THE DATA SCIENCE LAB
Advanced Spark Optimization

COM 490

Agenda 2025 — module 3b

Introduction to Data Science with Python Advanced Spark

09.04

(Bigger) Data Science with Python Introduction to Stream Processing

Introduction to Big Data Technologies Stream Processing with Kafka

Big Data Wrangling with Hadoop Advanced Stream Processing

Introduction to Spark Final Project Q&A

Final Project Due

Advanced Big Data Queries

Spark Data Frames Oral Sessions

COMA490 p

ddddddd
€€ddaaddada

Week 7 Recap

e Revisit RDDs

* DataFrames
 Structured data
* Higher level API, declarative programming

* RDDs vs DataFrames

e DataFrames under the hood
e PySpark internals (Py4))
e Catalyzer optimization (query plan optimization)

* Exercises: DataFrames, Covid, Twitter

COMA490 3

Week 7 — Questions?

COMA490 4

Today’s Agenda

* Spark parallelization

* Spark and Big Data

* The cost of shuffle operations and memory
* Spark partitioning

* Partitioning demo

* Exercise:
* Spark DataFrames with partitioning

e Homework 3

COMA490 5

Introduction to Spark
Parallelization

RDD - Revisited

e RDD - Resilient Distributed Dataset

 Immutable: once an RDD is created it cannot be modified,
actions create new RDDs

* Lineage: RDD points to its parents
* Resilient: if a node dies data is easily regenerated

* Partitioned - pieces of RDD distributed over the cluster

COMA490 7

RDD — parallelize API

e Creation of RDD

sc.parallelize (data)

Reference external or local data

Each piece of data becomes a partition
Each partition is processed in a task
Tasks are executed in parallel

* Why parallelize?
* Take advantage of distributed resources

COMA490 8

Spark units of work

- Job b I
* Sequence of Stages (\
task 1 task 2 [
° Triggered by an action a
* collect (), read(), write/() iz
 Stage | N -l

e Sequence of Tasks
* Sequences run in parallel without a shuffle
e Output of an execution plan

e Task

* Single operation applied to a partition

* Triggered by a transformation NG /
* map(), filter ()

COMA490 9

Spark and Big Data

Big Data and/or Big Jobs on 105 of thousands

P T T e e e T T T R e

big cluster /
8 |

COMA490 10

Spark Architecture - Revisited

Executor

T1 T3

Spark Driver
Resource
- Negotiator worker node
(YARN)

Executor

Driver: requests resources for executors on worker
nodes to resource negotiator, deploy jars and T4 § T5
other dependencies to executors.

Executor
T6 T7 T8

Context: turns actions into jobs - compile operator
DAG, split DAG into stages of tasks and submit
stages to its task scheduler, which launches tasks.

COMA490

worker node

worker node

Executor

Spark Executor — for hge.avy lifting

E CPU ;; CPU ;; CPU ;
o — Bl — Bl — B
Number of cores
“Local storage”
—I—]=
— 3 —

a

Memory

Execution 50%
In-memory storage 50%

COMA490

Handling Big Data

Time Efficiency Space Efficiency
* Minimize data transfer * Be aware of memory usage

* locality principle: * Minimize amount of data
* Run with ‘local’ data processed

e Avoid shuffle operations

* Tune partitions
* Minimize process time

» Spark/PySpark optimizations

* Tune partitions

COMA490 13

Managing data shuffle and
memory.— best practices

Shuffle — what is it and how to avoid it

\
W
. Shuffle: all-to-all <O

* When: transfers data among executors

°*e.g. join, <reduce/sort/...> ByKey

Stage 1
" textFile flatMap

..........................

4

I
i

4

()RDDs point to parent

-
..

COMA490 15

Why is Shuffling costly

e All-to-all data transfers - N2

* Every transfer involves
 Serialization data objects - bytes - data objects
Network |/O
Disk I/O
Operations run on a JVM
(often) Heap memory = spill to disk - more disk I/0

COMA490 16

Shuffle Optimizations

e User optimization - avoid shuffle whenever possible
* Thin the data early
* Order the data or filter it in the partitions

 Reorder transformations
 When order of operations allow it, use operations that reduce the data the most

* Partial aggregation

e Spark optimization

* Write intermediate files to disk, so that the data does not get copied to all of
the nodes

COMA490 17

Memory

e Spark is written in Scala
 JVM
e (infamous) Garbage Collector

* When to suspect out of memory issues
e Poor performance
* Slow / dead executors (in unpredictable ways)

COMA490 18

Memory - diagnostic (expert level)

* How to diagnose

* setin spark.executor.extraJavaOptions
* XX:+PrintGCDetails
e XX:+HeapDumpOnOutOf

* In linux, use dmesg for oom-killer logs
* Spilling to disk

* If using YARN: take into account the memory constraints - executor
could just be killed because they exceed their allocated capacity

COMA490 19

Memory optimization

* Avoid spilling to disk and OOM deaths

* Aim for key-value that fit in memory
 Number of keys — if too large, it may kill the driver (in reduce stage)
 Number of values per keys — if too large it may kill executors

* Adjust partition size
* Increase number of partitions
* Decrease size of partitions

* Minimize shuffle, which is also memory intensive

COMA490 20

L.
L

How is partitioning done? Number of partitions

e Automatically

e HDFS - partition by HDFS block
e Spark default partitions

sc.defaultParallelism{()
rdd.getNumPartitions ()

* Programmatically
* Create RDD with custom number of partitions

sc.parallelize (data, num partitions)
* Change the number of partitions in next RDD

rdd.repartition (num partitions)

rdd.repartitionAndSortWithinPartitions (num partitions, ...

rdd.coalesce (num partitions,shuffle=false)

COMA490

22

Configure partitions

Input - control size

* spark.default.parallelism{()
* spark.sqgl.files.maxPartitionByBytes (b)

Shuffle - control count
* spark.sgl.shuffle.partitions (n)

Output - control size
e coalesce (n) toshrinkin an efficient way

« repartition (n), partitionBy (n, func) to increase and/or balance
* df .write.option ("maxRecordsPerFile", N)

COMA490 23

Optimum number of partitions

Too few partitions Too many partitions
* |less concurrency * |ess concurrency
* more susceptible to data skew * too much overhead

* increased memory pressure

Right balance
e 2 —4x number of cores
e Aim for 100ms of executions at least

COMA490 24

Repartitioning

* Understand data access pattern: e.g. write once, read many
* Coalesce partitions to size-down file set

e Repartition = another stage = expensive
e df .repartition (n) HashPartitioner
* df .repartition(n, [colA, ..]) RangePartitioner

e df.localCheckpoint + repartition or coalesce
» stage barrier

COMA490 25

Spark Partitioners

* HashPartitioner
* Hash code of an object

* RangePartitioner
* Sortable records

. -
CustomPartitioner def numPartitions: Int

* Extend Partitioner def getPartition(key: Any): Int
 Overwrite methods

* And define the comparison method def equals (other: Any): Boolean

COMA490

Spark Partitioners - RDD |

e HashPartitioner: pyspark.RDD.repartition

newRdd = oldRdd.repartition (numPartitions)

e Custom partitioner: pyspark.RDD.partitionBy

def partitioner (key) :
1f key == ‘foo':
return 1
else:
return random.randint (2, numPartitions)

newRdd = oldRdd.repartitionBy (numPartitions,partitioner)

PySpark will use: partitioner(key) modulo numPartitions

COMA490

27

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.repartition.html?highlight=partition#pyspark.RDD.repartition
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.partitionBy.html?highlight=partition#pyspark.RDD.partitionBy

Spark Partitioners - DataFrame

e HashPartitioner: pyspark.sgl.DataFrame.repartition
* Hash code of an object

newDf = oldDf.repartition (numPartitions, "colA", "colB")

* RangePartitioner: pyspark.sql.DataFrame.repartitionByRange

newDf = oldDf.repartitionByRange (numPartitions,"colA", "colB")

COMA490 28

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.repartition.html#pyspark.sql.DataFrame.repartition
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.repartitionByRange.html

Optimization check list

Ensure you have enough partitions, but that partitions are not underused

Optimize placement of functions

e Use the right functions at the right place

Choose partitioning functions wisely
* Aim for well balanced partitions, avoid partition skew

* Minimize shuffling and amount of data shuffled

Minimize memory consumption, i.e. memory hungry functions (sorting, groupBy)

* Can cause OOM

COMA490 29

Spark & YARN
Troubleshooting

Spark Ul

* Use Spark Ul to tune tasks/partitions

* See stages, see tasks (#of tasks, shuffle read sizes)
* See failed tasks, tasks that are taking longer

* Collect and read standard output and error logs

e Useful for shared clusters if you are not admin

COMA490

31

Spark Ul — COM490 Spring 2024

http://icclusterO8x.iccluster.epfl.ch:xyz/proxy/application xyz

sark i sl Jobs = Stages Stora Environment Executors SQL/ DataFra livy-session-109 application Ul
SpCN'K 33323371902-1 HlStOl'y Server Spork 53233718021 obs age orage nvironmen xecuto QL / DataFrame ivy-session application

Event log directory: hdfs:/ficdluster067.iccluster.epfl.ch:8020/user/spark/spark3ApplicationHistory

o
Last updated: 2024-04-15 14:58:31 Spark Jobs
User: livy
Client local time zone: Europe/Zurich Total Uptime: 1.0 h
Show 20 s entries Search: zchedrllnz IJ\M::de:w;\FO
ompleted Jobs:
Spark Last ¥ Event Timeline
Version AppID App Name Started Completed ' Duration User Updated Event Log - Completed Jobs (12)
33.233.7190.2-1 application_1709909721189_0974 livy- 2024-04-15 2024-04-15 48 min livy 2024-04-15 Page: 1 1 Pages. Jump ta| 1 .Show 100 itemsin a page. Go
session-142 14:0351 1451557 14:51557
Job Id (Job Group) * Description Submitted Duration Stages: Succeeded/Total Tasks (for all stages): SucceededTotal
33.23371902-1 application_1709909721189_0973 livy- 2024-04-15 2024-04-15 11h livy 2024-04-15 s o . , BT Py » i
session-141 1348:36 14551557 14551557 & &b grEip i SEiErET 25 3B “E
showString at NativeMethodAccessarlmpljava:0
3323371902-1 application_1709909721183.0972 livy- 2024-04-15 2024-04-15 4.4 min livy 2024-04-15 10 (22) Job group for statement 22 2024/04/1122:35:18 31ms 11 11
session-140 13:43:36 13:47:58 13:47:58 showString at NativeMethodAccessarlmpljava:0
' 921 Job for statement 21 2024/04/11 2235:17 0.4 1/1 (1 skipped 1/1 (425 ski
3323371902-1 application_1709909721189_0940 livy- 2024-04-14 2024-04-14 36h vy 2024-04-14 i e cesearmnl ara S i : UL N
session-132 11:35:33 15:11:19 15:11:19 SR UL T o S e e
821 Job group for statement 21 2024/04/11 22:35:16 15 " 4251425
3323371902-1 application_1709909721189_0950 livy- 2024-04-14 2024-04-14 555 livy 2024-04-14 showString at NativeMethodAccessorlmpljava:0
session-139 14:12:29 14:13:24 14:13:24
33.23371902-1 application 1709909721189 0947 livy- 2024-04-14 2024-04-14 1.0h livy 2024-04-14 = DAG Vieoslmation
session-138 13:.08:22 14:10:19 14:10:19 A
spanc . g ——— Stage 9
Details for Stage 9 (Attempt 0) sequenceFile
R
o e

Locaty evet bemmary /data/gutenberg/rdd [0]

A I. L4 I e Bt 26 W sequenceFile at PythonRDD.scala:329
pplications

— h map at PythonHadoopUtil.scala: 185
[N St [E— oy R p—

mapPartitions
+ Aggregated Metrics by Executor ————°
gutenberg rdd [2] [Cached]

Tasks (425) mapPartitions at SerDeUtil scala:

N\ Tasks =

Tk [Launch a
= © Hort Lo

PythonRDD [8]
72K8 RDD at PythonRDD.scala:53

COMA490 32

http://iccluster08x.iccluster.epfl.ch:xyz/proxy/application_xyz

Know the infrastructure (expert)

 Memory and cores per VM / Worker node
* Speed per core
* Network speed
 Disk capacity and disk type (SSDs, remote)

e Goal: improve utilization, aim for 70%

COMA490 33

(fork and git clone)

https://com490-2024.epfl.ch/
https://dslabgit.datascience.ch/course/2025/module-3c

