THE DATA SCIENCE LAB
Spark Data Frames

COM 490

Agenda 2025 — module 3b

Introduction to Data Science with Python Advanced Spark

09.04

(Bigger) Data Science with Python Introduction to Stream Processing

Introduction to Big Data Technologies Stream Processing with Kafka

Big Data Wrangling with Hadoop Advanced Stream Processing

Introduction to Spark Final Project Q&A
Final Project Due

Advanced Big Data Queries

Spark Data Frames Oral Sessions

COMA490 p

ddddddd
€€ddaaddada

Week 5 Recap

* What is Spark?
* RDDs

* Immutable
e Resilient
* Lineage
* Operations on RDDs
 Transformations

* Actions
* Lazy execution

* Exercises to get started using the Guttenberg corpus

COMA490 3

Spark & RDDs — Questions?

Today’s Agenda

* Introduction to Data Frames

* DataFrames and PySpark under the hood

* Exercises week 7
* Guttenberg corpus

COMA490 5

Introduction to Spark
DataFrames

RDD Revisited

* Resilient = lineage
* Distributed = partitions
* Unstructured > key-row pairs

* Type safe
 Scala’s compiler optimization

e Use of lambda functions

* Fine grained control — tell spark how to transform a data
* low level — more responsibility to the programmer:
* decide transformations and actions
* which part of the data
* in what order

COMA490 7

Spark DataFrames

e Distributed Collections of Data

el
: : cul
* Organized into rows of named columns SIA

* Very much like relational database Tables
* Optimized for relational-type of queries on tables (logical plan optimization)

1 a 10:00
11:00
12:00
13:00
14:00

COMA490 8

v A W N
() o o (on

Origin of Data Frames }

Spark Data Frame API Inspired by R and Python’s Pandas

want to join the Big
Data party!

22| [access

oo _,,= \

oo (4 NS
=‘.I| SORT ! .'_

o0 P L0 i l . A

| [rren] RS —GeY, =
| ST 1 '8 BANVIR | aa-a |l FINDING...

image - https://realpython.com/

COMA490 9

What are Spark Data Frames

* Inspired by R and Python Pandas

SOURCE

* Local File Systems

e Distributed File Systems
(HDES)

* Cloud Storage (S3)

e External data bases

e Spark RDD

DATA FORMAT - out of the box

* TEXT
* JSON
e (CSV
* Parquet
* ORC
Hive Table

+ Other with plugins (Avro,
ElasticSearch, Cassandra, ...)

* Parallelism & query optimizer, unlike R and Python

COMA490

Why Spark Data Frames — RDD vs DataFrame

Structured & unstructured data Structured data (table, named columns)
Schema must be declared manually Auto discovery of file schema

Lambda functions (map, reduce) Declarative, almost as SQL queries
Lower level language Higher level language

No built-in other than generic compiler Execution optimization
optimization. Must be done manually

Type safety at compile time Type safety at run-time (e.g. trying to
access a non-existing column)

COMA490

Spark DataFrame performance

* DataFrame’s data is managed off-JVM Bl more optimal
* No need for Java/Scala (de)serialization when accessing object
* Avoid garbage collection

» Aggregation (group by) is harder and not as efficient with RDD.

In comparison, exploration analysis is quick and easier on large DataFrame

Spark Python DF

Spark Scala DF

RDD Python [
]

RDD Scala

databrkick blog 2015 0 2 4 6 8 10
(*) to be taken with a grain of salt

Performance of aggregating 10 million int pairs (secs)

COMA490 12

https://databricks.com/fr/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html

Which one should | use? RDD vs DataFrame

e Use RDD for operations that require:
* low level functionalities
e control on unstructured data

e Use DataFrame for:
* high level (SQL like) operations
* on structured data

COMA490

DataFrame under the hood

PySpark

* PySpark - Python front end API for Spark
~ + .S]ocwr‘lgZ = @

* Interface RDDs with Python
* Py4) — python library to dynamically access JVM objects

* Compatible with
e PySparkSQL —SQL query library for DataFrame
* MLib — Machine learning library
 GraphFrames — Graph processing based on DataFrames (Graphx is on RDDs)

COMA490

PySpark

e Spark workers pull data from
source into JVM

e Data is actually processed into
python subprocesses

* (de)serialization and streaming
at every step

COMA490

Data Flow
--- i
Py4) AR Python
i+ | Spark :
Socket|| Spark St W?:I:er <> Python 5
I) P Python :
Spark :
: [Context
' < Python
Spark 5
Worker | Eyttion
« Python
Cluster

PySpark internal

DPython [I JVM

https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals

Catalyst Optimizer

Combines catalyst high level logic rules with
catalog of table schemas to resolve data
attributes and generate a logical plan

- - - - — o ——————————

Generate one or more
physical plans using operators
of spark execution engine

Generate Java byte code for
selected plan

Apply rules to optimize the
logical plan independent of

sQL Query Unresolved Logical Optlmlzed
logical plan Plan logical plan
s Catalyst Optimizer
DataFrame Schema
N catalog
Front End

COMA490

Select lowest cost
physical plan according
to cost model

D_—] i

A Selected i

Physical Physical RDD |

Plans Plan
Backend

A parting word on Spark DataSets

* DataSet = extensions of DataFrame with convenience of RDD.
e Strong type safety
 RDD with Spark SQL optimized execution engine
* Operate on serialized data (no deserialization overhead)

* Available only on Scala and Java
* Since 1.6 DataFrame on Scala and Java are alias for DataSet[row]

COMA490

Useful References

 Spark docs http://spark.apache.org/docs/latest

* DataFrames and code generation
https://medium.com/virtuslab/spark-sgl-under-the-hood-part-i-
26077185ebf0

* Python Spark DataFrames starter documentation
https://spark.apache.org/docs/latest/api/python/getting started/qui
ckstart df.html

» Spark MLlib guide https://spark.apache.org/docs/latest/ml-
guide.html

COMA490

http://spark.apache.org/docs/latest
https://medium.com/virtuslab/spark-sql-under-the-hood-part-i-26077f85ebf0
https://spark.apache.org/docs/latest/api/python/getting_started/quickstart_df.html
https://spark.apache.org/docs/latest/ml-guide.html

M
11

https://com490-2024.epfl.ch/
https://dslabgit.datascience.ch/course/2025/module-3b

