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Stochastic Processes

w.s.s.
E[X[n]]=const. ,Var(X[n])=const.<∞

E[X[k]X∗[l]]=R(k−l) ,∀k,l∈Z ,

PSD: w.s.s. + RX (k)∈ℓ1 (summable)

SX (ω)=
∑∞

k=−∞ RX (k)e−iωk .

Fundamental Filtering Formula
X[n] w.s.s., RX (k)∈ℓ1, and hk∈ℓ1, then

Y [n]=
∑∞

k=−∞ hn−kX[k] , is w.s.s. with

E[Y ]=E[X]
∑∞

k=−∞ hk , RY (k)∈ℓ1

SY (ω)=|H(ω)|2SX (ω) ,H(ω)=DTFT of hk

Markov Chain
{X[n]}n∈Z (considered stationary) with discrete values in D, |

P(X[n]=in | X[n−1]=in−1,X[n−2]=in−2,...)

=P(X[n]=in | X[n−1]=in−1) ,∀in,in−1,...∈D

Hidden Markov Chain
{X[n]}n∈Z Markov chain, {W [n]}n∈Z Gaussian white noise

Y [n]=X[n]+W [n] .

Bayes’ Rule
A and B with discrete values in D,

P(A=k | B=l)=
P(A=k , B=l)

P(B=l)
, k,l∈D .

AR Process
A w.s.s. process X[n], with values in R, |∑M

k=0 pkX[n−k]=W [n] , n∈Z ,

W [n], is a zero mean Gaussian white noise
pk , k=0,...,M bounded coefficients (real or complex). We as-
sume p0=1.

Filtering Interpretation (z−1 delay operator)

P (z)X[n]=W [n]

Canonical form: P (z) strict. min. phase, p0=1.

Correlation:

RX [m]+
∑M−1

k=1
pkRX [m−k]=δmσ2

W , m≥0 .

PSD (fundamental filtering formula):

SX (ω)|P(ejω)|2=σ2
W .

Harmonic Processes

X[n]=
∑K

k=1 αke
j(ωkn+Θk) ,n∈N ,

Θk i.i.d. uniformly distributed over [0,2π].

RX [l]=
∑K

k=1|αk|2ejωkl , SX (ω)=
∑K

k=1|αk|2δ(ω−ωk) .

Poisson Random Process N((0, t])

N((0, t]) obeys the Poisson distribution P(N=k)=
(aλ)ke−aλ

k!
, (λ

is the rate), and given two disjoint intervals (t1, t2] and (t3, t4],
N((t1, t2]) is independent of N((t3, t4]).
Inter-arrival time Sn=Tn−Tn−1 . i.i.d. with density fS(t)=λe−tλ .

Hilbert Spaces

Projection Theorem
E ,S Hilbert spaces with S⊂E, then

∀v∈E ,∃! b∈S |

b=argmin
c∈S

∥v−c∥ , ⟨v−b,c⟩=0 ,∀ c∈S ,

Projection Theorem w.s.s.
E S Hilbert spaces of w.s.s. processes with S⊂E⊆L2(P ), then

∀X[n]∈E ,∃!Y [n]∈S |

Y [n]=argmin
U[n]∈S

E[|X[n]−U [n]|2] ,

E[(X[n]−Y [n])U∗[n]]=0 ,∀ U [n]∈S ,

Empirical Statistics

Bias & Variance
Ŝ(x[1],...,x[N ]) empirical statistics of a probabilistic moment S.
Bias E[Ŝ(X[1],...,X[N ])]−S ,

Variance Var(Ŝ(X[1],...,X[N ])−S) .

Unbiased & Biased Correlation

R̂NB
X (k)= 1

N−|k|
∑N−|k|

n=1 x[n+k]x∗[n] ,

R̂B
X (k)= 1

N

∑N−|k|
n=1 x[n+k]x∗[n] .

Methods

Linear Estimation of w.s.s.: Wiener Filter
Estimation of X[n] given Y [n]

Normal equations RXY [u]=
∑

m∈Z h[m]RY [u−m]

Wiener Filter H(ejω)=
SXY (ω)

SY (ω)

Linear Prediction of w.s.s.: Yule-Walker
Prediction of X[n] as linear combination of X[n−1],...,X[n−N ].
Coefficients ak solutions of


RX [0] ... RX [N−1]

...
. . .

...
RX [N−1] ... RX [0]




a1

...
aN

=


RX [1]

...
RX [N ]

 .

Linear Estimation of AR: Yule-Walker∑N
k=0 pkX[n−k]=W [n] . Coeff. pk solution of

−


RX [0] ... RX [N−1]

...
. . .

...
RX [N−1] ... RX [0]




p1

...
pN

=


RX [1]

...
RX [N ]

 .

σ2
W=RX [0]+RX [1]p1+...+RX [N ]pN

Linear Pretiction of AR: Projection Theorem
H(X,n)=H(W,n) , ∀ n∈Z .

Intuitive property:

Y ∈H(X,n+k) , Y =A+B , A⊥H(X,n) , B∈H(X,n)

orthogonal projection of Y onto H(X,n) is B.

Estimation Param. Prob.: MLE
θ parameters of the prob. function fY , y[1],...,y[N ] realization
of the process Y [n], then

θ̂=argmaxθ fY (y[1],...,y[N ],θ)

Spectral Estimation

Periodogram: General w.s.s. process

PN
X (ω)= 1

N |∑N
n=1 x[n]e−jωn|2= 1

N
|x̂N (ω)|2 ,

Bias ∑N−1
k=−N+1

N−|k|
N

RX [k]e−jωk−SX (ω)

Variance constant
Resolution ∆f> 1

N

Annihilating Filter: Line Spectra
Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in absence of noise
1) Given 2K observations, solve the system

x[K−1] ... x[0]

...
...

x[2K−2] ... x[K−1]




h[1]

...
h[K]

=−


x[K]

...
x[2K−1]


2) Compute H(z) and the zeros of H(z)

3) Compute the argument of the zeros of H(z)

4) Compute ωk from the zeros’ arguments
5) Compute the amplitudes |αk|2 by solving

1 ... 1

ejω1 ... ejωK

...
...

ejω1(K−1) ... ejωK (K−1)





α1e
jΘ1

α2e
jΘ2

...
αKejΘK


=



x[0]

x[1]

...
x[K−1]


MUSIC: Line Spectra
Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in the presence of noise
1) Given M observations with M>>N>K center the process
and compute the empirical correlation matrix

R̂NN
Y = 1

M−N+1

∑M−N+1
n=1 yN1[n]yN1[n]

H
;

2) Compute the eigendecomposition ĜN(N−K) of R̂NN
Y

corresponding to λR
K+1 to λR

N .
3.a) Determine the peaks of

1

eN1(ω)H ĜN(N−K)ĜN(N−K)HeN1(ω)
;

where

eN1(ω) =
[
1 e−jω . . . e−j(N−1)ω

]T
,

3.b) Determine the minimum values of

eN1(ω)HĜN(N−K)ĜN(N−K)HeN1(ω) .

4) Compute the modulus of the amplitudes using

RNN
Y =ENKAKKENKH

+σ2
W INN .

Yule-Walker: Smooth Spectra
1) Given N observations with N>>M center the process and
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compute the empirical correlation

R̂X [k]= 1
N

∑N−k
n=1 x0[n+k]x0[n]∗ , k=0,...,M

2) Solve the Yule Walker equations to obtain p̂1,...,p̂M

3) Compute the estimate of the spectrum as

ŜX (ω)=
σ̂2
W

|P̂ (z)|2

∣∣∣∣∣
z=ejω

.

Mixture Models

Sequence of samples y=[y[1],...,y[N ]], sequence of corresponding
classes c=[c[1],...,c[N ]]

FY (y)=
∑

c∈C P(Y ≤y,C=c)=
∑

c∈C P(Y ≤y |C=c)P(C=c)

=
∑

c∈C
∏N

n=1 P(Y [n]≤y[n] |C[n]=c[n])P(C=c)

i.i.d. Mixtures

P(C=c)=P(C[1]=c[1])...P(C[N ]=c[N ])=πc[1]...πc[N] ,

Markovian Mixtures

P(C=c)=πc[1]pc[1]c[2]...pc[N−1]c[N] ,

Hidden Markov chain
Y =X+W where X is a Markov Chain and W a white Gaussian
noise.

fY (y)=
∑

x∈C
∏N

n=1 G
x[n],σ2 (y[n])P(X=x) .

Denoising a Discrete Value Process
Estimate the parameters of the mixture model using the max-
imum likelihood approach; Estimate the original signal using
the maximum a posteriori approach, i.e., find x maximizing
the a posteriori distribution

P(X=x |y)=
fY (y |X=x)P(X=x)

fY (y)

PCA

Principal Components Computaiton
M data vectors, each characterized of N variables (realization
of a zero mean w.s.s. process) cm=[cm[1],...,cm[N ]]T , m=1,...,M.
Empirical correlation matrix

R̂c=
1
M

∑M
m=1 cm∗cHm= 1

M
C∗CH , (N×N) , where C=

[
c1 . . . cM

]
,

V solution of the equation R̂cV =V Λ, where Λ=diag(λ1,...,λN )

and V HR̂cV =Λ.
Principal components Z=V TC ,(N×M), uncorrelated.
Invertible transformation C=V Z ,

Analysis
K<<N eigenvalues with highest values (lossy/lossless reduc-
tion of variables)

Adaptive Filtering / Echo cancellation

Wiener-Hopf equations
∑

k∈Z h[n−k]RY (k−l)=RXY (n−l) , ∀ l .

Echo cancellation setup

E[n]=D[n]−fn∗X[n]=S[n]+h∗X[n]−fn∗X[n]=S[n]+(h−fn)∗X[n] .

Cost function & normal equations
Cost function for a k-tap filter

J(fn)=E[|E[n]|2]=E[|D[n]−fn∗X[n]|2] , w.r.t. fn[l] ,l=0,1,...,K

Minimum of the cost function = normal equations∑K
l=0 fn[l]RX (n−l,n−i)=RDX (n,n−i) , RX,nfn=rDX,n .

Iterative solution

f(i+1)=f(i)+µp , i=0,1,... , µ & p such that J(f(i+1))<J(f(i))

Convergence conditions

0<µ<2/λmax , p= 1
2
(rDX−RXf(i)) or p=4R−1

X
(rDX−RXf(i))(Newton)

Convergence rate

• 0≤1−µλj<1, monotonic decay to zero;

• −1<1−µλj<0 oscillatory decay to zero.

• K +1 modes {1− µλj , j = 0, . . . ,K}. The modes with
maximum magnitude (slowest rate of convergence), de-
termine the convergence rate of the algorithm. One can
select µ optimally by minimizing the value of the slowest
mode minµ maxj=0,...,K |1−µλj | , with the constraint that
each of the modes is stable, i.e., |1− µλ| < 1.

Computational burden reduction
Merging interation and adaptation

fn+1=fn+µ(rDX,n+1−RX,n+1fn) ,

fn+1=fn+µR−1
X,n+1

(rDX,n+1−RX,n+1fn) (Newton) ,

Replacing statistics with individual values

fn+1=fn+µXn(D[n]−XT
n fn)=fn+µXnE[n] ,


