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Week 7 Recap

• Revisit RDDs

• DataFrames
• Structured data

• Higher level API, declarative programming

• RDDs vs DataFrames

• DataFrames under the hood
• PySpark internals (Py4J)

• Catalyzer optimization (query plan optimization)

• Exercises: DataFrames, Covid, Twitter

3COM490



Week 7 – Questions?
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Today’s Agenda

• Spark parallelization
• Spark and Big Data
• The cost of shuffle operations and memory
• Spark partitioning
•Partitioning demo
• Exercise:

• Spark DataFrames with partitioning

• Homework 3
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Introduction to Spark 
Parallelization



RDD - Revisited

•RDD - Resilient Distributed Dataset

• Immutable: once an RDD is created it cannot be modified, 
actions create new RDDs

• Lineage: RDD points to its parents

• Resilient: if a node dies data is easily regenerated

• Partitioned → pieces of RDD distributed over the cluster
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RDD – parallelize API

• Creation of RDD

sc.parallelize(data)

• Reference external or local data

• Each piece of data becomes a partition

• Each partition is processed in a task

• Tasks are executed in parallel

• Why parallelize?
• Take advantage of distributed resources
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Spark units of work

• Job
• Sequence of Stages

• Triggered by an action
• collect(), read(), write()

• Stage
• Sequence of Tasks

• Sequences run in parallel without a shuffle

• Output of an execution plan

• Task
• Single operation applied to a partition

• Triggered by a transformation
• map(), filter()
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Spark and Big Data

Big Data and/or Big Jobs on
big cluster
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10s of thousands
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Spark Architecture - Revisited
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Spark Driver

Spark 
Context

Resource 
Negotiator

(YARN)

Executor

Executor

Executor

worker node worker node

worker node

Driver: requests resources for executors on worker 
nodes to resource negotiator, deploy jars and 
other dependencies to executors.

Context: turns actions into jobs - compile operator 
DAG, split DAG into stages of tasks and submit 
stages to its task scheduler, which launches tasks.

T1 T3

T4 T5

T6 T7 T8
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Spark Executor – for heavy lifting

17/04/2024 12

CPU CPU CPU

Number of cores

“Local storage”

Memory
Execution 50%
In-memory storage 50%
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Time Efficiency
• Minimize data transfer
• locality principle:

• Run with ‘local’ data

• Avoid shuffle operations

• Minimize process time
• Spark/PySpark optimizations

• Tune partitions

Space Efficiency
• Be aware of memory usage

• Minimize amount of data 
processed

• Tune partitions
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Handling Big Data

1

2

3
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Managing data shuffle and 
memory – best practices



Shuffle – what is it and how to avoid it

• Shuffle: all-to-all

• When: transfers data among executors

• e.g. join, <reduce/sort/...> ByKey
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textFile flatMap map reduceByKey
Stage 1 Stage 2

partition

RDD(1) RDD (1)RDDs point to parent
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Why is Shuffling costly

• All-to-all data transfers - N2

• Every transfer involves
• Serialization data objects → bytes → data objects

• Network I/O

• Disk I/O

• Operations run on a JVM

• (often) Heap memory → spill to disk → more disk I/O
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Shuffle Optimizations

• User optimization - avoid shuffle whenever possible
• Thin the data early

• Order the data or filter it in the partitions

• Reorder transformations
• When order of operations allow it, use operations that reduce the data the most

• Partial aggregation

• Spark optimization
• Write intermediate files to disk, so that the data does not get copied to all of

the nodes
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Memory

• Spark is written in Scala
• JVM

• (infamous) Garbage Collector

• When to suspect out of memory issues
• Poor performance

• Slow / dead executors (in unpredictable ways) 
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Memory  - diagnostic (expert level)

• How to diagnose
• set in spark.executor.extraJavaOptions

• XX:+PrintGCDetails

• XX:+HeapDumpOnOutOf

• In linux, use dmesg for oom-killer logs

• Spilling to disk

• If using YARN: take into account the memory constraints - executor
could just be killed because they exceed their allocated capacity
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Memory optimization

• Avoid spilling to disk and OOM deaths

• Aim for key-value that fit in memory
• Number of keys – if too large, it may kill the driver (in reduce stage)

• Number of values per keys – if too large it may kill executors

• Adjust partition size
• Increase number of partitions

• Decrease size of partitions

• Minimize shuffle, which is also memory intensive
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Partitioning



How is partitioning done? Number of partitions

• Automatically
• HDFS - partition by HDFS block
• Spark default partitions

sc.defaultParallelism()

rdd.getNumPartitions()

• Programmatically
• Create RDD with custom number of partitions

sc.parallelize(data, num_partitions) 

• Change the number of partitions in next RDD

rdd.repartition(num_partitions)

rdd.repartitionAndSortWithinPartitions(num_partitions,...)

rdd.coalesce(num_partitions,shuffle=false)
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Configure partitions

Input - control size
• spark.default.parallelism()

• spark.sql.files.maxPartitionByBytes(b)

Shuffle - control count
• spark.sql.shuffle.partitions(n)

Output - control size
• coalesce(n) to shrink in an efficient way

• repartition(n), partitionBy(n,func) to increase and/or balance
• df.write.option("maxRecordsPerFile", N)
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Optimum number of partitions
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Too few partitions
• less concurrency
• more susceptible to data skew
• increased memory pressure

Too many partitions
• less concurrency
• too much overhead

Right balance
• 2 – 4x number of cores
• Aim for 100ms of executions at least
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Repartitioning

• Understand data access pattern: e.g. write once, read many

• Coalesce partitions to size-down file set

• Repartition = another stage = expensive
• df.repartition(n) HashPartitioner
• df.repartition(n,[colA,..]) RangePartitioner

• df.localCheckpoint + repartition or coalesce
• stage barrier
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Spark Partitioners

• HashPartitioner
• Hash code of an object

• RangePartitioner
• Sortable records

• CustomPartitioner
• Extend Partitioner

• Overwrite methods

• And define the comparison method
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def numPartitions: Int

def getPartition(key: Any): Int

def equals(other: Any): Boolean
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Spark Partitioners  - RDD

• HashPartitioner: pyspark.RDD.repartition

• Custom partitioner: pyspark.RDD.partitionBy

PySpark will use:  partitioner(key) modulo numPartitions 
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newRdd = oldRdd.repartition(numPartitions)

def partitioner(key):

if key == ‘foo’:

return 1

else:

return random.randint(2,numPartitions)

newRdd = oldRdd.repartitionBy(numPartitions,partitioner) 
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https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.repartition.html?highlight=partition#pyspark.RDD.repartition
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.partitionBy.html?highlight=partition#pyspark.RDD.partitionBy


Spark Partitioners  - DataFrame

• HashPartitioner: pyspark.sql.DataFrame.repartition
• Hash code of an object

• RangePartitioner: pyspark.sql.DataFrame.repartitionByRange
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newDf = oldDf.repartition(numPartitions, "colA", "colB")

newDf = oldDf.repartitionByRange(numPartitions,"colA", "colB") 
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https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.repartition.html#pyspark.sql.DataFrame.repartition
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.repartitionByRange.html


Optimization check list

• Ensure you have enough partitions, but that partitions are not underused

• Optimize placement of functions

• Use the right functions at the right place

• Choose partitioning functions wisely

• Aim for well balanced partitions, avoid partition skew

• Minimize shuffling and amount of data shuffled

• Minimize memory consumption, i.e. memory hungry functions (sorting, groupBy)

• Can cause OOM
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Spark & YARN
Troubleshooting



Spark UI

• Use Spark UI to tune tasks/partitions

• See stages, see tasks (#of tasks, shuffle read sizes)

• See failed tasks, tasks that are taking longer

• Collect and read standard output and error logs

• Useful for shared clusters if you are not admin
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Spark UI – COM490 Spring 2024

http://iccluster08x.iccluster.epfl.ch:xyz/proxy/application_xyz
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Applications
↘︎ Jobs
↘︎ Stages
↘︎ Tasks

COM490

http://iccluster08x.iccluster.epfl.ch:xyz/proxy/application_xyz


Know the infrastructure (expert)

• Memory and cores per VM / Worker node

• Speed per core

• Network speed

• Disk capacity and disk type (SSDs, remote)

• Goal: improve utilization, aim for 70%

17/04/2024 33COM490



Start your engines
https://com490-2024.epfl.ch

https://dslabgit.datascience.ch/course/2025/module-3c

(fork and git clone)

https://com490-2024.epfl.ch/
https://dslabgit.datascience.ch/course/2025/module-3c

