h1, h2 have z-transforms

H0(z) = 1− z−1, H1(z) = 1 + z−1, H2(z) = 1 +
1

2
z−1

respectively. The filter g is not completely specified. We only know that:

1) It is stable.

2) The z-transform of g has the form

G(z) =
1

a0 + a1z−1 + a2z−2

where a0, a1, a2 are unknown real constants.

Answer precisely the following questions:

1) Are the processes X0[n], X1[n] Gaussian? Are they stationary?

2) Propose an algorithm that, by using only the measurements of the processes X0 and X1,
estimates the coefficients a0, a1, a2 of G(z). Remark: You should give enough information
to be able to write a computer program, for example use a “pseudo code”. For the adaptive
elements, if any, computation of the step size will be addressed in the next question.

3) Assume by some means that we are able to estimate that the variance of the process Y ,
σ2
Y is in the range 1 < σ2

Y < 2. In such a case, what is a reasonable range for the step-size
of the adaptive elements used in the previous answer?

4) Consider the maximum step-size µ∗ computed in the previous question. Compare the
behavior of the algorithm when we take a step size µ∗/2 and µ∗/10. (Explain in words
how the behavior of the algorithm differs when we use these two different values for the
step-size.)
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Solution 37.
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Exercise 38.
Consider the following diagram:

where H0 and H1 are causal filters with the transfer functions:

H0(z) = 1 + z−1,

H1(z) = 1− z−1.

V0, V1, V2 and V3 are white stationary processes, uncorrelated, jointly gaussian with zero mean
and the variances

σ2
V0

= 1 σ1
V1

= 1 σ2
V2

= 2 σ2
V3

= 1.

The switch SW is in the position 1 when the time index n is even and 2 when n is odd.

(a) Is X0[n] Gaussian process? Is X0[n] wide sense stationary process? Compute the correla-
tion of X0[n].

(b) Determine the optimal filter that estimates the process D[n], i.e. D̂[n], given the observa-
tion of the two samples X0[n] and X0[n− 1].

(c) Determine the optimal filter that estimates the process S[n], i.e. Ŝ[n], given the observation
of the two samples X1[n] and X1[n− 1].

How can we use such an estimator to determine an estimate of D[n]? Compare this solution
with the one obtained in question 2), which one would you prefer?

(d) Consider the output of the system as a vector X̄[n] = [X0[n]X1[n]]
T and give the expression

for the optimal estimator of D[n] based on the two observation of X̄[n] and X̄[n− 1].

Hint : Write the estimator as

D̂[n] = f̄T
n,0X̄[n] + f̄T

n,1X̄[n− 1].

Recall : [
a b
c d

]−1

=
1

ad− cb

[
d −b
−c a

]
.

Solution 38.
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(a) We have:

X0[n] = V0[n] + V0[n− 1] + S[n] =

=

{
V0[n] + V0[n− 1] + V1[n], n is even
V0[n] + V0[n− 1] + V2[n], n is odd

Process X0[n] is a sum of two processes D[n] and S[n] that are Gaussian at every instant.
Therefore, X0[n] is Gaussian, as well. To check if the process is wide sense stationary we
compute the mean and the variance.

E[X0[n]] = 0

E[X0[n]X0[n]] = E[(V0[n] + V0[n− 1] + S[n])(V0[n] + V0[n− 1] + S[n])]

=

{
2σ2

V0
+ σ2

V1
, n is even

2σ2
V0

+ σ2
V2
, n is odd

We can see that S[n] is not a wss process and consequently X0[n] is not wss.

In order to compute the correlation of X0[n] we need first to compute the correlation of
S[n].

RS [n,m] = E[S[n]S[m]] =


E[V1[n]V1[m]] = δ[n−m]σ2

V1
, n and m are even

E[V1[n]V2[m]] = 0, n even, m odd
E[V2[n]V1[m]] = 0, n odd, m even
E[V2[n]V2[m]] = δ[n−m]σ2

V2
, n and m are odd

Then,

RX0 [n,m] = E[X0[n]X0[m]]

= E[(V0[n] + V0[n− 1] + S[n])(V0[m] + V0[m− 1] + S[m])]

= 2σ2
V0
δ[n−m] + σ2

V0
δ[n− 1−m] + σ2

V0
δ[n−m+ 1] +RS [n,m]

=


2σ2

V0
δ[n−m] + σ2

V1
δ[n−m], n and m are even

2σ2
V0
δ[n−m] + σ2

V2
δ[n−m], n and m are odd

σ2
V0
δ[n− 1−m] + σ2

V0
δ[n−m+ 1], otherwise

(b) We define the cost function as:

Jmin = E[|D[n]−
1∑

k=0

fn(k)X0[n− k]|2].

The optimal filter is given by:[
fn(0)
fn(1)

]
=

[
RX0

[n, n] RX0
[n− 1, n]

RX0
[n, n− 1] RX0

[n− 1, n− 1]

]−1 [
RDX0

[n, n]
RDX0

[n, n− 1]

]
where

RDX0
[n,m] = E[D[n]X0[m]] = E[D[n](D[m] + S[m])] = RD[n,m] +RDS [n,m],

RD[n,m] = 2σ2
V0
δ[n−m] + σ2

V0
δ[n− 1−m] + σ2

V0
δ[n−m+ 1],
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RDS [n,m] = 0 for all n and m

Then, when n is even we have:[
fn(0)
fn(1)

]
=

[
2σ2

V0
+ σ2

V1
σ2
V0

σ2
V0

2σ2
V0

+ σ2
V2

]−1 [
2σ2

V0

σ2
V0

]
=

[
7/11
1/11

]
,

and when n is odd we have:[
fn(0)
fn(1)

]
=

[
2σ2

V0
+ σ2

V2
σ2
V0

σ2
V0

2σ2
V0

+ σ2
V1

]−1 [
2σ2

V0

σ2
V0

]
=

[
5/11
2/11

]
.

(c) We define the cost function as:

Jmin = E[|S[n]−
1∑

k=0

fn(k)X1[n− k]|2].

The optimal filter is given by:[
fn(0)
fn(1)

]
=

[
RX1 [n, n] RX1 [n− 1, n]
RX1

[n, n− 1] RX1
[n− 1, n− 1]

]−1 [
RSX1

[n, n]
RSX0

[n, n− 1]

]
where

RX1
[n,m] = E[X1[n]X1[m]]

= E[(V3[n]− V3[n− 1] + S[n])(V3[m]− V3[m− 1] + S[m])]

= 2σ2
V3
δ[n−m]− σ2

V3
δ[n− 1−m]− σ2

V3
δ[n−m+ 1] +RS [n,m]

=


2σ2

V3
δ[n−m] + σ2

V1
δ[n−m], n and m are even

2σ2
V3
δ[n−m] + σ2

V2
δ[n−m], n and m are odd

−σ2
V3
δ[n− 1−m]− σ2

V3
δ[n−m+ 1], otherwise

,

RSX1
[n,m] = E[S[n]X1[m]] = E[S[n](V3[m]− V3[m− 1] + S[m])]

= RS [n,m] =


σ2
V1
δ[n−m] n,m even

σ2
V2
δ[n−m] n,m odd

0 otherwise

For even n we have:[
fn(0)
fn(1)

]
=

[
2σ2

V3
+ σ2

V1
−σ2

V3

−σ2
V3

2σ2
V3

+ σ2
V2

]−1 [
σ2
V1

0

]
=

[
6/17
1/17

]
,

and when n is odd we have:[
fn(0)
fn(1)

]
=

[
2σ2

V3
+ σ2

V2
−σ2

V3

−σ2
V3

2σ2
V3

+ σ2
V1

]−1 [
σ2
V2

0

]
=

[
12/17
2/17

]
.

The estimated of D[n] can be determine as:

D̂[n] = X0[n]− Ŝ[n]
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(d) The optimal filter is obtained in the same way as before[
f̄n,0
f̄n,1

]
=

[
RX̄ [n, n] RX̄ [n− 1, n]
RX̄ [n, n− 1] RX̄ [n− 1, n− 1]

]−1 [
RDX̄ [n, n]

RDX̄ [n, n− 1]

]
where

RX̄ [n,m] = R

[[
X0[n]
X1[n]

]
[ X∗

0 [m] X∗
1 [m] ]

]
=

[
RX0

[n,m] RX0X1
[n,m]

RX1X0
[n,m] RX1

[n,m]

]
,

and

RDX̄ [n,m] =

[
RDX0

[n,m]
RDX1

[n,m]

]
.
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Exercise 39.
Consider the following schematic diagram:

V_0[n]

V_1[n]

S_W

D[n]

H(z)

S[n]

Y[n]X[n]

f_n

The two processes V0[n] and V1[n] are zero mean jointly Gaussian, they are mutually uncorrelated
and their self correlation functions are

RV0 [n] = E[V0[n+m]V0[m]] = ρ
|n|
0 ,

RV1
[n] = E[V1[n+m]V1[m]] = ρ

|n|
1 .

In the following we will take ρ0 = 1/2, ρ1 = 1/3. The switch SW selects one of the two processes
to generate the “desired” process D[n] that has to be estimated. The measurements are obtained
by filtering D[n] with the filter H(z) = 1+ z−1 and adding the noise process S[n], which is i.i.d,
zero mean, jointly Gaussian with V0 and V1 and with variance σ2

S = 1. The measurement process
X[n] is filtered by the time-varying filter fn of length L = 3 to obtain the estimate Y [n]. The
goal is to minimize the variance of the estimation error E[n] = D[n]− Y [n].

(a) Assume first that the switch is in the position “0” (i.e. D[n] = V0[n]). Write the normal
equations for the filter fn and find the optimal linear filter. Is this a Wiener filter? Compute
the estimation error variance, E[E[n]2]. Do the same with the switch in the position “1”.

(b) Assume now that the switch is in the position “0” for the even samples and “1” for the
odd samples. Do the following steps:

(a) Compute the correlation function RD[n,m] = E[D[n]D[m]]. Is the process D[n] sta-
tionary?

(b) Compute the correlation functionsRX [n,m] = E[X[n]X[m]] andRDX [n,m] = E[D[n]X[m]].

(c) Write the normal equations for the even and odd time indexes. Find the optimal
linear filter and the error variance for the two cases (even and odd time indexes) and
compare them with the result of question a).

(c) Assume that the position of the switch is chosen randomly and independently for each
sample. The probability of position “0” is p0 = 1/2. Compute again the correlation
RD[n,m] = E[D[n]D[m] and check if the process is stationary. Compute the optimal linear
filter in this case and compare the answer with the results of question b).

Solution 39.

(a) We want to minimize the error

E[n] = D[n]− Y [n] = D[n]−
∑
i

fn[i]X[n− i]



73

where

X[n] =
∑
k

h[k]D[n− k] + S[n].

If we define the cost function as
Jn = E[E[n]2],

than it has a unique minimum which can be found by setting the first derivative to zero.
Following the steps that are given in the section 4.2.1 of the lecture notes, we find that the
normal equation is:

L−1∑
j=0

fn[j]RX [n− j, n− i] = RDX [n, n− i] i = 0, . . . , L− 1, ∀n ∈ Z.

Now, we compute RX [n− j, n− i] and RDX [n, n− i] for the case where D[n] = V0[n].

RX [n− j, n− i] = E[(h[0]V0[n− j] + h[1]V0[n− j − 1] + S[n− j])

(h[0]V0[n− i] + h[1]V0[n− i− 1] + S[n− i])]

= 2RV0
[i− j] +RV0

[i− j + 1] +RV0
[i− j − 1] + σ2

Sδ[i− j]

= 2ρ
|i−j|
0 + ρ

|i−j+1|
0 + ρ

|i−j−1|
0 + σ2

Sδ[i− j],

RDX [n, n− i] = E[V0[n] · ((h[0]V0[n− i] + h[1]V0[n− i− 1] + S[n− i])

= RV0 [i] +RV0 [i+ 1]

= ρ
|i|
0 + ρ

|i+1|
0 ,

We can see that the processes D[n] and X[n] are stationary BUT the filter fn is not a
Wiener filter since we limit the length of the filter to be L = 3.

From the Yule-Walker equation we have

fn = R−1
X,nrDX,n. fn[0]

fn[1]
fn[2]

 =

 2 + 2ρ0 + 1 2ρ0 + 1 + ρ20 2ρ20 + ρ0 + ρ30
2ρ0 + 1 + ρ20 2 + 2ρ0 + 1 2ρ0 + ρ20 + 1
2ρ20 + ρ0 + ρ30 2ρ0 + 1 + ρ20 2 + 2ρ0 + 1

−1  1 + ρ0
ρ0 + ρ20
ρ20 + ρ30

 .

Changing the ρ0 = 1/2 we get

fn = [0.3944 − 0.0361 0.0031]T .

We compute E[|E[n]|2] from the formula:

E[|E[n]|2] = E[(D[n]− fTXn)
2]

= σ2
D + fTRXf − 2fT rDX

Then, we can find
E[|E[n]|2] = 0.4343.
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When the switch is in the position “1”, all the steps are the same and we need to change
V0 to V1. In that case we have, fn[0]

fn[1]
fn[2]

 =

 2 + 2ρ1 + 1 2ρ1 + 1 + ρ21 2ρ21 + ρ1 + ρ31
2ρ1 + 1 + ρ21 2 + 2ρ1 + 1 2ρ1 + ρ21 + 1
2ρ21 + ρ1 + ρ31 2ρ1 + 1 + ρ21 2 + 2ρ1 + 1

−1  1 + ρ1
ρ1 + ρ21
ρ21 + ρ31


=

 0.3999
−0.0797
0.0144


and

E[|E[n]|2] = E[(D[n]− fTXn)
2] = 0.4912.

(b) - We need to distinguish the four cases:

RD[n,m] =


ρ
|n−m|
0 n, m even,

ρ
|n−m|
1 n, m odd,

0 n even, m odd,
0 n odd, m even.

Clearly, the process D[n] is not stationary.

- Let us call Dh[n] =
∑

k h[k]D[n− k] = D[n]−D[n− 1]. Then

RX [n,m] = E[X[n]X[m]] = E[(Dh[n] + S[n])(Dh[m] + S[m])]

= RDh
[n,m] +RS [n,m] = RDh

[n,m] + σ2
Sδ[n−m]

and

RDh
[n,m] = E[(D[n] +D[n− 1])(D[m] +D[m− 1])]

= RD[n,m] +RD[n,m− 1] +RD[n,m− 1]

+RD[n− 1,m] +RD[n− 1,m− 1]

=


ρ
|n−m|
0 + 0 + 0 + ρ

|n−m|
1 n, m even,

ρ
|n−m|
1 + 0 + 0 + ρ

|n−m|
0 n, m odd,

0 + ρ
|n−m+1|
0 + ρ

|n−m−1|
1 + 0 n even, m odd,

0 + ρ
|n−m+1|
1 + ρ

|n−m−1|
0 + 0 n odd, m even.

The correlation RDX is equal to

RDX [n,m] = E[D[n]X[m]] = E[D[n](D[m] +D[m− 1] + S[m])]

= RD[n,m] +RD[n,m− 1]

=


ρ
|n−m|
0 + 0 n, m even,

ρ
|n−m|
1 + 0 n, m odd,

0 + ρ
|n−m+1|
0 n even, m odd,

0 + ρ
|n−m+1|
1 n odd, m even.

Clearly, the process is not stationary.
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- We have the normal equation

L−1∑
j=0

fn[j]RX [n− j, n− i] = RDX [n, n− i] i = 0, . . . , L− 1, ∀n ∈ Z

and to evaluate RX and RDX , we need to consider the cases when n is even and n is
odd.

Let us, for example, consider the case when n is even. Then, fn[0]
fn[1]
fn[2]

 =

 RX [n, n] RX [n− 1, n] RX [n− 2, n]
RX [n, n− 1] RX [n− 1, n− 1] RX [n− 2, n− 1]
RX [n, n− 2] RX [n− 1, n− 2] RX [n− 2, n− 2]

−1  RDX [n, n]
RDX [n, n− 1]
RDX [n, n− 2]


=

 3 1 + ρ20 ρ20 + ρ21
ρ20 + 1 3 1 + ρ21
ρ20 + ρ21 ρ21 + 1 3

−1  1
ρ20
ρ20


and we compute

fn = [0.3644 − 0.0963 0.0752]T .

Applying the same formula for computing the error as in the previous part, we get:

E[|E[n]|2] = 0.6409

The process D[n] is not stationary and this explains why the error is larger than in
the part a) for both D[n] = V0[n] and D[n] = V1[n].

(c) Since the position of the switch is randomly chosen we can introduce the random variable
SW [n] that describe the position of the switch. Positions p0 and p1 appear with the same
probability of 1/2. To compute RD[n,m] = E[D[n]D[m]], we can use the following formula:

E[f(D)] = E[E[f(D)|SW ]]

=
1

4
E[f(D)|sW = (0, 0)] +

1

4
E[f(D)|sW = (0, 1)]

+
1

4
E[f(D)|sW = (1, 0)] +

1

4
E[f(D)|sW = (1, 1)] .

Then

RD[n,m] = E[D[n]D[m]]

=
1

4
E[D[n]D[m]|sW = (0, 0)] +

1

4
E[D[n]D[m]|sW = (1, 1)]

=
1

4
ρ
|n−m|
0 +

1

4
ρ
|n−m|
1

The process is stationary.

To compute the optimal filter we need:

RX [n,m] = E[X[n]X[m]] = E[(D[n] +D[n− 1] + S[n])(D[m] +D[m− 1] + S[m])]

= 2RD[n−m] +RD[n−m+ 1] +RD[n−m− 1] + σ2
Sδ[n−m],
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and

RDX [n,m] = E[D[n]X[m]] = E[D[n](D[m] +D[m− 1] + S[m])]

= RD[n−m] +RD[n,m− 1].

Changing in the normal equation we get:

 f [0]
f [1]
f [2]

 =

 2.4167 1.0069 0.4294
1.0069 2.4167 1.0069
0.4294 1.0069 2.5167

−1  0.7083
0.2986
0.1308

 =

 0.2923
0.0010
0.0018


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Exercise 40. Wiener and Adaptive Filters
Consider the system in the figure below.

Signals S[n], I[n] and W [n] are centered (zero-mean), i.i.d., jointly Gaussian and uncorrelated
random processes, with variances σ2

S , σ
2
I and σ2

W , respectively. Furthermore, filters H1(z), H2(z),
H3(z) and H4(z) have the following forms:

H1(z) = 1 + a1z
−1

H2(z) = 1 + a2z
−1

H3(z) = 1 + a3z
−1

H4(z) = 1 + a4z
−1 .

1 Give the power spectral densities of processes X[n] and Y [n].

2 Assuming you are given access to the interfering signal I[n], show how you would connect
an adaptive filter to remove the interfering signal I[n] from the user signal Y [n]. What
would be the length of the adaptive filter?

3 (Comment) What would be needed for estimating the signal S[n] from the signal Y [n]
optimally in the mean squared error sense?

Solution 40.
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Chapter 5

Spectral Estimation

Exercise 41. AR once again
Consider a centered (zero-mean) real-valued AR process {Xn}n∈Z verifying the equation

X[n+ 1] = aX[n] +W [n+ 1], n ∈ Z

where

- a ∈ R, |a| < 1,

- W [n] is a real-valued white noise (i.e., a sequence of i.i.d. random variables), centered,
with variance σ2 > 0.

We now observe a realization x[n] of the AR process X[n] and we would like to estimate the
power spectral density.

(a) Describe precisely a parametric method for estimating the power spectral density of the
AR process X[n].

(b) Suppose you can choose to observe either 100 or 1000 realizations of X[n]. How many
realizations would you choose for your spectral estimator? Justify your answer precisely.

(c) Propose a recursive method for estimating the power spectral density of a more general
AR process

X[n+ 1] =

N−1∑
i=0

aiX[n− i] +W [n+ 1], n ∈ Z .

(d) Compare the computational burden of the recursive method with the one of the direct
approach.

Solution 41. AR once again

(a) Using the symbolic notation we can express the process X[n] as

X[n+ 1] = aX[n] +W [n+ 1],

X[n+ 1](1− az−1) = W [n+ 1],

79
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X[n+ 1] =
1

1− az−1
W [n+ 1].

Then, the power spectral density SX(ω) is given as:

SX(ω) =
1

|1− ae−jω|2
σ2 =

1

1 + a2 − 2a cosω
σ2.

We need to estimate a and ω2. The two parameters can be estimated using Yule-Walker
equations.

(b) Since the noise is white and centered then it is always better to use more realizations for
estimating the covariance matrix used in Yule-Walker equations.

(c) The power spectral density of a more general AR process can be estimated by first esti-
mating the parameters a0, . . . , aN−1 with Levinson’s algorithm, by starting with a one-step
predictor, and iteratively computing the coefficients of higher-order predictors until the co-
efficients of the N -th order predictor has been determined.

(d) In the case of having a model whose order N is known a priory, the computational com-
plexities of both using Levinson’s recursive algorithm and directly solving Yule-Walker
equations are O(N2). However, in the case where the model order N is not known a
priory, the computational complexity of Levinson’s recursive algorithm stays the same,
whereas the complexity of iteratively solving Yule-Walker equations for different orders n,
until the right order N has been found, is O(N3).



81

Exercise 42. Annihilating filter method vs. MUSIC
Assume that we have a random process X[n] that is composed of 3 complex sinusoids:

X[n] =

3∑
k=1

αke
j(2πfkn+Θk),

where (f1, f2, f3) = (0.2, 0.3, 0.4), (α1, α2, α3) = (1, 2, 3) and the phases Θk are stationary random
variable, independent and uniformly distributed over [0, 2π). The signal is affected by additive
zero-mean white noise with σ2

W , independent of X[n]. We have the access only to the noisy
realizations, i.e.

Y [n] = X[n] +W [n].

(a) Simulate 20 realizations of Y [n] when σ2
W = 1 and from this realizations estimate the

frequencies fk and the weights αk of the sinusoids using:

(a) annihilating filter method,

(b) MUSIC method.

(b) Do the same steps when σ2
W = 4 and compare the two methods.

(c) Assume that the signal X[n] is deterministic, i.e. the phases Θk are known. We want
to estimate fk and αk. Can we now use the annihilating filter method and the MUSIC
method? Point out the differences.

Solution 42. Annihilating filter vs. MUSIC

(a) In Matlab we have the following code:

% Signal X

c = [ 1 2 3]; f = [.2 .3 .4]; X = zeros(1,30);

% We have 20 realizations of the process

for i = 1:20

theta = 2*pi*rand(1,3);

W = 1*randn(1); % or 4*randn(1);

% We choose 30 samples from each realization

n = 0:29; X(i,:) = c.*exp(j*theta)*exp(j*2*pi*f’*n) + W;

end

% ANNIHILATING FILTER METHOD

% In this part we can only use one realization

Xl = toeplitz(conj(X(1,3:29)’), X(1,3:-1:1));

Xr = -conj(X(1,4:30)’);

h = pinv(Xl)*Xr; root = roots([1conj(h’)]);

% frequency estimates

fe = phase(root)/2/pi
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% weight estimates

n1 = [ 0 1 2]’; ce = abs(inv(exp(j*2*pi*n1*fe’)) *conj(X(1,1:3)’))

% As the result we have that the frequency the sinusoid with the amplitude

% 1 and frequency 0.2 is not well estimated since it is usually barried

% into the noise. The estimation accuracy for the weights are usually very

% poor.

% MUSIC

% First, we estimate the covariance matrix.

R = zeros(5,5);

for p = 1:20 % 20 realizations

for k=5:30 % 30 samples

R = R + conj([X(p,k) X(p,k-1) X(p,k-2) X(p,k-3) X(p,k-4)])’*

[X(p,k)’ X(p,k-1)’ X(p,k-2)’ X(p,k-3)’ X(p,k-4)’];

end

end

R = R/26/20; % average over the number of samples {1/(M-N)} and number of realizations

[G S V] = svd(R);

Gnoise=G(:,4:5); % the eigenvectors that correspond to the noise space

% plot the function in 100 points

n2 = [ 0 1 2 3 4 ]; for k = 1:100

root_music(k)=exp(j*2*pi*(k-1)*n2/100)*Gnoise*Gnoise’*exp(j*2*pi*(k-1)*n2/100)’;

music(k) = 1/real(root_music(k));

end

figure; plot([0:1/100:1-1/100], real(root_music));

% The frequencies of the zeros of the plot correspond to the frequencies of

% the signal X.

figure; plot([0:99], music);

% The frequencies of the peaks of the plot correspond to the frequencies of

% the signal X.

% The weights can be estimated in the same way as for the annihilating

% filter method or also using the equation (5.15) from the lecture notes.

% The second option is more stable to noise since we are "substracting" the

% noise component.

(b) The annihilating filter method can be used in the same way as for the previous case. The
MUSIC method can be used as well. The only difference would be when estimating the
weights because we cannot use straight forward the equation (5.15) from the lecture notes
(try to see why).
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Exercise 43. Line Spectrum Estimation: the Dual Problem
Let x(t) be a continuous periodic signal of period T ,

x(t) =
∑
n∈Z

M−1∑
k=0

akδ(t− nT − tk)

where δ(t) is a Dirac delta function. Assume that you want to use the annihilating filter method to
estimate parameters tk, k = 0 . . .M −1 from an appropriate set of the Fourier series coefficients.

(a) Compute the Fourier series coefficients x̂[n] of x(t).

(b) Write a system of equations that allows you to find tk for M = 3. What is the minimum
number of Fourier series coefficients required for a unique solution?

(c) How does the noisy case differ from the previous case, where the presence of noise was not
considered?

Solution 43. Spectral estimation

(a) The Fourier series coefficients of x(t) are given by

x̂[m] =
1

T

∫ T

0

M−1∑
k=0

akδ(t− tk)e
−j 2π

T mtdt =
1

T

M−1∑
k=0

ake
−j 2π

T mtk

(b) For M = 3, we have

x̂[m] =
1

T
(a0e

−j 2π
T mt0 + a1e

−j 2π
T mt1 + a2e

−j 2π
T mt2)

Using the annihilating filter method, we will choose a filter of length 4 being [1, h1, h2, h3].
We have then H(Z)X(m) = 0. In matrix notation we get

 x̂[3] x̂[2] x̂[1] x̂[0]
x̂[4] x̂[3] x̂[2] x̂[1]
x̂[5] x̂[4] x̂[3] x̂[2]




1
h1

h2

h3

 =

 0
0
0


We thus need at least 6 components of Fourier series coefficients to have a unique solution.

(c) As already discussed in class, the anhilating filter method is not robust to addition of noise.
For small variance of the noise and large values of the ak coefficients, the algorithm will
still perform well, but as soon as the SNR becomes too small, the algorithm cannot be used
anymore.
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Exercise 44. Numerical Analysis of the Periodogram (Matlab)
Consider an AR(1) process X[n] = cX[n − 1] +W [n] where c ≤ 1 (take c = 0.9, X[0] ≡ 1) and
W to be an i.i.d. normally distributed noise of zero mean and unit variance.

(a) Write a function pergram that computes a periodogram Rp(e
jω) of a process of length M .

Consider first the signal without noise X[n] = cX[n − 1]. For M = 256, 512, 1024 plot in
logarithmic scale Rp and compute the variance of Rp. Comment on your results. Repeat
the experiment for the noisy signal X[n] = cX[n− 1] +W [n]. Does the variance decrease
as you increase M? Explain your answer.

(b) Compute the averaged periodogram of N = 4 segments of size L = 256. Plot the result,
and compute its variance. Did the variance decrease with respect to the M = 256 case in
the exercise 4.1.?

(c) Add a sinusoid s[n] = A sin(2πn/F ) to the signalX, with A = 5, F = 10. Compute and plot
the periodogram of the new signal for M = 256, 512, 1024. What do you notice? Compare
the resulting component corresponding to the sinusoid with the component corresponding
to the AR process. Repeat the experiment with the averaged periodogram. How do the two
components mentioned above modify? Next, add one more sinusoid s̃[n] with amplitude A
and with a frequency close to the frequency of s[n] (F). Repeat the above experiment and
comment on your results.

Solution 44. The periodogram

(a) The variance of the periodogram Rp(e
jω) does not decrease when the number of samples

are increased. This can be directly observed from the fact that the fluctuations in the
plots do not decrease as M increases from 256 to 1024. The variance of the periodogram
V ar(Rp(e

jω)) can be computed by considering several realizations of the process X[n] and
looking at the value of Rp(e

jω) for fixed ω.

(b) The spectrum gets smoother by averaging and the variance decreases.

(c) The harmonic is well detected, while the spectrum of the AR signal is noisy. Averaging
especially helps to smooth the component corresponding to the AR signal. When adding
a second harmonic, if the resolution is not large enough, the two harmonics confound on
the spectrum and are not detectable separately.
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Exercise 45. Alinghi I: Vibration control in High Tech sailing boats (20 points)
High tech sailing boats, like Alinghi’s one, are built using very sophisticated light materials that
work in critical conditions, close to their break point. During the preliminary testing of the boat
prototypes it is of foremost importance to accurately monitor the working conditions of such
materials.

In view of the next America’s cup challenge, one of the competitors is already performing sea
testings of a new boat measuring the vibration of the hull and asked us to perform the data
analysis.

We assume here that there are only three main vibrations in the boat hull and that we measure
them using three accelerometers, as depicted in the figure below.

The vibration measured by the k−th accelerometer, k = 1, 2, 3, can be approximated by a
complex exponential at frequency ωk, i.e., e

iωkn.
We would like use the tools available for WSSprocesses. To do so, we have to model the ac-
celerometer signals as a WSS.

1) By taking into account the uncertainty (randomness) on the origin of the complex expo-
nential, precisely write the signals of the three accelerometers as WSSstochastic processes
Vk[n], k = 1, 2, 3.

In practice the signal of each accelerometer is not only composed of a single vibration but it also
affected by the interferences of the vibrations measured by the two other accelerometers. Such
interferences are often called “beats”.
Consequently, the overall signal measured by the three accelerometers can be seen as the sum of
the three complex exponential signals at frequencies ωk, k = 1, 2, 3, plus the “beats” term which
in our case is given by the sum of three complex exponentials at frequencies ω2 − ω1, ω3 − ω1,
ω3 − ω2, as depicted in the diagram below.
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Vibrations + Overall measured signal
at ω1, ω2, ω3

“beats” term at
ω2 − ω1, ω3 − ω1, ω3 − ω2

Notice that the beats term is due to the interferences between the four measured vibrations.
Once again, we would like use the tools available for WSSprocesses and, to do so, we have to
model the overall signal as a WSS.

2) By taking into account the uncertainty (randomness) on the origin of the complex expo-
nential, precisely write the overall measured signal as WSSstochastic processes X[n], and
compute its mean.

After several measurements, the technical team have empirically established that

10

100
π < ω1 <

30

100
π

70

100
π < ω2 <

75

100
π

80

100
π < ω3 < π

We are called to give a support to the technical team and our task is to provide a precise
estimation for the vibration frequencies. In particular, we have to

- estimate the three vibration frequencies ωk, k = 1, . . . , 3;

- estimate the beats frequencies ω2 − ω1, ω3 − ω1, ω3 − ω2 in order to validate the beats
model.

We start by using the simplest tool we know: the periodogram

3) How many samples N are necessary to perform the above required tasks?

In order to reduce the variance of the periodogram we adopt a Blackman-Turkey periodogram
with a smoothing window. Such a smoothing window is non zero only over a support equal to
N/2, where N is the number of samples considered.

4) How many samples N do we need now to perform the above mentioned tasks?

5) What are the statistical properties of the Blackman-Turkey periodogram (variance, bias)?

Solution 45.
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Exercise 46. Alinghi II: Mast stress analysis (16 points)
The Mast (the large pole used to hold up the sails) is definitively a critical component of the
sailing boat. Here again, the high technology materials used for its construction are pushed to
their stress limit. During prototype testings, the behavior of the Mast must be monitored so to
assure that it is properly dimensioned: if the mast breaks, the game is over (as for NZ team in
the 2003 edition).

More precisely, we monitor the elongations of the Mast using a piezoelectric sensor positioned at
its middle point, as depicted in the figure below.

Much of the information on the mast stress is contained in the power spectrum of the signal
measured by the piezoelectric sensor. In particular such a power spectrum is smooth and can be
approximated by a fractional polynomial
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S (ω) =
1

C(z)

∣∣∣∣
z=ejω

1) Assuming that the approximation of a smooth spectrum (fractional polynomial) is correct,
precisely describe a method for estimating the spectrum. More precisely we need to

1.a) Estimate the number of parameters describing the spectrum (order of the polynomial,
etc.)

1.b) Estimate the value of such parameters

1.c) Provide an estimation error

We then realize that the smooth spectrum (fractional polynomial) approximation is not exactly
correct.

2) How this will affect the estimation of the number and values of the parameters?

The technical team complains that the method you have proposed is too complicated and ask
you to use a periodogram based approach

3) Give precise arguments to defend your choice.

Solution 46.

(1) The mean is given by

H0(z) =
∑

4(−1

3
)k2−k =

4

1 + 1
3z

−1
=

1

P (z)
⇒ Y0(z) =

1

P (z)
X(z)

X[n] is WSS, so Y0[n] is WSS too.

(2) From above it is clear that it is AR process.

(3) It has exactly the structure of correlation of AR processes; referee to the lecture notes.

(4) To check if the impulse response is really given by h0[k], one needs to build up the analysis
filter and multiply it by the output of the system. The obtained signal should be white
noise.

(5) The wiener filter is the optimal filter that could be designed. The process is WSS and such
filter can be used.
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Exercise 47. White Noise Periodogram
Let y(t) be a zero-mean white noise with variance σ2 and let

Y (ωk) =
1√
N

N−1∑
l=0

y(l)e−jωkl ; ωk =
2π

N
k (k = 0, . . . , N − 1)

denote its (normalized) DFT evaluated at the Fourier frequencies ωk.

(a) Derive the covariances

E[Y (ωk)Y
∗(ωr)], k, r = 0, . . . , N − 1

(b) Use the result of the previous calculation to conclude that the periodogram ϕ̂(ωk) =
|Y (ωk)|2 is an unbiased estimator of the PSD of y(t).

(c) Explain whether the unbiasedness property holds for ω ̸= ωk as well. Present an intuitive
explanation of your finding.

Solution 47. White Noise Periodogram

(a)

E[Y (ωk)Y
∗(ωr)] = E[

1√
N

N−1∑
l=0

y(l)e−jωkl
1√
N

N−1∑
m=0

y∗(m)ejωrm]

= E[
1

N

N−1∑
l=0

N−1∑
m=0

y(l)y∗(m)e−j(ωkl−ωrm)]

=
1

N

N−1∑
l=0

N−1∑
m=0

E[y(l)y∗(m)]e−j(ωkl−ωrm)

=
1

N

N−1∑
l=0

N−1∑
m=0

σ2δl−me−j(ωkl−ωrm)

=
1

N
σ2

N−1∑
l=0

e−jl 2πN (k−r)

=
1

N
σ2Nδk−r

= σ2δk−r .

(b) Since y(t) is a zero-mean white noise with variance σ2, we know that its PSD is equal to
the variance:

Sy(ω) = σ2 .

To show that ϕ̂(ωk) is an unbiased estimator of the PSD, we should show that its expecta-
tion is equal to the actual value of the PSD. We could do it in the following way:

E[ϕ̂(ωk)] = E[|Y (ωk)|2]
= E[Y (ωk)Y

∗(ωk)]

= σ2δk−k

= σ2 .
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(c) Taking ϕ̂(ω) = |Y (ω)|2 for any ω, we can find the expectation of the estimator ϕ̂(ω) in the
following way:

E[ϕ̂(ω)] = E[|Y (ω)|2]

E[Y (ω)Y ∗(ω)] = E[
1√
N

N−1∑
l=0

y(l)e−jωl 1√
N

N−1∑
m=0

y∗(m)ejωm]

= E[
1

N

N−1∑
l=0

N−1∑
m=0

y(l)y∗(m)e−jω(l−m)]

=
1

N

N−1∑
l=0

N−1∑
m=0

E[y(l)y∗(m)]e−jω(l−m)

=
1

N

N−1∑
l=0

N−1∑
m=0

σ2δl−me−jω(l−m)

=
1

N
σ2

N−1∑
l=0

e−jω0

=
1

N
σ2N

= σ2 .

Since the expected value of the estimator ϕ̂(ω) is equal to the actual value of the PSD
Sy(ω), it is unbiased for any frequency ω.
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Exercise 48. Window selection for Blackman-Tukey method
Consider the case when the signal is composed of two harmonic components which are spaced
in frequency by a distance larger than 1/N . If you were to use a Blackman-Tukey method for
spectral estimation, what window would you use if:

(a) The two spectral lines are closely-spaced in frequency, and they have similar magnitudes?

(b) The two spectral lines are not closely-spaced in frequency, and their magnitudes differ
significantly?

Solution 48. Window selection for Blackman-Tukey method

(a) In order to discriminate between the two spectral lines of similar magnitudes spaced at
a distance slightly larger than 1/N , one needs to use a window which provides the best
spectral resolution, that is, the rectangular window (or the unmodified periodogram).

(b) Although using a window with high spectral resolution is beneficial, it has its downsides.
Namely, such windows have worse side-lobe attenuation, which in the case of Blackman-
Tukey method means that the spectral lines leak more energy to the surrounding frequen-
cies.

In the problem at hand, if the used window has low side-band attenuation, the spectral
line with significantly higher magnitude can leak enough energy to the frequencies around
the weaker spectral line as to make the weaker spectral line less pronounced and harder
to detect. In order to reduce the contribution of the more powerful spectral line to the
far-away frequencies, one should use windows which have a better side-lobe attenuation,
such as Hamming, von Hann, variants of Kaiser window etc.
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Exercise 49. Spectral factorization and estimation
Let {X[n]}n∈Z be a centered AR process with power spectral density of the form

SX(ω) =
b

(1 + a21 − 2a1 cosω)(1 + a22 − 2a2 cosω)
, |a1| < 1, |a2| < 1, b > 0 ,

where a1, a2 and b are unknown real-valued parameters.

(a) Give the canonical representation of the process X[n]

P (z)X[n] = W [n]

Give the whitening filter P (z) and the variance σ2 of the noise process {W [n]}n∈Z.

(b) Give the procedure to determine the parameters a1, a2 and b of the AR process X[n], and
to estimate the power spectral density SX(ω).

Solution 49. Spectral factorization and estimation
The power spectral density SX(ω) can be transformed in the following way:

SX(ω) =
b

(1 + a21 − 2a1 cosω)(1 + a22 − 2a2 cosω)

=
b

|1− a1e−jω|2|1− a2e−jω|2

=
b

|(1− a1e−jω)(1− a2e−jω)|2
.

(a) The power spectral density of an AR process has the form

S(ω) =
1

|P (ejω)|2
σ2
W

where P (z) is the minimum phase whitening filter, and σ2
W is the noise variance. Since

|a1| < 1 and |a2| < 1, the polynomial P (z) = (1 − a1z
−1)(1 − a2z

−1) is strictly minimum
phase, and since b > 0, we can see that the PSD SX(ω) corresponds to an AR process
P (z)X[n] = W [n], whose whitening filter is given by

P (z) = 1− (a1 + a2)z
−1 + a1a2z

−2 ,

with the noise W [n] having the variance σ2
W = b.

(b) Making the substitutions p1 = a1 + a2 and p2 = −a1a2, we can write P (z) = 1− p1z
−1 −

p2z
−2. The parameters p1, p2 and b can be determined by solving the following Yule-Walker

equations:

b+ p1R̂X [1] + p2R̂X [2] = R̂X [0]

p1R̂X [0] + p2R̂X [1] = R̂X [1]

p1R̂X [1] + p2R̂X [0] = R̂X [2] ,

where R̂X [0], R̂X [1] and R̂X [1] are the empirical correlation estimates at lags 0, 1 and 2.
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Once the parameters p1, p2 and b have been determined, the parameters a1 and a2 can be
determined by solving the non-linear system

a1 + a2 = p1

a1a2 = −p2 ,

under the constraints that |a1| < 1 and |a2| < 1. Furthermore, the estimated power spectral
density SX(ω) has the form

SX(ω) =
b

|1− p1e−jω − p2e−2jω|2
.
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Chapter 6

Transforms

Exercise 50. Discrete Cosine Transform in Matlab
The KLT is a signal-dependent transform. This property is inconvenient if a signal has to be
transmitted because the receiver needs to know both the transform coefficients and the transform
basis vectors. The Discrete Cosine Transform (DCT) is signal-independent and very close to the
optimal KLT in terms of correlation of the transform coefficients.

(a) For the jointly Gaussian sequence of vectors derived in Exercise 4 of the numerical part,
calculate the DCT coefficients. Hint: Use the Matlab function dct.

(b) Evaluate the correlation matrix of the DCT coefficients. How far is it from the KLT
correlation matrix?

Solution 50. Discrete Cosine Transform

(a) The Matlab function dct performs the DCT along columns of the input matrix, thus

z1 = dct(y);

(b) The correlation is calculated similarly as in Exercise 4:

Rz1 = (z1*z1’)/M;

Notice that the correlation matrix of the DCT coefficients is not diagonal, but the diagonal
terms carry most of energy in the transform domain. Comparing the DCT coefficient
correlation to the KLT coefficient correlation produced in Exercise 4, we can conclude that
the DCT coefficients are more correlated. However, the main advantage of the DCT is
fixed structure, that is, the basis vectors do not depend on the signal.

95
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Exercise 51. Correlating and decorrelating signals
In this exercise, we will see that a signal can be both correlated and decorrelated by applying a
suitable linear transform, where in the later case the optimal transform is the Karhunen–Loeve
transform (KLT). KLT in the literature of signal processing is basically equivalent to PCA.

(a) Consider an i.i.d. (independent, identically distributed) sequence of random variables
X0, X1, . . . , XN−1 (E[Xi] = 0, E[X2

i ] = 1, for i = 0, 1, . . . , N − 1). Define a new set of
random variables Y = [Y0, Y1, . . . , YN−1]

T as

Y = A ·


X0

X1

...
XN−1

 ,

where

A =


α0,0 α0,1 · · · α0,N−1

α1,0 α1,1 · · · α1,N−1

...
...

...
αN−1,0 αN−1,1 · · · αN−1,N−1


is a real square matrix.

Show that the correlation function satisfies:

Ri,j = E[Yi · Yj ] =

N−1∑
k=0

αi,k · αj,k,

for i, j = 0, 1, . . . , N − 1.

(b) Show that the following equality holds:

det (A) =

N−1∏
i=0

λ
1/2
i ,

where λis are eigenvalues of the correlation matrix Ry.

(c) Consider a time sequence of random vectors Y[n] = [Y0[n], Y1[n], . . . , YN−1[n]]
T . The KLT

of the random signal Y[n] is obtained as Z[n] = T · Y[n], where the rows of the matrix
T are the eigenvectors of the correlation matrix of the signal Y[n] (sorted in descending
order of the corresponding eigenvalues).

Show that the resulting vector coefficients Z[n] are uncorrelated. Are they independent?

Solution 51. Correlating and decorrelating signals

(a) The set of random variables Y is determined as

Yi =

N−1∑
k=0

αi,k ·X[k].
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The correlation function is given by

Ri,j = E[Yi · Yj ] = E[
N−1∑
k=0

N−1∑
l=0

αi,kαj,lXkXl]

=

N−1∑
k=0

N−1∑
l=0

αi,kαj,lE[XkXl].

Since the random variables Xi are normalized independent Gaussian variables, we know
that E[Xk] = 0 and E[X2

k ] = 1. It follows that E[XkXl] = 0 for k ̸= l. Therefore, we can
write

E[XkXl] = δ[k − l].

The correlation is now given by

Ri,j =

N−1∑
k=0

N−1∑
l=0

αi,kαj,lδ[k − l],

or, equivalently

Ri,j =

N−1∑
k=0

αi,kαj,k.

(b) From (a) we can see that the correlation matrix RY is defined as RY = A · AT . If we
apply the det operator, we obtain

det (RY ) = det (A) · det
(
AT
)
= (det (A))

2
. (6.1)

The correlation matrixRy can also be expressed in terms of its eigenvalues and eigenvectors
as

RY = VY ·ΛY ·VT
Y ,

where Vy is a matrix, which contains the eigenvectors as columns and Λy is a diagonal
matrix with the eigenvalues along the diagonal.

Similarly, we can write

det (RY ) = det (VY ) · det (ΛY ) · det
(
VT

Y

)
=

N−1∏
i=0

λi (6.2)

because ΛY is diagonal and det (VY ) = 1. Therefore from (6.1) and (6.2), we have

det (RY ) = (det (A))
2
=

N−1∏
i=0

λi.

It follows that

det (A) =

N−1∏
i=0

λ
1/2
i .
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(c) The KLT matrix T is given by T = VT
Y because it contains the eigenvectors of the corre-

lation matrix as the rows. Therefore, we can write

Z[n] = VT
Y ·Y[n].

The correlation RZ is given by RZ = E
[
Z[n] · ZT [n]

]
. It follows

RZ = E
[
VT

Y ·Y[n] ·YT [n] ·VY

]
= VT

Y ·RY ·VY .

From (b) we know that RY = VY ·ΛY ·VT
Y . Therefore

RZ = VT
Y ·VY ·ΛY ·VT

Y ·VY = ΛY ,

because VT
Y · VY = I. The correlation matrix RZ is diagonal and, thus, the variables

Zi[n], for i = 0, 1, . . . , N − 1, are uncorrelated. Since the random variables are Gaussian,
uncorrelation is equivalent to independence.
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Exercise 52. Using the Karhunen-Loève Transform in Matlab

(a) Generate an i.i.d. sequence of 5 normalized Gaussian random variables X0, X1, X2, X3

and X4.

(b) Using the sequence generated in (a) and the results from the theoretical part, generate a
sequence Y[n] of M = 10000 i.i.d. jointly Gaussian random vectors of size N = 5 (the
corresponding signal matrix has the size N ×M) with the following correlation matrix:

RY =


1.9 0.5 0.3 0.2 0.05
0.5 2.3 0.4 0.2 0.1
0.3 0.4 1.5 0.9 0.7
0.2 0.2 0.9 1.1 0.8
0.05 0.1 0.7 0.8 1.2

 .

Hint: You may use the Matlab function eig to calculate the eigenvectors and eigenvalues.

(c) Evaluate the correlation matrix R̂Y of the generated sequence. How far is it from the

specified RY ? Compute R̂y for different values of M and compare it to RY .

(d) Derive the KLT matrix T based on the evaluated correlation R̂Y . Calculate the transform
coefficients Z = T ·Y. Now, evaluate the resulting correlation of the transform coefficients
R̂Z . Is it diagonal?

Solution 52. Using the Karhunen-Loève Transform in Matlab

(a) In Matlab:

N = 5; x = randn(N,1);

(b) First, let us generate the Gaussian normalized sequence X[n] of the length M :

M = 10000; x = randn(N,M);

Now, choose the matrix A, as A = VY · Λ1/2
Y , where VY and ΛY are eigenvectors and

eigenvalues of the autocorrelation matrix RY . This ensures that the correlation of the
variables Yis is given by RY in limit (Exercise 1).

Ry = [1.9 0.5 0.3 0.2 0.05;

0.5 2.3 0.4 0.2 0.1;

0.3 0.4 1.5 0.9 0.7;

0.2 0.2 0.9 1.1 0.8;

0.05 0.1 0.7 0.8 1.2];

[Vy,Ly] = eig(Ry); A = Vy*Ly^0.5; y = A*x;

(c) The correlation of the generated sequence y is evaluated by

Ry1 = (y*y’)/M;

The correlation R̂y approximates the expected correlation Ry. They are not exactly the
same because of the finite length of the Gaussian sequence x. As the length M grows, the
approximated correlation R̂y is closer to the expected correlation Ry.
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(d) The KLT matrix T contains the eigenvectors of the estimated correlation matrix R̂y as
rows in descending order of the corresponding eigenvalues. The KLT and the correlation
Rz are calculated by

% Compute the eigenvectors and eigenvalues of the estimated correlation matrix Ry1

[Vy1,Ly1] = eig(Ry1);

% Then, sort the eigenvalues

[Lsorted,I] = sort(diag(Ly1));

% Arrange them in descending order (sort gives ascending order)

I = I(length(I):-1:1);

% Take the corresponding columns from Vy1 and put them as rows in T

T = Vy1(1:N,I)’;

% Apply the KLT

z = T*y;

% Compute the correlation Rz

Rz = (z*z’)/M;

The correlation Rz is diagonal. This is expected since we used the estimated correlation
matrix R̂y. The KLT is obviously signal-dependent, because it is constructed using the
properties of the generated signal.
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Exercise 53. Karhunen-Loéve transform
Consider a block of Gauss-Markov first-order random variables of size 4: X = [X0, X1, X2, X3]

T
.

Its correlation matrix is given by:

RX =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1


where ρ is the correlation coefficient between two adjacent random variables.
Now take two sub-transforms of size 2× 2, namely, KLT of [X0, X1]

T
and KLT of [X2, X3]

T
to

produce Y = [Y0, Y1, Y2, Y3]
T
.

(a) What is the resulting transform?

(b) Calculate the resulting correlation matrix RY.

(c) Calculate the coding gain associated to RY, i.e. the two sub-transforms, and compare with
the coding gain of the KLT.

Solution 53. Karhunen-Loéve transform

(a) The autocorrelation of [X0, X1] is

R[X0,X1] =

[
1 ρ
ρ 1

]
The eigenvectors of this 2 × 2 symmetric matrix are always v0 = 1/

√
2[1, 1]T and v1 =

1/
√
2[1,−1]T Using

T = 1/
√
2

[
1 1
1 −1

]
as a transform, we get

R[Y0,Y1] =

[
1 + ρ 0
0 1− ρ

]
The resulting transform to be used is

Y0

Y1

Y2

Y3

 = 1/
√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




X0

X1

X2

X3


(b) The resulting RY is obtained by

RY = TRXTT .

Calculations give

RY =


1 + ρ 0 ρ/2(1 + ρ)2 ρ/2(1− ρ2)

0 1− ρ ρ/2(ρ2 − 1) −ρ/2(1− ρ)2

ρ/2(1 + ρ)2 ρ/2(ρ2 − 1) 1 + ρ 0
ρ/2(1− ρ2) −ρ/2(1− ρ)2 0 1− ρ


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(c)

GY =
1

(Π3
i=0R

2
Y (i))

1/4
=

1

((1 + ρ)2(1− ρ)2)
1/4

GKTL =
1

(det Rx)
1/4

=
1

(1− 3ρ2 + 3ρ4 − ρ6)
1/4

Remark that GKTL > GY for any ρ. This is in agreement with the fact that the KLT
maximizes the coding gain.
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Exercise 54. KLT of circulant correlation matrices

Let X be a real periodic sequence of period N = 4 with correlation matrix Rx:

Rx =


1 0.4 0.2 0.4
0.4 1 0.4 0.2
0.2 0.4 1 0.4
0.4 0.2 0.4 1


(a) Compute its KLT, that is, the transform T that diagonalizes Rx.

(b) Consider now the DFT matrix SN of size N = 4. Compute S∗
NRxSN . What do you obtain?

Recall that the DFT can be formulated as a complex matrix multiplication X[k] = SNx[n]
where the DFT matrix SN is given by SN [k, n] = W−kn

N .

(c) Compare both solutions. What can you conclude?

Solution 54. KLT of circulant correlation matrices

(a) The KLT matrix T is given by the eigenvectors of Rx:

T =


−1/2 1/2 −1/2 1/2

0 −
√
(2)/2 0

√
(2)/2√

(2)/2 0 −
√

(2)/2 0
1/2 1/2 1/2 1/2


To show that this is indeed a KLT matrix we compute TRxT

T :

TRxT
T =


0.4 0 0 0
0 0.8 0 0
0 0 0.8 0
0 0 0 2

 ,

which is a diagonal matrix.

(b) The DFT matrix SN [k, n] = W−kn
N of size N = 4 is given by:

D =


1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

 .

If we compute now S∗
NRxSN we obtain:

S∗
NRxSN =


8 0 0 0
0 3.2 0 0
0 0 1.6 0
0 0 0 3.2

 ,

which is also a diagonal matrix.
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(c) Both transforms T and SN give a diagonal correlation matrix and can be used as a decor-
relation transform. However, the DFT matrix is constant for a given N and much easier
to compute that the KLT matrix. However, the DFT matrix does not always produce the
same results of the KLT. This exercise is a particular case where X is periodic and Rx is a
circulant matrix. The reason is that the DFT matrix diagonalizes ANY circulant matrix.
Therefore, if Rx is a circulant matrix, the DFT matrix is preferable as a decorrelation
transform.
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Exercise 55. Karhunen-Loéve transform
Let Rx be the correlation matrix of a real periodic sequence x of period N .

(a) Calculate Rx for the case when N = 2 and Rx = [1, 0.5]. Find the KLT of x, that is,
y = Tx.

(b) Assume next that N = 4 and the correlation matrix Rx of the sequence x is given by

Rx =


1 0.4 0.2 0.4
0.4 1 0.4 0.2
0.2 0.4 1 0.4
0.4 0.2 0.4 1

 (6.3)

Give a 4× 4 matrix T that diagonalizes Rx. What is the resulting correlation matrix Ry?

Hint: Note that the DFT matrix diagonalizes any circulant matrix.

Solution 55. Karhunen-Loéve transform
Since x[n] is periodic, the correlation function is also periodic, i.e., Rx[n] = Rx[n+kN ], ∀n, k ∈ Z.
Therefore, if we use blocks of N consecutive samples of x[n], we obtain vectors whose correlation
matrix is circulant.

(a) In this case N = 2 and Rx[n] = [1, 0.5] and the correlation matrix is

Rx =

[
1 0.5
0.5 1

]
,

and the KLT is the matrix

H =

[
1√
2

1√
2

1√
2

− 1√
2

]
.

Remark that this is also the DFT of size 2 (properly scaled).

(b) In this case, we should use the DFT of size 4 and normalize
√
4, i.e.,

H = 1
2


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j


we have that Y = H⋆X; therefore,

RY = H⋆RxH =


2

0.8
0.4

0.8


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Exercise 56. KLT Filter Bank

Consider the system:

where X[n] is a zero-mean, Gaussian, stationary process with correlation function

RX [n] =



3 if n = 0

2 if n = ±1

1 if n = ±2

2 if n = ±3

0 otherwise

(a) Determine a set of filters h0, h1, h2, g0, g1, g2 in order to minimize the average expectation
of the reconstruction error E[n] = X[n] − X̂[n]. (For simplicity, take the hi’s causal and
the gi’s anti-causal. A solution with real filter coefficients exists but a complex solution is
also accepted.)

(b) What is the reconstruction error for the filters in your answer to the previous question?
What is the probability that the reconstructed process X̂ is equal to the input process X?
Is the process X̂ stationary?

(c) Suppose that we decide to code the processes Y0, Y1, Y2 with a finite number of bits. We
assume that we use an ideal set of coders to compute the coded quantities Ŷi from Yi for
i = 0, 1, 2. If we call Ei = Yi − Ŷi the coding error, we assume that the error variance is
σ2
Ei

= σ2
Yi
2−2ri , where ri is the rate in bits per sample assigned to the coder i. We impose

the rates ri so that σ2
E0

= σ2
E1

= σ2
E2

. We want to compare the advantage of using the
transformation to directly code the process X. Assume that we use an average rate r to
code the components Yi, i.e. 4r = r0 + r1 + r2. What is the average reconstruction error
variance, E[E[n]2] as a function of the average rate r? Compare with the case where you
code directly X[n] using the same rate r (assume similarly that σ2

E = σ2
X2−2r). Which of

the two solutions would you prefer?

Solution 56. KLT Filter Bank

We remark that the given diagram is equivalent to a block transform as depicted in the following
figure.
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Remark that it is the down-sampling factor (i.e., 4) that determines the size of the transformation.
Since the filter bank has only 3 branches, one of the transformed coefficients (Y3 in the figure) is
discarded and replaced with zero at the synthesis.

(a) The coefficients of the filter h and g are in the columns of the matrix H, i.e.,

Hi(z) =
∑3

j=0 hjiz
−j Gi(z) =

∑3
j=0 hjiz

j ,

so we have to determine H in order to minimize the average of the expected error. We
know that the solution is the KLT. This is determined by diagonalizing the correlation
matrix:

Rx =


3 2 1 2
2 3 2 1
1 2 3 2
2 1 2 3

.
This is a circulant matrix and we know it is diagonalized by the Fourier matrix:

F = 1
2


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

 = 1
2

[
f0 f1 f2 f3

]
.

The eigenvalues can be computed by calculating:

F⋆RxF = Λ =


8

2
0

2

.
To determine the KLT, we have to sort the eigenvectors according to a decreasing order of
the eigenvalues and we have to normalize them to have unit norm. This gives:

H = 1
2

[
f0 f1 f3 f2

]
=


1
2

1
2

1
2

1
2

1
2

j
2 − j

2 − 1
2

1
2 − 1

2 − 1
2

1
2

1
2 − j

2
j
2 − 1

2

,
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and the first three columns give the filter coefficients. This solution gives complex coeffi-
cients for the filter H1 and H2.

(b) For this particular case, the eigenvalue corresponding to the removed component is zero;
therefore, the expected error on the block error norm is:

E
[∥∥E[n]

∥∥2] = hT
3 Rxh3 = 0,

and the reconstruction error is zero. This is due to the particular choice of the correlation
function of the input process, which corresponds to a redundancy of the samples.

The probability of perfect reconstruction is:

P {x̂[n] = x[n]} = P {E[n] = 0} = 1.

Remark that this probability would be zero if the error variance was larger than zero. Since
the input process is perfectly reconstructed, the output process is stationary as the input
process.

(c) We compute the variances of the coefficients Y0, Y1, Y2. These are the first three diagonal
terms of H⋆RxH, i.e., σ2

Y0
= 8, σ2

Y1
= 2, σ2

Y2
= 2. We have, computing the error variances

σ2
E0

, σ2
E1

, σ2
E2

.

8 · 2−2r0 = 2 · 2−2r1 = 2 · 2−2r2 ;

therefore, r1 = r2 and r0 = r1 + 1. The average rate r is r = r0+r1+r2
4 = 3r1+1

4 and
r1 = 4r−1

3 . The average reconstruction error variance d is:

d =
σ2
E0

+σ2
E1

+σ2
E2

4 = 3
4σ

2
E1

= 3
22 · 2

−2r1 = 3
22 · 2

−2 4r−1
3 = 3 3

√
42−

8
3 r.

If x[n] is coded directly, the error variance is dx = σ2
x2

−2r = 3 · 2−2r and the coding gain

is, in this case, G = dx

d = 3·2−2r

3 3√42−
8
3
r
= 2

2
3 (r−1), which is always larger than one (remark

that r > 1, for the condition on r0). This means that it is always convenient to use the
transformation instead of coding directly the input process.
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Exercise 57. KLT Filter Bank

In the diagram X[n] is a Gaussian stationary process with zero mean and correlation

RX [n] =
1

2|n|
+

3

8
δ[n− 3] +

3

8
δ[n+ 3]

The blocks A, B, C and D transform the input vector to the output vector by matrix multi-
plication. After block B, three entries of the resultant vector are set to zero before entering in
block C. The matrix B and C are given by

B =


1 2 0 0
0 1 1 0
0 0 0 1
1 1 −1 0

 C =


1 0 1 1
0 1 1 1
1 1 2 2
1 −1 0 0


Answer the following questions.

(a) Is X̂[n] a Gaussian process? Is it stationary?

(b) Compute the correlation matrix of the random vector X̄[n], say R̃X [n] Can you diagonalize
it (find the eigenvalue decomposition) without using Matlab?

(c) Find two possible matrices A and D, such that X̂[n] approaches X[n] with minimum error

variance, i.e. E
[
(X[n]− X̂[n])2

]
should be minimal.

(d) Find a geometric interpretation of the transformations BA and DC.

(e) Consider the following diagram

x[n]x[n] g_0h_0 2 2

Find the filters H0 and G0 such that the system is equivalent to the one in the previous
figure.

Solution 57. KLT Filter Bank

(a) X̂[n] is a Gaussian process. Note that the outputs of the transform D are jointly Gaussian
since they are linear combinations of the input process X[n] (more precisely X[n], X[n−1],
X[n−2], X[n−3]). Hence the output of the parallel to serial converter is a Gaussian process.
However X̂[n] is not stationary in general, since the reconstruction is not perfect and the
upsamplers in the last stage break the stationarity.
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(b) Observe that

X̂[n] =


X[n]
X[n− 1]
X[n− 2]
X[n− 3]


and

RX [0] = 1 RX [1] =
1

2
RX [2] =

1

4
RX [3] =

1

2
. (6.4)

Hence

R̃X =


1 1/2 1/4 1/2
1/2 1 1/2 1/4
1/4 1/2 1 1/2
1/2 1/4 1/2 1


Observe that the correlation matrix R̃X is circulant and we know how to find the eigenvalues
and eigenvectors of circulant matrices. The normalized eigenvectors are given by

wk =
1

2


1

ej
πk
2

ejπk

ej
3πk
2

 k = 0, 1, 2, 3

and the corresponding eigenvalues are given by

λk =

3∑
i=0

R̃X [i]e−j 2πk
4 i k = 0, 1, 2, 3

thus

λ0 = 9/4 λ1 = 3/4 λ2 = 1/4 λ3 = 3/4.

Hence we have the decomposition

R̃X = FΛF ∗

where F = [w0 w1 w2 w3] is the 4× 4 Fourier matrix and Λ = diag(λ0, λ1, λ2, λ3).

(c) From the discussion in class, we know that we have the following conditions on the trans-

forms BA and CD in order for the error variance E
[
(X[n]− X̂[n])2

]
to be minimum,

((BA)T )0 = w0 (DC)0 = w0

where ((BA)T )0 and (DC)0 denote the first columns of (BA)T and DC respectively and
w0 = [1/2 1/2 1/2 1/2]T is the eigenvector of R̃X that corresponds to the largest
eigenvalue λ0. This leads to the following relations that need to be satisfied for optimality.
Equivalently

AT


1
2
0
0

 =


1/2
1/2
1/2
1/2

 D


1
0
1
1

 =


1/2
1/2
1/2
1/2

 .
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Note that each of the relations give four equations in sixteen unknows so we have large
freedom in choosing A and D. You can verify that the following choice for A and D satisfy
the requirement.

A =


1/4 1/4 1/4 1/4
1/8 1/8 1/8 1/8
0 0 0 0
0 0 0 0

 D =


1/6 0 1/6 1/6
1/6 0 1/6 1/6
1/6 0 1/6 1/6
1/6 0 1/6 1/6

 .

For this choice of A and D, we have

BA =


1/2 1/2 1/2 1/2
1/8 1/8 1/8 1/8
0 0 0 0

3/8 3/8 3/8 3/8

 DC =


1/2 0 1/2 1/2
1/2 0 1/2 1/2
1/2 0 1/2 1/2
1/2 0 1/2 1/2

 .

(d) The transformation by BA projects X̄[n] on the space (line) spanned by w0, the result of
this projection is passed to the next stage and the transformation by CD constructs the
best estimate of X̄[n] again in the space spanned by w0.

(e) We can obtain an equivalent system by choosing

H0(z) =
1

2
+

1

2
z−1 +

1

2
z−2 +

1

2
z−3

and

G0(z) =
1

2
+

1

2
z +

1

2
z2 +

1

2
z3.
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Exercise 58.
Consider:

with

H =


1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3

− 1√
2

− 1√
6


and

(a) Determine G in the first diagram in order to have perfect reconstruction.

(b) Determine H0 (z), H1 (z), and H2 (z) such that the second diagram is equivalent to the
first one.

Solution 58.
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Exercise 59.
The process x[n] is coded by using the following system:

The process x[n] is stationary and has correlation Rx[n] =
1

2|n| . Suppose that H is given by:

H =


1√
3

2√
6

0
1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2

 and G = H

Check if the given matrix H is one for which the average reconstruction error is minimum. (Hint:
there is a simple way to do this! )

Exercise 60.
We have that

Rx =

 1 1
2

1
4

1
2 1 1

2
1
4

1
2 1


If H is optimal, the first two columns should span the eigenspace corresponding to the two
largest eigenvalues, while the last one should span the eigenspace corresponding to the minimum
eigenvalue. This implies that the last column is an eigenvector.
In this case, we verify that

Rx ·

 0
1√
2

− 1√
2

 =
1√
2

 1
4
1
2

− 1
2

 ̸= λ

 0
1√
2

− 1√
2


This means that the last column is not an eigenvector, and therefore the transformation can not
be optimal.
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Exercise 61. Transform coding
Consider a zero-mean random variable X[n] that we wish to encode in blocks of 4 samples,
by keeping only the first 3 coefficients in the transform domain. For this purpose, we apply an
orthogonal transform to X[n] and encode the resulting coefficients Y [n]. The decoded coefficients
Ŷ [n] are then transformed back into reconstructed signal samples X̂[n].

(a) Represent this coding problem in a filterbank structure.

(b) Assuming the correlation of X is given by RX [l] = |l mod 4 − 2|2, write down the corre-
lation matrix RX . What type of matrix is RX? Is it diagonalizable?

(c) Determine the optimal transform matrix T that minimizes the reconstruction error. What
is the reconstruction error? Is the process X̂ stationary?

(d) Suppose the correlation is given instead by RX [l] = |l mod 4−2|. What is the reconstruc-
tion error? Is the process X̂ stationary?

Solution 59. Transform coding

(a) The filterbank that performs the coding operation can be represented as follows.

The delay chain on the left generates a signal block of size 4, defined as

X =


X[n]

X[n− 1]
X[n− 2]
X[n− 3]

 ,

which is then transformed into another domain by Y = T∗X. The resulting transform
coefficients are compressed (or coded) by discarding the last coefficient in Y, resulting in
the approximation Ŷ. The inverse transform, given by X̂ = TŶ, obtains an approximation
of the input signal block, which is then recombined into a temporal signal X̂[n].

(b) By expanding RX [l] over l, we get:

RX =


4 1 0 1
1 4 1 0
0 1 4 1
1 0 1 4

 .

Notably, RX is a circulant matrix, and therefore diagonalizable by a DFT matrix of size 4.
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(c) The optimal transform matrix T is the KLT matrix, which contains the eigenvectors of
RX as columns sorted in descending order of the respective eigenvalues. Since RX is
diagonalized by the DFT matrix, F, then the same contains the eigenvectors of RX as
columns. Accordingly,

F =
1√
4


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

 =
[
v0 v1 v2 v3

]

and consequently

F∗RXF =


6

4
2

4

 =


λ0

λ1

λ2

λ3

 .

The only thing left is to sort the eigenvectors as stated, such that

T =
[
v0 v1 v3 v2

]
and thus

T∗RXT =


6

4
4

2

 .

The reconstruction error is given by the sum of the individual errors associated to each
discarded sample i, in which case

∑
i

v∗
iRXvi = v∗

2RXv2 = λ2 = 4.

By discarding the last transform coefficient, we are introducing a non-linearity that makes
the output process X̂ non-stationary.

(d) The correlation matrix is given by

RX =


2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

 ,



116 Chapter 6.

which is also a circulant matrix. In this case, we get

F∗RXF =


4

2
0

2

 .

The difference here is that the lowest eigenvalue is zero, and thus the reconstruction error
is zero as well:

v∗
2RXv2 = λ2 = 0.

This means that the discarded transform coefficient is not necessary to reconstruct X, and
thus X̂[n] = X[n] for all n. Moreover, the output process X̂ is stationary.
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Exercise 62. Z transform
A causal and stable filter has the following Z transform.

H(z) =
1− 4 cos π

4 z
−1 + 4z−2

1− 1
2 cos

3π
4 z−1 + 1

16z
−2

(a) Find all poles and zeros and represent them on the z-plane.

Coding Using Matlab, plot the pole-zero diagram and verify your answer for the previous step.

(b) Determine a strictly minimum phase filter Hm(z) and an all-pass filter Ha(z) such that
H(z) = Hm(z)Ha(z).

Coding Using Matlab, plot the pole-zero diagrams for Hm(z) and Ha(z)

(c) Determine the inverse filter 1/Hm(z) and, given that 1/Hm(z) is causal, explain why it is
also stable and strictly minimum phase.

(d) Determine a filter G(z) such that Hm(z)G(z) is zero-phase. How can G(z) be expressed in
terms of Hm(z)?

Solution 60.

(a) We can factorize H(z) as follows.

H(z) =
1− 4 cos π

4 z
−1 + 4z−2

1− 1
2 cos

3π
4 z−1 + 1

16z
−2

=
1− 2ej

π
4 z−1 − 2e−j π

4 z−1 + 4z−2

1− 1
4e

j 3π
4 z−1 − 1

4e
−j 3π

4 z−1 + 1
16z

−2

=

(
1− 2ej

π
4 z−1

) (
1− 2e−j π

4 z−1
)(

1− 1
4e

j 3π
4 z−1

)(
1− 1

4e
−j 3π

4 z−1
)

from which we easily conclude that the poles are at z = 1
4e

±j 3π
4 and the zeros at z = 2e±j π

4 .

Matlab Using the pzmap and zplane commands in Matlab, the following pole-zero plot can easily
be obtained:

(b) We can decompose H(z) with the following procedure.

i Assign the poles and zeros inside the unit circle to Hm(z) and the zeros on the outside
to Ha(z);

ii Make Ha(z) an all-pass filter by adding poles that are conjugate reciprocals of the
zeros;

iii Cancel the effect of the additional poles by adding zeros to Hm(z) with the same
values.
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The result is as follows.

Ha(z) =

(
1− 2ej

π
4 z−1

) (
1− 2e−j π

4 z−1
)(

1− 1
2e

j π
4 z−1

) (
1− 1

2e
−j π

4 z−1
)

Hm(z) =

(
1− 1

2e
j π

4 z−1
) (

1− 1
2e

−j π
4 z−1

)(
1− 1

4e
j 3π

4 z−1
)(

1− 1
4e

−j 3π
4 z−1

)
(c) The inverse filter is given by

1

Hm(z)
=

(
1− 1

4e
j 3π

4 z−1
)(

1− 1
4e

−j 3π
4 z−1

)
(
1− 1

2e
j π

4 z−1
) (

1− 1
2e

−j π
4 z−1

)
Since the resulting filter is causal and the outer pole is 1

2e
±j π

4 , then the region of convergence
|z| > 1

2 includes the unit circle, which implies that the filter is stable. Moreover, all poles
and zeros are inside the unit circle, and thus the filter is strictly minimum phase.

(d) For Hm(z)G(z) to be zero-phase, all poles and zeros must exist in conjugate reciprocal
pairs. Thus, since

Hm(z) =

(
1− 1

2e
j π

4 z−1
) (

1− 1
2e

−j π
4 z−1

)(
1− 1

4e
j 3π

4 z−1
)(

1− 1
4e

−j 3π
4 z−1

)
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then

G(z) =

(
1− 2ej

π
4 z−1

) (
1− 2e−j π

4 z−1
)(

1− 4ej
3π
4 z−1

)(
1− 4e−j 3π

4 z−1
)

Furthermore, we notice that

H∗
m

(
1

z∗

)
=

(
1− 1

2e
j π

4 z∗
)∗ (

1− 1
2e

−j π
4 z∗
)∗(

1− 1
4e

j 3π
4 z∗

)∗ (
1− 1

4e
−j 3π

4 z∗
)∗

=

(
1− 1

2e
−j π

4 z
) (

1− 1
2e

j π
4 z
)(

1− 1
4e

−j 3π
4 z
)(

1− 1
4e

j 3π
4 z
)

=

− 1
2e

−j π
4 z · − 1

2e
j π

4 z

(
1

− 1
2 e

−j π
4 z

+ 1

)(
1

− 1
2 e

j π
4 z

+ 1

)
− 1

4e
−j 3π

4 z · − 1
4e

j 3π
4 z

(
1

− 1
4 e

−j 3π
4 z

+ 1

)(
1

− 1
4 e

j 3π
4 z

+ 1

)
=

4
(
1− 2ej

π
4 z−1

) (
1− 2e−j π

4 z−1
)(

1− 4ej
3π
4 z−1

)(
1− 4e−j 3π

4 z−1
)

= 4G(z)

We can verify the condition for zero-phase as follows.

Hm(z)G(z) = H∗
m

(
1

z∗

)
G∗
(

1

z∗

)
= 4G(z) · 1

4
Hm(z)
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Exercise 63. One system or more than one system?
Considering the following 3 plots:

- A z-transform in the z-plane (upper left corner), where o denotes the zeros and x the poles
(the poles can in this framework be neglected);

- An impulse response h(n) in the time domain (upper right corner);

- Magnitude of the frequency response |H(ej2πf )| in normalized frequencies (bottom).

According to the plots:

(a) Do the z-transform and the impulse response h(n) correspond to the same system (that is,
is the plot of the z-plane the plot of the z-transform of h(n))? You can plot the z-transform
in Matlab and compare the plots.

(b) Do the z-transform and the magnitude of the frequency response |H(ej2πf )| correspond
to the same system (that is, is |H(ej2πf )| the absolute value on the unit circle of the
z-transform represented in the z-plane plot)?

Solution 61. One system or more than one system?

(a) From the z-plane plot we see that the two zeros are z1 = jα and z2 = −jα, where 0 < α < 1
(real). Consequently the z-transform has the form H̃(z) = (1 − z1z

−1)(1 − z2z
−1) =

(1 − jαz−1)(1 + jαz−1) = 1 + jαz−1 − jαz−1 + α2z−2 = 1 + α2z−2. The corresponding
impulse response is therefore h̃(0) = 1, h̃(1) = 0, h̃(2) = α2, and h̃(k) = 0 for k ≥ 3.
Hence, h̃(n) = h(n) and H̃(z) = H(z).

(b) The z-transforms shows two zeros near the unit circle at normalized frequencies f1 = 0.25
and f2 = −0.25. Consequently the magnitude of the corresponding frequency response
|H̃(ej2πf )| should show a minimum of the frequency response at f1 = 0.25 and a minimum
at f2 = −0.25. The plot of |H(ej2πf )| (bottom) shows a maximum at f1 = 0.25 (and for
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the symmetry of the spectrum, a maximum at f2 = −0.25). Consequently, |H(ej2πf )| ≠
|H(ej2πf )| and the plot of the z-transform and the plot of the magnitude of the frequency
response |H(ej2πf )| do not correspond to the same system.
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Exercise 64. A simple system (4 pts)
The figure below depicts the poles of a causal LTI system P (z). the two poles have magnitude
a = 0.9 and phase φ = ±π/4.

(a) Is the system P (z) stable?

(b) Sketch the magnitude of the transfer function
∣∣P (ejw)

∣∣.
(c) Is the inverse system H(z) = 1/P (z) stable?

(d) Give the impulse response h(n) of H(z).

Solution 62. A simple system

(a) The system P (z) is unstable, because it has poles inside unit circle.

(b) The magnitude
∣∣P (ejw)

∣∣ will have to peaks around π/4 and 7π/4, as shown below:

0 0.5 1 1.5 2 
0

2

4

6
|P

(e
j

)|

(c) The inverse system H(z) = 1/P (z) is stable because it has only zeros, and no poles inside
the unit circle.
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(d) We can write the frequency response of the system as:

P (z) =
1

(1− p0z−1)(1− p0z−1)
=

A

(1− p0z−1)
+

B

(1− p0z−1)
, (6.5)

where p0 = 0.9ejπ/4, p0 is it’s conjugate and A and B are unknown constants we would
like to recover. Each of the fractions can be expanded into a sum as follows:

1

(1− p0z−1)
=

∞∑
n=0

pn0 z
−n,

and we can read that the impulse response has to be hpart[n] = pn0 (for this fraction only).
Therefore, the total impulse response is:

h[n] = Apn0 +Bp0
n.

By comparing the fractions in (6.5), we get that A = p0

p0−p0
= e−jπ/4/

√
2 and B = p0

p0−p0
=

ejπ/4/
√
2, so we get

h[n] =
0.9n√

2
(e−jπ/4ejnπ/4 + ejπ/4e−jnπ/4) = 0.9n

√
2 cos(π(n− 1)/4)
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Chapter 7

Markov Chains and Maximum
Likelihood

Exercise 65. Hidden Markov Models and Likelihood
In this exercise, we will numerically model 2D Gaussian HMMs and generate sequences from
them. Then, we will use the Forward algorithm to compute the likelihood that some sequence
was generated by a given HMM. You can use the Matlab struct file named data.mat, which
contains a couple HMMs stored as struct, each containing the mean values, variance values,
and transition probabilities values.
Some Matlab helper functions are provided on the Moodle:

- (y, state sequence) = generate hmm(hmm): generate a sequence of values y as well as
a states sequence, from one HMM struct given as argument.

- plot sequence(y, state sequence): plot the sequence y against time.

- plot sequence 2d(y, state sequence): plot the sequence in 2 dimensions.

- (likelihood) = forward recursion(y, hmm): compute the likelihood that the sequence
y was generated by HMM hmm.

(a) The HMM we are going to generate will have two additional states, which you could start
and stop. Look at the provided data and identify those states. How can you interpret the
probability of transition from the start state? Why the transition probability from the stop
state

(b) Since the model for the HMM are 2D Gaussians, what are the dimensions of the means
matrix and the variance matrix? How many of these matrices do we need?

(c) We want to generated HMMs with 3 states. How many transition probabilities do we need?
What are the conditions on the transition matrix for it to be valid?

(d) Create a HMM model with 3 states with the programming language of your choice, this
means, generate one mean matrix and one variance matrix for each state, as well as a
transition matrix for the HMM. Alternatively, you can choose to load the data.mat which
contains several ready-to-use HMMs. The means and variance matrix together with the
transition probabilities are called the parameters of the HMM, and are denoted with Θ.

125
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(e) Generate a sequence with the HMM. You can use the function (y, state sequence) =

generate hmm(hmm) to help you. Why does the function return 2 sequences? What is the
difference between these sequences? If only the sequence state sequence was generated,
would we still call this model a HMM?

(f) Try to plot the output sequence y against time (that is, the x axis is time, and the y axis
is either the first dimension of y, either the second, so we need 2 plots to represent the
sequence.) You can use plot sequence(y, state sequence) to help you do that. What
do you observe? Try to change the means, variances, and transition probabilities and
observe what changes on the plot.

(g) Now try to plot the sequence on a single plot, without caring of time progression, but
instead using one axis per dimension of the sequence y. The function plot sequence 2d(y,

state sequence) can help you do that, and also plots ellipses around the clusters of points.
What do these ellipses correspond to? Again, try to change the means, variances, and
transition probabilities and observe what changes on the plot.

(h) Create a second HMM model.

We now want to compute how likely some sequence y was generated from one HMM or another.
We are going to do this using Forward algorithm, which is very well described on Wikipedia).

(a) Use the Forward algorithm to compute the likelihood of 2 sequences with the 2 HMM you
generated (you can use sequences you’ve generated with the HMM, and check that each
sequence as a higher likelihood to be generated of the HMM that indeed generated it). You
can use forward recursion(y, hmm) to compute the (log of the) likelihood. You can also
test the likelihood of some other sequences given in the data.mat file.

(b) If you used the sequences you generated yourself, which sequence is the most likely to be
generated from which HMM? Why?

Solution 63. Hidden Markov Models and Likelihood
Solution is available in Matlab (in .zip).

https://en.wikipedia.org/wiki/Forward_algorithm
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Exercise 66.
In Markov chains, the probability that the chain is in a particular state k is given by πk and
the distribution of probabilities for states 1 ≤ k ≤ n can be represented by a vector π such that
0 ≤ πk ≤ 1, ∀k and

∑n
k=1 πk = 1. Markov chain is characterized by a matrix M such that the

probability distribution πm+1 at instant m + 1 can be computed from the distribution πm at
instant m as follows:

πm+1 = Mπm .

The matrix M = [mij ] has the following properties: 0 ≤ mij ≤ 1 and
∑n

i=1 mij = 1, ∀j. An
equilibrium distribution of the Markov chain πe is a solution of the eigenvalue equation:

Mπe = πe

(a) Let ∥.∥1 be the 1-norm, defined as follows:

∥x∥1= |x1|+ . . .+ |xn|, x ∈ Cn .

Show that ∥Mπ∥1= ∥π∥1 for any probability distribution π.

(b) Does the sequence πm always (for any initial vector π0 with the above properties) converge
to an equilibrium distribution πe?

Solution 64.

(a)

∥Mπ∥1 =

n∑
i=1

|(Mπ)i|=
n∑

i=1

|(
n∑

j=1

πjmj)i|=
n∑

i=1

|
n∑

j=1

πjmij |

=

n∑
i=1

n∑
j=1

πjmij =

n∑
j=1

πj

n∑
i=1

mij =

n∑
j=1

πj · 1 =

n∑
j=1

|πj |

= ∥π∥1 .

(b) No, it does not. A counterexample are the following matrix and vector

M =

[
0 1
1 0

]
, π0 =

[
1
0

]
(7.1)

It is easy to verify that the sequence does not converge.
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Exercise 67. Markov Process
Let {X(t), t ≥ 0} be a stochastic process with state space S = {0, 1, . . . ,∞}. Suppose that the
two following conditions hold:

(a) P (X(0) = 0) = 1

(b) {X(t), t ≥ 0} has independent increments. That is, for every n and for every 0 ≤ t1 <
. . . < tn, {Yi = X(ti) − X(ti−1), i = 1, . . . , n} are independently distributed from one
another.

Show that X(t) is a Markov process.

Solution 65. Markov Process
In order to prove that the process X(t) is a Markov process, it suffices to prove that for every n,
for every 0 ≤ t1 < . . . < tn and for every x1, . . . , xn ∈ S, the following conditional probability:

P (X(tn) = xn|X(tn−1) = xn−1, . . . , X(t1) = x1) (7.2)

should be equal to
P (X(tn) = xn|X(tn−1) = xn−1) . (7.3)

The probability given in (7.3) can be transformed in the following way:

P (X(tn) = xn|X(tn−1) = xn−1)

= P (X(tn−1) + Yn = xn|X(tn−1) = xn−1)

= P (xn−1 + Yn = xn|X(tn−1) = xn−1)

= P (Yn = xn − xn−1|X(tn−1) = xn−1) . (7.4)

On the other hand, using the relation between the random variables X(tn), . . . , X(t1) and
Yn, . . . , Y1, the probability given in (7.2) can be transformed in the following way:

P (X(tn) = xn|X(tn−1) = xn−1, . . . , X(t1) = x1)

= P (X(tn−1) + Yn = xn|X(tn−1) = xn−1, . . . , X(t1) = x1)

= P (Yn = xn − xn−1|X(tn−1) = xn−1, . . . , X(t1) = x1)

= P (Yn = xn − xn−1|X(tn−1) = xn−1, Yn−1 = xn−1 − xn−2, . . . , Y1 = x1)

= P (Yn = xn − xn−1|X(tn−1) = xn−1) . (7.5)

Since the final expressions in (7.4) and (7.5) are equal, the process X(t) is a Markov process.
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Exercise 68. Markov chains

(a) How many parameters are there in a discrete Markov chain with 3 states, all connected
with each other (and to themselves)? What is the type (the name) of the parameters?

(b) How many parameters are there in a hidden 1-D Gaussian Markov model with 3 states,
all connected with each other (and to themselves)? What is the type (the name) of the
parameters?

Solution 66.
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Exercise 69. Markov Chain
In this exercise you will generate Markov chain with 3 states. This could be for example the
state of the weather: sunny, snowy and rainy. We can write transition probabilities in the matrix
form: 0.8 0.2 0.1

0.1 0.6 0.2
0.1 0.2 0.7

 (7.6)

where the probabilities of the states at step n+ 1 given at step n the process was in the state i
is defined by i-th column.

(a) Warm up exercise: Draw the diagram depicting this Markov Chain and it’s transition
probabilities.

(b) Generate a realisation of this Markov Chain in Python or Matlab, picking any state you
like as the initial state. You can use provided Jupyter Notebook.

(c) Is your process (with a fixed starting point) stationary? What is the probability distribution
after one, two and five steps? You can calculate the distribution in Python/Matlab.

(d) What equations the initial probabilities have to satisfy for the process to be stationary?

(e) Calculate such inital probabilities in Python/Matlab. Do it twice using different methods:
using eigenvalue decomposition and estimate using your realisation of the process. Give
example situations where you would use each method.

(f) Assume now that you don’t know the the transition probabilities of your Markov Chain.
Formulate the Maximum Likelihood as optimisation problem. What method would you
use to solve it?

(g) Additional Question: Using the generated realisations of your signal solve your problem
using solve in Matlab or scipy.optimize.minimize in Python. Is your estimation accu-
rate?

Solution 67. Markov chain
Solution is available in Jupyter Notebook
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Exercise 70. Markov Chain and Friends
Hidden Markov Model is Markov Chain observed through some additional random variable, for
example through added noise.

(a) Explain that Gaussian Mixture model is a special case of Hidden Markov Model. What
assumption do you have to add about Markov Chain?

(b) Explain that Y [n] from the first part of the exercise previous exercise is a special case of
Hidden Markov Model. What assumption do you have to add about Markov Chain?

(c) What about Y [n] with a prior on X[n]?

(d) Pick and solve one of the Final Exam questions: 2018 2.C or 2015 3.B

Solution 68. Markov Chain and Friends

(a) If you take a (silly) special case where the states in the Markov Chain are i.i.d., that is when
the transition probabilities don’t depend on the previous state, and the Hidden Markov
Model obtained by adding Gaussian noise to the states also a Gaussian Mixture Model

(b) We can think about the model from the previous exercise as single class Gaussian Mixture
Model or in other words as a HMM with constant Markov Chain.

(c) On the other hand, if we have a continuous prior on A, this model becomes different form
HMM, because we have a continuous and not discrete hidden state.



132 Chapter 7.

Exercise 71.

Suppose the signal X[n] is constant, with amplitude A. Furthermore, let the observed signal
Y [n] contain a noisy version of the signal X[n]

Y [n] = X[n] +W [n] ,

where W [n] is a zero-mean white Gaussian noise with variance σ2.

Assuming N observations of Y [n] are given (Y [0], . . . , Y [N − 1]), give the maximum likelihood
estimation of the parameter

θ =

(
A
σ2

)

containing the unknown amplitude A and noise variance σ2.

Solution 69.

First, it can be observed that sinceX[n] is a constant (X[n] = A) andW [n] is iid with distribution
N (0, σ2), the process Y [n] is also iid, with distribution N (A, σ2). In other words, knowing the

value of θ =

(
A
σ2

)
, the joint distribution of N samples Y [0], . . . , Y [N − 1] is given by

p(Y [1], . . . , Y [n]|θ) iid
=

N−1∏
i=0

p(Y [i]|θ)

=

N−1∏
i=0

1√
2πσ2

e−
(Y [i]−A)2

2σ2 .

Furthermore, according to the definition, the likelihood function associated to the probability
density function of the observed data is given by

L(θ) ≜ p(Y [1], . . . , Y [n]|θ)

=

N−1∏
i=0

1√
2πσ2

e−
(Y [i]−A)2

2σ2 ,

and its logarithm, the log-likelihood, is

L∗(θ) = lnL(θ)

= −N

2
ln 2π − N

2
lnσ2 −

N−1∑
i=0

(Y [i]−A)2

2σ2
.

Maximizing the likelihood function is equivalent to maximizing the log-likelihood, which can be
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done by setting to zero the partial derivatives of L∗(θ) with respect to A and σ2. It gives:

∂L∗(θ)

∂A
= 0 ⇔ 2

N−1∑
i=0

Y [i]−A

2σ2
= 0

⇒ Â =
1

N

N−1∑
i=0

Y [i] ;

∂L∗(θ)

∂σ2
= 0 ⇒ − N

2σ2
+

N−1∑
i=0

(Y [i]−A)2

2σ4
= 0

⇒ σ̂2 =
1

N

N−1∑
i=0

(Y [i]− Â)2 .
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Exercise 72. Maximum Likelihood
Suppose the signal X[n] is constant, with amplitude A. Furthermore, let the observed signal
Y [n] contain a noisy version of the signal X[n]

Y [n] = X[n] +W [n] ,

where W [n] is a zero-mean white Gaussian noise with variance σ2.

(a) Assuming N observations of Y [n] are given (Y [0], . . . , Y [N − 1]), give the maximum likeli-
hood estimation of the parameter

θ =

(
A
σ2

)
containing the unknown amplitude A and noise variance σ2.

(b) Download data file MaximumLikelihood.csv from Moodle. It was generated from Y . Es-
timate θ using the formulas you derived in the previous part.

(c) Is your estimator unbiased? Is the estimator in the programming language of your choice
unbiased?

Solution 70. Maximum Likelihood

(a) First, it can be observed that since X[n] is a constant (X[n] = A) and W [n] is iid with dis-
tribution N (0, σ2), the process Y [n] is also iid, with distribution N (A, σ2). In other words,

knowing the value of θ =

(
A
σ2

)
, the joint distribution of N samples Y [0], . . . , Y [N − 1]

is given by

p(Y [1], . . . , Y [n]|θ) iid
=

N−1∏
i=0

p(Y [i]|θ)

=

N−1∏
i=0

1√
2πσ2

e−
(Y [i]−A)2

2σ2 .

Furthermore, according to the definition, the likelihood function associated to the proba-
bility density function of the observed data is given by

L(θ) ≜ p(Y [1], . . . , Y [n]|θ)

=

N−1∏
i=0

1√
2πσ2

e−
(Y [i]−A)2

2σ2 ,

and its logarithm, the log-likelihood, is

L∗(θ) = lnL(θ)

= −N

2
ln 2π − N

2
lnσ2 −

N−1∑
i=0

(Y [i]−A)2

2σ2
.
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Maximizing the likelihood function is equivalent to maximizing the log-likelihood, which
can be done by setting to zero the partial derivatives of L∗(θ) with respect to A and σ2.
It gives:

∂L∗(θ)

∂A
= 0 ⇔ 2

N−1∑
i=0

Y [i]−A

2σ2
= 0

⇒ Â =
1

N

N−1∑
i=0

Y [i] ;

∂L∗(θ)

∂σ2
= 0 ⇒ − N

2σ2
+

N−1∑
i=0

(Y [i]−A)2

2σ4
= 0

⇒ σ̂2 =
1

N

N−1∑
i=0

(Y [i]− Â)2 .

(b) On this particular realisation of the process, mean of the samples is ∼ 3.17. The variance
using your estimator is ∼ 2.26. If you use Python, then the build in np.var also gives you
∼ 2.26, but in Matlab you get ∼ 2.27 if you use var.

(c) The estimator of the mean is unbiased but the estimator of variance is biased. You can
infer it by looking at the unbiased estimator introduced in the lecture:

σ̂2 =
1

N − 1

N−1∑
i=0

(Y [i]− Â)2

and noticing that your estimator differs by a factor N−1
N .

Alternatively, you can calculate the expected value of σ̂, but is a long calculation. We
have to be careful because estimator of σ depends on the estimator the mean, which is not
independent of the data, and thus we have to replace it with the mean of samples.

Before we do this, let us consider the implementations of variance estimators in Python and
Matlab. In the first one, the default estimator is biased, exactly the one we have calculated,
and you can observe that the values of the estimators match (see previous point). In Matlab
however, the estimator is unbiased, and we can see that on our data it’s value is slightly
higher. In both those languages, you can pass a flag that will change the behaviour of the
estimator.

Exact calculation of the expectation of the estimator:

σ̂2 =
1

N

N−1∑
i=0

(Y [i]− Â)2

=
1

N

N−1∑
i=0

(Y [i]− 1

N

N−1∑
k=0

Y [k])2

=
1

N

N−1∑
i=0

(
N − 1

N
Y [i]− 1

N

N−1∑
k ̸=i

Y [k])2
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Now, the first component of the sum is independent of the second one. More over, the
expression under the sum does not depend on the choice of i and we can write:

E(σ̂2) =

(
N − 1

N

)2

EY 2
0 − 2

N − 1

N
EY0E

(
N−1∑
k=1

1

N
Yk

)
+ E

(
N−1∑
k=1

1

N
Yk

)2

=

(
N − 1

N

)2 (
EY 2

0 − 2(EY0)
2
)
+

1

N2
E

(N−1∑
k=1

Yk

)N−1∑
j=1

Yj


=

(
N − 1

N

)2 (
EY 2

0 − 2(EY0)
2
)
+

1

N2

((
(N − 1)2 −N

)
(EY0)

2 +NEY 2
0

)
,

where the last equality comes form considering j = k and j ̸= k separately. Just by
rearranging the terms we get:

E(σ̂2) =
(N − 1)2

N2

(
EY 2

0 − (EY0)
2
)
+

1

N

(
EY 2

0 − (EY0)
2
)

=
N − 1

N
Var(Y ) ̸= Var(Y )

So the estimator is biased.
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Exercise 73. Prior, posterior, likelihood

Suppose the signal X[n] is constant, with amplitude A. Furthermore, let the observed signal
Y [n] contain a noisy version of the signal X[n]

Y [n] = X[n] +W [n] ,

where W [n] is a zero-mean white Gaussian noise with variance σ2 = 1.

(a) Assuming N observations of Y [n] are given (Y [0], . . . , Y [N − 1]), give the maximum likeli-
hood estimation of amplitude A

(b) Download data file Review_3.csv from Moodle. It was generated from Y . Estimate θ
using the formulas you derived in the previous part.

(c) Now assume that A is in itself a random variable, with prior distribution A ∼ N (0, σ2
A).

What is MAP (maximum a posteriori) estimator of A?

(d) How can you relate prior, posterior and likelihood in one equation?

(e) Assuming different σ2
A (for example 0.001, 1 and 100), estimate from the data A using

MAP. What do you observe?

Solution 71.

(a) First, it can be observed that since X[n] is a constant (X[n] = A) and W [n] is iid with
distribution N (0, 1), the process Y [n] is also iid, with distribution N (A, 1). In other words,
knowing the value of A, the joint distribution of N samples Y [0], . . . , Y [N − 1] is given by

p(Y [1], . . . , Y [n]|A)
iid
=

N−1∏
i=0

p(Y [i]|A)

=

N−1∏
i=0

1√
2π

e−
(Y [i]−A)2

2 .

Furthermore, according to the definition, the likelihood function associated to the proba-
bility density function of the observed data is given by

L(A) ≜ p(Y [1], . . . , Y [n]|A)

=

N−1∏
i=0

1√
2π

e−
(Y [i]−A)2

2 ,

and its logarithm, the log-likelihood, is

L∗(A) = lnL(A)

= −N

2
ln 2π −

N−1∑
i=0

(Y [i]−A)2

2
.
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Maximizing the likelihood function is equivalent to maximising the log-likelihood, which
can be done by setting to zero the partial derivatives of L∗(A) with respect to A. It gives:

∂L∗(A)

∂A
= 0 ⇔ 2

N−1∑
i=0

Y [i]−A

2
= 0

⇒ Â =
1

N

N−1∑
i=0

Y [i] ;

(b) For the data provided, the mean is 5.71.

(c) Our likelihood from the first part of the exercise have been calculated assuming that A is a
parameter, so we have p(Y [i]|A). We are now interested in posterior distribution, that is:

p(A|Y [i]).

We can calculate it using Bayes rule:

p(A|Y [i])p(Y [i]) = p(Y [i], A) = p(Y [i]|A)p(A)

In a more elaborate way, we can write it as:

posterior× evidence = likelihood× prior.

Since evidence is probability of data, it’s constant for the given data and we can ignore it
in the optimisation. We are then interested in maximising:

p(Y [1], . . . , Y [n]|A)p(A) =

(
N−1∏
i=0

p(Y [i]|A)

)
p(A)

=

(
N−1∏
i=0

1√
2π

e−
(Y [i]−A)2

2

)
1√
2πσ2

A

e
− A2

2σ2
A

similarly like with likelihood optimisation, it’s easier to optimise the logarithm:

−N

2
ln 2π − 1

2
ln 2πσ2

A −
N−1∑
i=0

(Y [i]−A)2

2
− A2

2σ2
A

,

we want it’s derivative to be equal to zero:

−
N−1∑
i=0

(Y [i]−A) +
A

σ2
A

= 0 (7.7)

And maximum a posterior estimator is:

Â =

∑N−1
i=0 Y [i](
N + 1

σ2
A

) (7.8)

(d) Value of the estimator Â depending on the variance of the prior σ2
A. Small variance of

the prior means we have a strong belief that A should be close to zero, and this belief is
reflected in the value of the estimator, see the plot below.
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Exercise 74. Poisson Process
Poisson process is the continues time process consisting with spikes only. There are two ways of
generating it, and in this exercise we will see that they are equivalent.
The common definition of Poisson process is that the number of spikes k on the interval of length
t has Poisson distribution:

p(k, tλ) =
(tλ)ke−tλ

k!
(7.9)

On the interval [0, t), given the number of spikes, the spikes positions t1, t2, . . . , tk are distributed
uniformly:

(t1, t2, . . . , tk) ∼ Uk(0, t).

And similarly, on any interval [t0, t0 + t):

(t1, t2, . . . , tk) ∼ Uk(t0, t0 + t). (7.10)

(a) Warm up question: Is the process y[n] of the number of spikes in the interval [n, n + 1)
stationary?

(b) Calculate maximum likelihood estimator of parameter λ of Poisson Process. Hint: you can
count the number of samples first.

(c) In Matlab or Python generate a realisation of the Poisson process re-estimate parameter
λ. How long your interval should be for accurate estimation of λ? Does it matter if you
average over multiple intervals? You can use the provided Jupyter Notebook.

Now we will generate the spike times ti directly using exponential distribution on the times of
arrival, ti+1 − ti:

t1 ∼ exp(t, τ) (7.11)

ti+1 − ti ∼ exp(t, τ)

where the pdf of exponential distribution is

p(t, τ) =

{
τe−τt t ≥ 0,

0 t < 0.

(d) Generate realisations of this process for different τ .

(e) Use the maximum likelihood estimator from the previous part of the exercise to estimate
Poisson process parameter λ.

(f) Plot estimated λ against τ . What is the dependence between those parameters? Is that
what you would expect?

(g) Additional question: Prove that indeed the two discussed methods generate the same pro-
cess (for the right choice of λ and τ).

Solution 72. Poisson process
Solution is available in Jupyter Notebook
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