
THE DATA SCIENCE LAB
Advanced Spark Optimization

COM 490

Agenda 2025 – module 3b

2

Introduction to Data Science with Python19.02

(Bigger) Data Science with Python26.02

Introduction to Big Data Technologies05.03

Big Data Wrangling with Hadoop12.03

Introduction to Spark19.03

Advanced Big Data Queries26.03

Spark Data Frames02.04

Advanced Spark
09.04

Introduction to Stream Processing
16.04

Stream Processing with Kafka
30.04

Advanced Stream Processing
07.05

Final Project Q&A
14.06

Final Project Due
21.05

Oral Sessions
28.05

COM490

Week 7 Recap

• Revisit RDDs

• DataFrames
• Structured data

• Higher level API, declarative programming

• RDDs vs DataFrames

• DataFrames under the hood
• PySpark internals (Py4J)

• Catalyzer optimization (query plan optimization)

• Exercises: DataFrames, Covid, Twitter

3COM490

Week 7 – Questions?

17/04/2024 4COM490

Today’s Agenda

• Spark parallelization
• Spark and Big Data
• The cost of shuffle operations and memory
• Spark partitioning
•Partitioning demo
• Exercise:

• Spark DataFrames with partitioning

• Homework 3

517/04/2024 COM490

Introduction to Spark
Parallelization

RDD - Revisited

•RDD - Resilient Distributed Dataset

• Immutable: once an RDD is created it cannot be modified,
actions create new RDDs

• Lineage: RDD points to its parents

• Resilient: if a node dies data is easily regenerated

• Partitioned → pieces of RDD distributed over the cluster

17/04/2024 7COM490

RDD – parallelize API

• Creation of RDD

sc.parallelize(data)

• Reference external or local data

• Each piece of data becomes a partition

• Each partition is processed in a task

• Tasks are executed in parallel

• Why parallelize?
• Take advantage of distributed resources

17/04/2024 8COM490

Spark units of work

• Job
• Sequence of Stages

• Triggered by an action
• collect(), read(), write()

• Stage
• Sequence of Tasks

• Sequences run in parallel without a shuffle

• Output of an execution plan

• Task
• Single operation applied to a partition

• Triggered by a transformation
• map(), filter()

17/04/2024 9COM490

task itask 2task 1 …

task i+1 …task i+2 task i*2…

task jtask 2task 1 …

task j+1 …task j+2 task j*2…

Spark and Big Data

Big Data and/or Big Jobs on
big cluster

17/04/2024 10

10s of thousands

COM490

task i
task

2
task

1 …

task i+1 …task i+2 task i*2…

task j
task

2
task

1 …

task j+1 …task j+2 task j*2…

Spark Architecture - Revisited

17/04/2024 11

Spark Driver

Spark
Context

Resource
Negotiator

(YARN)

Executor

Executor

Executor

worker node worker node

worker node

Driver: requests resources for executors on worker
nodes to resource negotiator, deploy jars and
other dependencies to executors.

Context: turns actions into jobs - compile operator
DAG, split DAG into stages of tasks and submit
stages to its task scheduler, which launches tasks.

T1 T3

T4 T5

T6 T7 T8

COM490

Spark Executor – for heavy lifting

17/04/2024 12

CPU CPU CPU

Number of cores

“Local storage”

Memory
Execution 50%
In-memory storage 50%

COM490

Time Efficiency
• Minimize data transfer
• locality principle:

• Run with ‘local’ data

• Avoid shuffle operations

• Minimize process time
• Spark/PySpark optimizations

• Tune partitions

Space Efficiency
• Be aware of memory usage

• Minimize amount of data
processed

• Tune partitions

17/04/2024 13

Handling Big Data

1

2

3

3

COM490

Managing data shuffle and
memory – best practices

Shuffle – what is it and how to avoid it

• Shuffle: all-to-all

• When: transfers data among executors

• e.g. join, <reduce/sort/...> ByKey

17/04/2024 15

textFile flatMap map reduceByKey
Stage 1 Stage 2

partition

RDD(1) RDD (1)RDDs point to parent

COM490

Why is Shuffling costly

• All-to-all data transfers - N2

• Every transfer involves
• Serialization data objects → bytes → data objects

• Network I/O

• Disk I/O

• Operations run on a JVM

• (often) Heap memory → spill to disk → more disk I/O

17/04/2024 16COM490

Shuffle Optimizations

• User optimization - avoid shuffle whenever possible
• Thin the data early

• Order the data or filter it in the partitions

• Reorder transformations
• When order of operations allow it, use operations that reduce the data the most

• Partial aggregation

• Spark optimization
• Write intermediate files to disk, so that the data does not get copied to all of

the nodes

17/04/2024 17COM490

Memory

• Spark is written in Scala
• JVM

• (infamous) Garbage Collector

• When to suspect out of memory issues
• Poor performance

• Slow / dead executors (in unpredictable ways)

17/04/2024 18COM490

Memory - diagnostic (expert level)

• How to diagnose
• set in spark.executor.extraJavaOptions

• XX:+PrintGCDetails

• XX:+HeapDumpOnOutOf

• In linux, use dmesg for oom-killer logs

• Spilling to disk

• If using YARN: take into account the memory constraints - executor
could just be killed because they exceed their allocated capacity

17/04/2024 19COM490

Memory optimization

• Avoid spilling to disk and OOM deaths

• Aim for key-value that fit in memory
• Number of keys – if too large, it may kill the driver (in reduce stage)

• Number of values per keys – if too large it may kill executors

• Adjust partition size
• Increase number of partitions

• Decrease size of partitions

• Minimize shuffle, which is also memory intensive

17/04/2024 20COM490

Partitioning

How is partitioning done? Number of partitions

• Automatically
• HDFS - partition by HDFS block
• Spark default partitions

sc.defaultParallelism()

rdd.getNumPartitions()

• Programmatically
• Create RDD with custom number of partitions

sc.parallelize(data, num_partitions)

• Change the number of partitions in next RDD

rdd.repartition(num_partitions)

rdd.repartitionAndSortWithinPartitions(num_partitions,...)

rdd.coalesce(num_partitions,shuffle=false)

17/04/2024 22COM490

Configure partitions

Input - control size
• spark.default.parallelism()

• spark.sql.files.maxPartitionByBytes(b)

Shuffle - control count
• spark.sql.shuffle.partitions(n)

Output - control size
• coalesce(n) to shrink in an efficient way

• repartition(n), partitionBy(n,func) to increase and/or balance
• df.write.option("maxRecordsPerFile", N)

17/04/2024 23COM490

Optimum number of partitions

17/04/2024 24

Too few partitions
• less concurrency
• more susceptible to data skew
• increased memory pressure

Too many partitions
• less concurrency
• too much overhead

Right balance
• 2 – 4x number of cores
• Aim for 100ms of executions at least

COM490

Repartitioning

• Understand data access pattern: e.g. write once, read many

• Coalesce partitions to size-down file set

• Repartition = another stage = expensive
• df.repartition(n) HashPartitioner
• df.repartition(n,[colA,..]) RangePartitioner

• df.localCheckpoint + repartition or coalesce
• stage barrier

17/04/2024 25COM490

Spark Partitioners

• HashPartitioner
• Hash code of an object

• RangePartitioner
• Sortable records

• CustomPartitioner
• Extend Partitioner

• Overwrite methods

• And define the comparison method

17/04/2024 26

def numPartitions: Int

def getPartition(key: Any): Int

def equals(other: Any): Boolean

COM490

Spark Partitioners - RDD

• HashPartitioner: pyspark.RDD.repartition

• Custom partitioner: pyspark.RDD.partitionBy

PySpark will use: partitioner(key) modulo numPartitions

17/04/2024 27

newRdd = oldRdd.repartition(numPartitions)

def partitioner(key):

if key == ‘foo’:

return 1

else:

return random.randint(2,numPartitions)

newRdd = oldRdd.repartitionBy(numPartitions,partitioner)

COM490

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.repartition.html?highlight=partition#pyspark.RDD.repartition
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.partitionBy.html?highlight=partition#pyspark.RDD.partitionBy

Spark Partitioners - DataFrame

• HashPartitioner: pyspark.sql.DataFrame.repartition
• Hash code of an object

• RangePartitioner: pyspark.sql.DataFrame.repartitionByRange

17/04/2024 28

newDf = oldDf.repartition(numPartitions, "colA", "colB")

newDf = oldDf.repartitionByRange(numPartitions,"colA", "colB")

COM490

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.repartition.html#pyspark.sql.DataFrame.repartition
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.repartitionByRange.html

Optimization check list

• Ensure you have enough partitions, but that partitions are not underused

• Optimize placement of functions

• Use the right functions at the right place

• Choose partitioning functions wisely

• Aim for well balanced partitions, avoid partition skew

• Minimize shuffling and amount of data shuffled

• Minimize memory consumption, i.e. memory hungry functions (sorting, groupBy)

• Can cause OOM

17/04/2024 29COM490

Spark & YARN
Troubleshooting

Spark UI

• Use Spark UI to tune tasks/partitions

• See stages, see tasks (#of tasks, shuffle read sizes)

• See failed tasks, tasks that are taking longer

• Collect and read standard output and error logs

• Useful for shared clusters if you are not admin

17/04/2024 31COM490

Spark UI – COM490 Spring 2024

http://iccluster08x.iccluster.epfl.ch:xyz/proxy/application_xyz

17/04/2024 32

Applications
↘︎ Jobs
↘︎ Stages
↘︎ Tasks

COM490

http://iccluster08x.iccluster.epfl.ch:xyz/proxy/application_xyz

Know the infrastructure (expert)

• Memory and cores per VM / Worker node

• Speed per core

• Network speed

• Disk capacity and disk type (SSDs, remote)

• Goal: improve utilization, aim for 70%

17/04/2024 33COM490

Start your engines
https://com490-2024.epfl.ch

https://dslabgit.datascience.ch/course/2025/module-3c

(fork and git clone)

https://com490-2024.epfl.ch/
https://dslabgit.datascience.ch/course/2025/module-3c

