
THE DATA SCIENCE LAB
Spark Data Frames

COM 490

Agenda 2025 – module 3b

2

Introduction to Data Science with Python19.02

(Bigger) Data Science with Python26.02

Introduction to Big Data Technologies05.03

Big Data Wrangling with Hadoop12.03

Introduction to Spark19.03

Advanced Big Data Queries26.03

Spark Data Frames02.04

Advanced Spark
09.04

Introduction to Stream Processing
16.04

Stream Processing with Kafka
30.04

Advanced Stream Processing
07.05

Final Project Q&A
14.06

Final Project Due
21.05

Oral Sessions
28.05

COM490

Week 5 Recap

• What is Spark?

• RDDs
• Immutable

• Resilient

• Lineage

• Operations on RDDs
• Transformations

• Actions

• Lazy execution

• Exercises to get started using the Guttenberg corpus

3COM490

Spark & RDDs – Questions?

4COM490

Today’s Agenda

• Introduction to Data Frames

•DataFrames and PySpark under the hood

• Exercises week 7
• Guttenberg corpus

5COM490

Introduction to Spark
DataFrames

RDD Revisited

• Resilient → lineage

• Distributed → partitions

• Unstructured → key-row pairs

• Type safe
• Scala’s compiler optimization

• Use of lambda functions

• Fine grained control – tell spark how to transform a data
• low level – more responsibility to the programmer:

• decide transformations and actions
• which part of the data
• in what order

7COM490

Spark DataFrames

• Distributed Collections of Data

• Organized into rows of named columns

• Very much like relational database Tables

• Optimized for relational-type of queries on tables (logical plan optimization)

Col 1 Col 2 Col 3

1 a 10:00

2 b 11:00

3 c 12:00

4 d 13:00

5 e 14:00

8COM490

Origin of Data Frames

image - https://realpython.com/

Spark Data Frame API Inspired by R and Python’s Pandas

want to join the Big
Data party!

9COM490

What are Spark Data Frames

• Inspired by R and Python Pandas

• Parallelism & query optimizer, unlike R and Python

SOURCE

• Local File Systems
• Distributed File Systems

(HDFS)
• Cloud Storage (S3)
• External data bases
• Spark RDD

DATA FORMAT – out of the box

• TEXT
• JSON
• CSV
• Parquet
• ORC
• Hive Table

+ Other with plugins (Avro,
ElasticSearch, Cassandra, ...)

10COM490

Why Spark Data Frames – RDD vs DataFrame

Resilient Distributed Dataset (RDD) Data Frame

Structured & unstructured data Structured data (table, named columns)

Schema must be declared manually Auto discovery of file schema

Lambda functions (map, reduce) Declarative, almost as SQL queries

Lower level language Higher level language

No built-in other than generic compiler
optimization. Must be done manually

Execution optimization

Type safety at compile time Type safety at run-time (e.g. trying to
access a non-existing column)

11COM490

Spark DataFrame performance

• DataFrame’s data is managed off-JVM more optimal
• No need for Java/Scala (de)serialization when accessing object

• Avoid garbage collection

• Aggregation (group by) is harder and not as efficient with RDD.

In comparison, exploration analysis is quick and easier on large DataFrame

databrkick blog 2015
(*) to be taken with a grain of salt

12COM490

https://databricks.com/fr/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html

Which one should I use? RDD vs DataFrame

• Use RDD for operations that require:
• low level functionalities

• control on unstructured data

• Use DataFrame for:
• high level (SQL like) operations

• on structured data

13COM490

DataFrame under the hood

PySpark

• PySpark - Python front end API for Spark

• Interface RDDs with Python

• Py4J – python library to dynamically access JVM objects

• Compatible with
• PySparkSQL – SQL query library for DataFrame

• MLib – Machine learning library

• GraphFrames – Graph processing based on DataFrames (Graphx is on RDDs)

15COM490

PySpark

• Spark workers pull data from
source into JVM

• Data is actually processed into
python subprocesses

• (de)serialization and streaming
at every step

PySpark internal

16COM490

https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals

Catalyst Optimizer

HiveQL

SQL Query

DataFrame

Unresolved
logical plan

Logical
Plan

Optimized
logical plan

Physical
Plans
Physical

Plans
Physical

Plans

Selected
Physical

Plan
RDD

Schema
catalog

Front End

Catalyst Optimizer

Backend

Combines catalyst high level logic rules with
catalog of table schemas to resolve data
attributes and generate a logical plan

Apply rules to optimize the
logical plan independent of
spark execution engine

Generate one or more
physical plans using operators
of spark execution engine

Select lowest cost
physical plan according
to cost model

Generate Java byte code for
selected plan

17COM490

A parting word on Spark DataSets

• DataSet = extensions of DataFrame with convenience of RDD.
• Strong type safety

• RDD with Spark SQL optimized execution engine

• Operate on serialized data (no deserialization overhead)

• Available only on Scala and Java
• Since 1.6 DataFrame on Scala and Java are alias for DataSet[row]

18COM490

Useful References

• Spark docs http://spark.apache.org/docs/latest

• DataFrames and code generation
https://medium.com/virtuslab/spark-sql-under-the-hood-part-i-
26077f85ebf0

• Python Spark DataFrames starter documentation
https://spark.apache.org/docs/latest/api/python/getting_started/qui
ckstart_df.html

• Spark MLlib guide https://spark.apache.org/docs/latest/ml-
guide.html

19COM490

http://spark.apache.org/docs/latest
https://medium.com/virtuslab/spark-sql-under-the-hood-part-i-26077f85ebf0
https://spark.apache.org/docs/latest/api/python/getting_started/quickstart_df.html
https://spark.apache.org/docs/latest/ml-guide.html

Start your engines
https://com490-2024.epfl.ch

https://dslabgit.datascience.ch/course/2025/module-3b

(Fork and git clone)

https://com490-2024.epfl.ch/
https://dslabgit.datascience.ch/course/2025/module-3b

