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A Mathematical Tribute to Shannon, Nyquist & Co.

▶ The Sampling and Reconstruction Theorem

This is what most of you have learned by heart:

“A [−B/2,B/2] frequency band-limited signal x(t) can be completely reconstructed from its samples
x(nTs) taken at period Ts ≤ 1/B. That is, reconstruction from the samples is possible when the sampling
frequency fs = 1/Ts is greater or equal to twice the maximum frequency of the signal”.

While acknowledged, the result of such a theorem cannot be considered intuitive, nor straightforward.
Trying make to make such a result simpler or a straightforward consequence of basic Fourier tools, yields
to mathematical aberrations and unaesthetic computations that cannot be proven.

Shannon, Nyquist & Co. theorem has two mathematical rigorous formulations, one in the L1 space,
the other in the L2 space, with very elegant related proofs. The formulation in L1 shows that the
Fourier transformation Xsampled(f) of the sampled signal correspond to the fs replicas of the Fourier
transformation X(f) of the analog signal, i.e.

Xsampled(f) = ∑
k∈Z

X(f − kfs) .

Consequently, the analog signal is reconstructed by [−B/2,B/2] low pass filtering the sampled signal.

The formulation in L2 shows that any band limited signal can be decomposed into a basis of cardinal
sines, that is, it can be seen as the convolution between a discrete sequence and an ideal low pass filter.

Let us first start by showing what can go wrong when trying to present the sampling theorem as simpler,
too intuitive, or too straightforward.
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A Mathematical Tribute to Shannon, Nyquist & Co.

▶ A Tempting Model and an Evil Computation

The temptation, leading to sinful developments, is to mathematically model the sampling of x(s) (sam-
pling frequency fs = 1

Ts
), as the product between x(t) and an infinite sum of shifted Diracs deltas

xsampled(t) = x(t) ∑
k∈Z

δ(t − kTs) .

Such a temptation becomes diabolic when trying to derive the spectrum Xsampled(f) of the sampled signal
as the Fourier transformation of the above product, pretending to use the multiplication-convolution rule

FT(xsampled(⋅)) = FT(x(⋅)) ∗FT(∑
k∈Z

δ(⋅ − kTs)) ,

and hoping to derive that
Xsampled(f) = ∑

k∈Z
X(f − kfs) .

In order to prove that the Fourier transformation of a product is the convolution of the corresponding
Fourier transformations, one has to express each term of the product as its inverse Fourier transformation.
That is, in order to be able to apply the multiplication-convolution rule, x(t) has to be expressed as

inverse Fourier transform x(t) = ∫RX(f)ei2πftdf and, since it is a periodic signal, ∑k∈Z δ(t − kTs)
has to be expressed as a Fourier series expansion ∑k∈Z δ(t − kTs) = ∑k∈Z ake

i2πkfst

But when we try to compute the coefficients of the Fourier series expansion we obtain a constant value
α: The Fourier series expansion does not exist since ∑k∈Z αe

i2πkfst is a non convergente series!

Consequently, the multiplication-convolution rule does not apply, and it is mathematically impossible to

prove, modeling the sampling as a sum of shifted Dirac deltas, that Xsampled(f) = ∑k∈ZX(f − kfs).
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A Mathematical Tribute to Shannon, Nyquist & Co.

▶ A Witchy Function

Such mathematical complications arise because modeling the sampling as the multiplication with a shifted
Diracs deltas is probably intuitive but not an appropriate model

xsampled(t) = x(t) ∑
k∈Z

δ(t − kTs) .

By using it one put itself into troubles!

The Dirac delta δ(t) is indeed not a function: Functions are defined point-wise, while the Dirac delta is
defined as ∫R f(t)δ(t)dt = f(0) for functions f(t) belonging to a particular space.

Notice also that the Riemann integral of a Dirac delta is not defined, while its Lebesgue integral is

∫R δ(t)dt = 0, when δ(t)dt is interpreted as a Dirac measure.

The use of the sum of shifted Dirac deltas, commonly called a Dirac comb, is surely intuitive, but
definitively a wrong mathematical tool for a rigzourous yet simple proof.

Of course, one can consider Dirac deltas in their natural environment, that is, distribution theory, and
formulate the sampling theorem within such a theory. But using distribution theory to prove the sampling
theorem is like shooting sparrows with a cannon!
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A Mathematical Tribute to Shannon, Nyquist & Co.

▶ But it is Written in Books!

That is right. Unfortunately some books present an ”impossible to prove” formulation of the sampling
theorem. They all get stuck with the inexistent definition of the Fourier series of a Dirac comb, pretending
to be allowed to write

1

Ts
∑
k∈Z

e
j2πkt/Ts = ∑

k∈Z
δ(t − kTs) ,

which is, as discussed above, a mathematical nonsense. The left term is a divergent series, hence, not
defined.

So is a rigorous approach so complicated?
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A Mathematical Tribute to Shannon, Nyquist & Co.

▶ Making Things as Simple as Possible, But not Simpler

When adopting the right approach things are not complicated at all!

Theorem (Shannon, Nyquist & Co. in L1)

Let x(t) be a continuos time signal such that:

− x(t) ∈ L1 ∩C0;

− Its Fourier transform X has a finite support [−B/2,B/2];

− ∑
n∈Z

∣x(nTs)∣ < ∞ for some Ts such that 0 < Ts < 1/B.

Then

∑
n∈Z

X (f +
n

Ts
) = Ts ∑

n∈Z
x(nTs)e−2πifnTs , ∀ f ∈R ,

and

x(t) = BTs ∑
n∈Z

x(nTs)
sin(2π(t − nTs)B/2)

2π(t − nTs)B/2
, ∀ t ∈R .
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A Mathematical Tribute to Shannon, Nyquist & Co.

▶ Making Things as Simple as Possible, But not Simpler

Proof (Shannon, Nyquist & Co. in L1)

The first statement is a direct consequence of the Poisson summation formula (it is the Poisson formula
itself!)

The second statement in a consequence of

X(f) = 1[−B
2
, B
2

](f) ∑
k∈Z

X (f +
n

Ts
) , and x(t) = ∫

R

e
i2πft

X(f)df .

Indeed

x(t) = ∫
R

e
i2πft

1[−B
2
, B
2

](f) ∑
n∈Z

X (f +
n

Ts
)df

Poisson= ∫
R

e
i2πft

1[−B
2
, B
2

](f)Ts∑
k∈Z

x(nTs)e−i2πfnTsdf

= Ts ∫
R

∑
n∈Z

x(nTs)e−i2πfnTsei2πft1[−B
2
, B
2

](f)df

Fubini= Ts ∑
n∈Z

x(nTs)∫
R

e
i2πf(t−nTs)1[−B

2
, B
2

](f)df

= Ts ∑
n∈Z

x(nTs)
sin(2π(t − nTs)B2 )

π(t − nTs)
= BTs ∑

n∈Z
x(nTs)

sin(2π(t − nTs)B2 )
2π(t − nTs)B2

.
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A Mathematical Tribute to Shannon, Nyquist & Co.

▶ Making Things as Simple as Possible, But not Simpler

In the L1 version of the sampling theorem one has to cope with the condition ∑k∈Z ∣x(nTs)∣ < ∞, which

is restrictive and difficult to be verified a priori . Formulation of the sampling theorem in the L2 space is
much more elegant and simple!

Theorem (Shannon, Nyquist & Co. in L2)

Let L2
C

(R ;B) be the Hilbert subspace of L2
C
(R) consisting of the finite energy signals x(t) with a

Fourier transform X(f) having finite support [−B/2,B/2]. Let Ts be such that 0 < Ts < 1/B.

The sequence

{BTs
sin(2π(t − nTs)B/2)

2π(t − nTs)B/2
}
n∈Z

,

is an orthonormal basis of L2
C

(R ;B) and we have

lim
N→∞∫R

RRRRRRRRRRR
x(t) −

N

∑
n=−N

αnBTs
sin(2π(t − nTs)B/2)

2π(t − nTs)B/2

RRRRRRRRRRR

2

dt = 0 ,

where αn = ∫
B/2

−B/2
X(f)ei2πfnTsdf .
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A Mathematical Tribute to Shannon, Nyquist & Co.

▶ No Big Deal! The Result is the Same!

You may argue that a rigorous mathematical approach is not needed since, at the end, the result is the
same when using the Dirac comb model and improperly applying Fourier transformations.

In this particular case, as mentioned, the Dirac formalism can benefit of a rigorous framework given by the
distribution theory (which, for the sampling theorem, is like shooting sparrows with a cannon!). Luckily
enough, by mishandling the Dirac comb (and closing our eyes on the mathematical proofs) we end up
with the same result obtained using the distribution theory. But this is not always the case! Actually, is
rarely the case!

So, in order not to get into mathematical troubles

”Everything Should Be Made as Simple as Possible, But Not Simpler” (A. Einstein),

because

”No notice is taken of a little evil, but when it increases it strikes the eye” (Aristotle).
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Markov Chains

Reference: P. Bremaud, ”Markov Chains ”, Springer Verlag.
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Markov Chains

▶ Markov Chain

Let {X[n]}n∈Z be a discrete time stochastic process with values in a countable set D. Denote as i, j,
k,. . . the elements of D. We shall refer to these elements as states. Therefore, if X[n] = i, i ∈ D, the
process is said to be in state i at time n (or to visit state i at time n).

If for all integers n > 0 and all states j, i, in−1, . . . , i0 ∈ D

P (X[n + 1] = j ∣ X[n] = i,X[n − 1] = in−1, . . . ,X[0] = i0) = P (X[n + 1] = j ∣ X[n] = i) ,

(whenever both sides are well-defined), then {X[n]}n∈Z is called Markov chain.

▶ Homogeneous Markov Chain

If in addition P (X[n] = j ∣ X[n − 1] = i) is independent of n, i.e., P (X[n] = j ∣ X[n − 1] = i) = pij ,
then {X[n]}n∈Z is called homogenous Markov chain.

P = {pij}i,j∈D , where
pij = P (X[n + 1] = j ∣X[n] = i) , i, j ∈ D ,

is the transition matrix of the homogenous Markov chain.

Notice that
0 ≤ pij ≤ 1 , ∑

k∈D
pik = 1 , for all i ∈ D .
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Markov Chains

▶ Initial State & Initial Distribution

Let {X[n]}n∈Z be a homogeneous Markov chain with transition matrix P . The random variable X[0]
is called initial state, and its probability distribution ν(n) = {νi(0)}i∈D , where νi(0) = P (X[0] = i),
i ∈ D, is the initial distribution.

Applying Bayes’s rule and considering the Markov property, we have

P (X[0] = i0,X[1] = i1, . . . ,X[k] = ik) =
P (X[0] = i0)P (X[1] = i1 ∣X[0] = i0) . . . P (X[k] = ik ∣X[k − 1] = ik−1, . . . ,X[0] = i0) .

For homogeneous Markov chains and the definition of the transition matrix, we have

P (X[0] = i0,X[1] = i1, . . . ,X[k] = ik) = νi0(0)pi0i1 . . . pik−1ik .

The above equation constitute the probability law or probability distribution of the homogeneous Markov

chain, which is determined by the transition matrix and the initial distribution.

▶ Distribution at Time n

The distribution at time n of the chain is the vector ν(n) = {νi(n)}i∈D , where νi(n) = P (X[n] = i).

In particular νj(n+1) = ∑
i∈D

νi(n)pij (Bayes’s rule of exclusive and exhaustive causes), that is, in matrix

form
ν(n + 1)t = ν(n)tP .

Iteration of this equality yields

ν(n)t = ν(0)tPn .
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Markov Chains

▶ Stationary Distribution of a Homogenous Markov Chain

A probability distribution π = {πi}i∈D satisfying

π
t = πtP

is called a stationary distribution of the homogeneous Markov chain with transition matrix P .

Iteration of the above equation (multiplying both sides on the right by P ) gives

π
t = πtPn , ∀n ≥ 0 .

Consequently, given the expression of the distribution ν(n) at time n, if ν(0) = π, then ν(n) = π for
all n ≥ 0: A chain started with a stationary distribution keeps the same distribution forever.

In addition, the law of the chain

P (X[n] = i0,X[n + 1] = i1, . . . ,X[n + k] = ik)
= P (X[n] = i0)pi0i1 . . . pik−1ik = πi0pi0i1 . . . pik−1ik ,

does not depend on n. In this sense the chain is stationary (one also says that the chain is in a stationary
regime, or in equilibrium, or in steady state).

A chain started with a stationary distribution is stationary!
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Errors

▶ Error Propagation in the Solution of a Linear System

Consider a vector induced norm of a matrix, i.e., ∥A∥ =max
y

∥Ay∥
∥y∥

, where ∥I∥ = 1, which is consistent

with vector norms, i.e., ∥Ax∥ ≤ ∥A∥∥x∥. For instance ∥A∥
2
= σmax(A). Let

K(A) = ∥A∥∥A−1∥ ,

be the conditioning number of the matrix A, where K(A) = ∥A∥∥A−1∥ ≥ ∥AA−1∥ = ∥I∥ = 1. Notice

that by taking ∥A∥ = ∥A∥
2

we have the standard definition K(A) = σmax(A)/σmin(A).

Theorem (Relative Error Range)
Let Ax = b be a linear system to be solved in x. Call x0 the exact solution of the system, i.e. Ax0 = b
and x̂ the computed solution of the system. Then

1

K(A)
∥Ax̂ − b∥

∥b∥
≤

∥x̂ −x0∥
∥x0∥

≤K(A)
∥Ax̂ − b∥

∥b∥
.

Notice that ∥Ax̂ − b∥/∥b∥ represents the relative error of the given data, while ∥x̂ −x0∥/∥x0∥ is the

relative error of the solution. The theorem states that the relative error of the solution is bounded by

the relative error of the given data multiplied by 1/K(A) on the lower bound, and K(A) on the higher

bound. For a low condition number (K(A) ≈ 1), the relative errors of the given data and the solution

have the same order of magnitude. For a high condition number, the relative error of the solution can be

of a much higher order of magnitude with respect to the relative error of the given data.
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Errors

▶ Error Propagation in the Solution of a Linear System

Proof

1) A (x̂ −x0) =Ax̂ − b, then:

● (x̂ −x0) = A−1
(Ax̂ − b) and ∥x̂ −x0∥ ≤ ∥A

−1
∥∥Ax̂ − b∥;

● ∥A∥∥x̂ −x0∥ ≥ ∥Ax̂ − b∥ and ∥x̂ −x0∥ ≥
∥Ax̂−b∥

∥A∥
;

implying
∥Ax̂−b∥
∥A∥

≤ ∥x̂ −x0∥ ≤ ∥A−1∥∥Ax̂ − b∥.

2) Ax0 = b, then:

● x0 = A−1b and ∥x0∥ ≤ ∥A
−1
∥∥b∥;

● ∥A∥∥x0∥ ≥ ∥b∥ and ∥x0∥ ≥
∥b∥

∥A∥
;

Combining
∥Ax̂−b∥
∥A∥

≤ ∥x̂ −x0∥ ≤ ∥A−1∥∥Ax̂ − b∥, ∥x0∥ ≤ ∥A−1∥∥b∥, and ∥x0∥ ≥
∥b∥
∥A∥

leads to the

theorem inequality.
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