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Stochastic Processes
W.S.S.
E[X [n]]=const. ,Var(X[n])=const.<oco

E[X [k]X*[l]]=R(k—1) Vk,l€Z

PSD: w.s.s. + Rx(k)et; (summable)

Sx (W)=E52 _ o Rx (k)e ik,
Fundamental Filtering Formula
X[n] W.8.8., Rx (k)eti, and nyeer, then

Y= hn_kX[k], is w.s.s. with
B[Y]=E[X]X§Z _oo bk, Ry(k)€ly
Sy (w)=|H(w)|2Sx () ,H(w)=DTFT of hy,

Markov Chain

{X[n]}, ey (considered stationary) with discrete values in D, |
P(X[n]=in | X[n—1]=ip_1,X[n—2]=in_2,...)
=P(X[n]=in | X[n—1]=in_1) Vin,in_1,..€D

Hidden Markov Chain

{X[n]}, ez Markov chain, {W[n]}, , Gaussian white noise

Y [n]|=X[n]4+W|n].

Bayes’ Rule
A and B with discrete values in D,
P(A=k | B=l)=%, k,leD.
AR Process
A w.s.s. process X[n], with values in R, |
SilopkX[In—k]=W[n], ne€z,

Win], is a zero mean Gaussian white noise
Pk, k=0,...,M bounded coefficients (real or complex). We as-
sume po=1.
Filtering Interpretation (»—' delay operator)
P(2)X[n]=W n]

Canonical form: p(z) strict. min. phase, po=1.
Correlation:

Rx [m+ S0t pi Ry [m—kl=8mafy, ,
PSD (fundamental filtering formula):

Sx(@)|P(e7) [2=0? .

Harmonic Processes

m>0.

X=X, aped(“xn+Ok) new,

Oy, i.i.d. uniformly distributed over [0,2x].

Rx (=41 lakl?e“k | Sx (@)=F lak|?6(w—wg) -
Poisson Random Process N ((0,¢])
N((0,t]) obeys the Poisson distribution p(n=k)= (0 e™"> ()
is the rate), and given two disjoint intervals (¢1,t2] and (¢s, t4],
N((t1,t2]) is independent of N((ts,t4]).
Inter-arrival time s,, =T, —T,,_; . i.i.d. with density fg@)=re **.

Hilbert Spaces
Projection Theorem
e,s Hilbert spaces with sck, then

YoeE ,31beS |

b=arg min||v—c|| , (v—b,c)=0,V c€S,
ceS

Projection Theorem w.s.s.
E s Hilbert spaces of w.s.s. processes with scecL?(p), then

VX[n]€E,3Y[n]eS |

¥ [n}arg minE[| X [n] U] |?]
Uln]les

B[(X[n]—Y [n]))U* [n]}0 ¥ Ulnles

Empirical Statistics
Bias & Variance

S(x[1],...,z[N]) empirical statistics of a probabilistic moment s.

Bias E[S(X[1],....X[N])]-S,
Variance var(S(x[1],...,X[N])-S8).
Unbiased & Biased Correlation

RYB () =2y =02 aln+kla* [n],

Nil‘k‘ z[n+klz*[n].

RE (=% 52
Methods
Linear Estimation of w.s.s.:. Wiener Filter
Estimation of x[n] given v[n)
Normal equations Rxy [u]=%,,cz hlm]Ry [u—m]
Wiener Filter H(ejw)zsé{%(f:;)
Linear Prediction of w.s.s.: Yule-Walker

Prediction of x[n] as linear combination of X[n—1],...,X[n—N].

Coefficients a;, solutions of

Rx[0] Rx[N—1]| | a1 Rx|[1]
Rx[N—1] Rx[0] an Rx [N]
Linear Estimation of AR: Yule-Walker
SN o peX[n—k]=W[n]. Coeff. p, solution of
Rx[0] Rx[N-1]| | p1 Rx[1]
Rx[N-1] Rx [0] PN Rx [N]

oy =Rx[0+Rx[1]pi+...+Rx[N]py

Linear Pretiction of AR: Projection Theorem
H(X,n)=H(W,n), V n€z.
Intuitive property:

YEH(X,n+k), Y=A+B, ALH(X,n), BEH(X,n)
orthogonal projection of v onto H(x,n) is B.

Estimation Param. Prob.: MLE
6 parameters of the prob. function £y, y[1],...,y[N] realization
of the process v[n], then

6=arg maxg fy (y[1],...,y[N].0)

Spectral Estimation

Periodogram: General w.s.s. process
—j 2 ~
PY(w)=%|Sh_ alnle™ 79 P=F En ()12,
H N-—1 N—|k —j
Bias >N 7'y, Y Ry [kle Ik —5x (w)
Variance constant

Resolution af> 4

Annihilating Filter: Line Spectra

Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in absence of noise

1) Given 2K observations, solve the system

o[K—1] .. z[0] R[1] z[K]
z[2K—2] 2[K—1]| | n[K] z[2K—1]

2) Compute H(z) and the zeros of m(z)

3) Compute the argument of the zeros of H(z)

4) Compute w;, from the zeros’ arguments

5) Compute the amplitudes |a,|? by solving

1 1 a1e7©1 (0]
edw1 eIWK apel®2 z[1]
eJw1(K—1) UK (K1) | |aef9K z[K—1]

MUSIC: Line Spectra
Estimation of line spectrum frequencies and amplitudes of a
Harmonic w.s.s. process in the presence of noise
1) Given m observations with m>>~N>k center the process
and compute the empirical correlation matrix

RYN = ey S Y N gy M g
2) Compute the eigendecomposition GNN=K) of RYN
corresponding to )\ﬁﬂ to AR,
3.a) Determine the peaks of

eN1<w)H/G\N(N7K)1/G\N(N—K)HENl(w) i
where
eNl(w) = [1 e v eij(N*l)“’]T ,
3.b) Determine the minimum values of
eN1(W)H GN(N—K)GN(N—K)H N1,y

4) Compute the modulus of the amplitudes using

R¥N:ENKAKKENKH+U‘2/VINN.

Yule-Walker: Smooth Spectra
1) Given ~ observations with nN>>Mm center the process and
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compute the empirical correlation

Rx[k=2% SN_F eolntklzo[n]*, k=0,..,M
2) Solve the Yule Walker equations to obtain pi,....5a
3) Compute the estimate of the spectrum as

52

Sx (@)= pp
z

—=elW
Mixture Models
Sequence of samples y=[y[1],...,y[N]], sequence of corresponding
classes c=[c[1],...,c[N]]
Fy (1)=Yccc P(Y<y,C=c)=Y.cc P(Y<y| C=c)P(C=c)
=Y eec [T1=1 P(Y[n]<y[n] | Cn]=c[n])P(C=c)
ii.d. Mixtures
P(C=c)=P(C[1]=c[1])...P(C[N]=c[N])=m¢[1].--Tc[N] »
Markovian Mixtures

P(C=c)=m[1]Pc[1]c[2] *-Pc[N —1]e[N] »
Hidden Markov chain
Y=x+wW where x is a Markov Chain and w a white Gaussian
noise.

Py @)= gec TTY_1 G, () 02 (W) P(X =)

Denoising a Discrete Value Process

Estimate the parameters of the mixture model using the max-
imum likelihood approach; Estimate the original signal using
the maximum a posteriori approach, i.e., find = maximizing

the a posteriori distribution

fy(y| X=a)P(X=z)
fy ()

P(X=z|y)=
PCA
Principal Components Computaiton
M data vectors, each characterized of n variables (realization
of a zero mean w.s.s. Process) cm=[cm(1],-...em[N)]T, m=1,...,M.
Empirical correlation matrix

ﬁc=ﬁ Z%:] cm*cglzﬁC*CH,(NxN),where C=[Cl CM},
v solution of the equation R.v=vA, where A=diag(A1,...,An)
and VIR . V=A.

Principal components z=v7c ,(~x M), uncorrelated.
Invertible transformation c=vz,

Analysis

K<<N eigenvalues with highest values (lossy/lossless reduc-
tion of variables)

Adaptive Filtering / Echo cancellation
Wiener-Hopf equations 5, . hln—k|Ry (k—1)=Rxy (n—1), VL.
Echo cancellation setup

X([n]

Adaptation algorithm

E[n]=Dn]— fn*X[n]=S[n]+h«X[n]—fr+X[n]=S[n]+(h—fn)*X[n] .
Cost function & normal equations
Cost function for a k-tap filter

J(fn)=E[|E[n]?|=E[|D[n]— fn*X[n]|?], wrt. foll] 1=0,1,....K
Minimum of the cost function = normal equations

o falllRx (n—l,n—i)=Rpx (n,n—i), RX nfn=rpx,n -
Iterative solution
OO =) 4 p i=0,1,..., p & p such that J(FETD)<g(£(D)
Convergence conditions
0<u<2/Amax, P=4(rpx—Rxf®)or p=4R}'(rpx—Rx fV)(Newton
Convergence rate

® 0<1-uX;<1, monotonic decay to zero;

e _1<1-pu);<0 oscillatory decay to zero.

e K +1modes {1—p)\;,j7=0,...,K}. The modes with
maximum magnitude (slowest rate of convergence), de-
termine the convergence rate of the algorithm. One can
select p optimally by minimizing the value of the slowest
mode min, max;—o,. . x |1—pX;|, With the constraint that
each of the modes is stable, i.e., |1 — pA| < 1.

Computational burden reduction
Merging interation and adaptation

frot1=Ffntu(rpx nt1—Rx nt1fn),
f7L+1:f'rL+HR;(}n+1(rDX,n+17RX,‘n,+1fn) (Newton) ,
Replacing statistics with individual values
Frr1=Fn+uXn(D[n]=XT fn)=Ffn+uXnEn],




