THE DATA SCIENCE LAB
Introduction to Data Stream
Processing

COM 490 - Spring 2025
Week 10

Stream Processing Module

* Objectives
* Review concepts of stream processing

* Experiment with typical tools for
* Dataingestion and processing

e Week 9

* Concepts
* Experiments

* Week 10

* Advanced topics
* Operations on streaming data (joins)
* Time constraints

* Week 11
* Analytics on data at rest and data in motion

COM490 3

Agenda for Today

e Lecture

* Presentation of Final Project
* Exercises

COM490 4

Reminder: Previous Lesson

* Why Stream Processing?

* Relevance (vs batch)
* Application of Stream Processing

* Computing, Real-time monitoring, Social Media, etc
* Constraints and Challenges

* Nature of Input, Output Considerations
* Window Processing

* And related Concepts
* Stream Processing Tools
* Introduction to Kafka and Spark Streaming
* Exercises

COM490 5

Kafka - Overview

Kafka is a distributed event
streaming platform used to:

-® &
- Publish and subscribe to event 3 —
streams Purz = Tone
* Store streams of data reliably .
* Process streams in real-time P . B Subscriber 2
Kafka Terminology ur ’

Publisher 4 ‘ -
i PUblISher => PrOducer Subscriber 3
e Subscriber => Consumer

COM490 (]

Kafka - Components

Component Role

Producer Sends data (events) to Kafka

Message Array of bytes (+optional key, otherwise round robin)
Broker Kafka server that stores data

Topic Named category where records are published
Partition Subdivision of a topic for parallelism

Offset Unique ID of each record within a partition
Consumer Reads data from Kafka

Consumer Group A group of consumers that share a workload
ZooKeeper (legacy) Coordinates brokers (being replaced by KRaft)

COM490 7

Kafka - Broker and Cluster

* A Kafka broker is a server that stores topics and serves data to
clients

* A Kafka cluster = multiple brokers
* Each broker manages some partitions

* Kafka replicates partitions across brokers for fault tolerance
* A partition has a leader broker, others are followers

COM490 8

ZooKeeper or KRaft (New)

ZooKeeper (typically) used for:
* Broker registration

* Leader election

* Metadata management

Now being replaced by KRaft mode (Kafka Raft)
» Kafka becomes self-managing
* More scalable (auto-scaling)

* No external dependency needed (less complexity and more
secure)

COM490 9

Kafka - Topics and Partitions

Topic = named stream of data (e.g. sensor-data, logs)

Each topic has one or more partitions

* A partition is an ordered log of records

* Enables parallelism across consumers and brokers
* Ensures scalability

* Improves performance

COM490

Kafka — Messages

A Kafka message (also called arecord) is the smallest unit of

data stored and transmitted in Kafka.
Each message is written to one partition within a topic

Field Description
. Used to determine which partition the message goes to. Preserves order
Key (optional)
per key.
Value (required) The actual data payload (e.g. JSON, Avro, plain text)
Offset (auto) A unique, sequential ID within the partition — used for tracking

Time when the message was created or received (event time vs processing

Timestamp)

Headers (optional) Extra metadata (key-value pairs)

COM490

Kafka - Offsets: Tracking Position

* Every record in a partition has a unique offset
* Consumers use offsets to track what they’ve read

e Offsets can be:
* Committed manually or automatically
* Reset to latest, earliest, or a specific value

* Offsets are how Kafka achieves exactly-once or at-least-once
delivery semantics

COM490

Kafka - Producers

A producer sends data to a Kafka topic

Can:

* Send records with or without keys

* Control which partition data goes to (via key or partitioner)
* Choose acks settings for durability

Setting Behavior
acks=0 Fire-and-forget
acks=1 Wait for broker to ack

acks=all Wait for all replicas to ack (safest)

COM490

Kafka — Consumer Groups

A consumer group is a named group of consumers that share a
subscription

Kafka distributes partitions across group members
* Each partition > assignhed to only one consumer
* Enables horizontal scalability and fault tolerance

COM490

Spark (Structured) Streaming

Apache Spark Structured Streaming is a high-level streaming API
built on Spark SQL and DataFrames.

=>You write queries as if working with static data

Kafka J\Z
Flume . HDFs |
HDFS/S3 Sp Qr K .) Databases
Kinesis Streamin 9 Dashboards

Twitter

COM490

Key Characteristics

Key Characteristics

* Unified with Spark SQL: write streaming jobs with
SQL/DataFrames

* Handles event time, watermarking, stateful aggregations
* Supports exactly-once semantics (with proper sinks)
* Runs on the same Spark engine as batch jobs

COM490

Core Concepts

Concept

Source

Sink

Streaming DataFrame
Output Mode
Watermark

Windowing

Description

Where the data comes from (e.g., Kafka, files, sockets)
Where the data goes (e.g., console, Kafka, files, custom logic)
A logical table that continuously updates with new data
Controls what data is written: append, update, complete
Mechanism for handling late data

Group events based on time intervals

COM490

Basic Example (Console Output)

df = spark.readStream.schema (schema) .json("input dir")
df transformed = df.withColumn("temp C", col("temp F") - 32 * 5/9)

query = df transformed.writeStream \
.format ("console") \
.outputMode ("append") \
.start ()

This code reads streaming data from JSON files, transforms it, and writes results to the
console.

COM490

Other Supported Operations

* Streaming Joins

e Across Streams or with Static Data

» Stateful Operations

* Require Spark to remember past data across batches.
* Typical use cases
* Session tracking
* Deduplication
* Running totals

* Windowed aggregations with updates

COM490

Streaming Join Example

* Problem

* We want to join live temperature readings from weather stations with a
static table of station metadata to enrich the stream with human-
readable info (e.g., location name, altitude).

« Stream 1 — Temperature Data (from Kafka)

* {"station id": "SO01", "timestamp": "2025-04-29T14:00:00",
"temperature": 21.5 }

» Static Table — Station Info (from CSV or DB)
* station id, location name, altitude
* SO1,"Zirich, CH",410
* S02,"Geneva, CH",375

COM490

Streaming Join Example

* Spark Code — Stream-Static Join

from pyspark.sqgl.functions import from json, col,

to timestamp

from pyspark.sqgl.types import StructType, StringType,

TimestampType, DoubleType

Define schema for temperature data

temp schema = StructType() \
.add("station id", StringType()) \
.add ("timestamp", TimestampType()) \
.add ("temperature", DoubleType())

1. Read stream from Kafka
temperature stream = spark.readStream \
.format ("kafka") \
.option ("kafka.bootstrap.servers",
"localhost:9092") \
.option ("subscribe", "temperature-stream")
.load () \

.selectExpr ("CAST (value AS STRING) AS json")

.select (from json(col("json"),
temp schema) .alias ("data")) \

.select ("data.*") \
.withWatermark ("timestamp", "10 minutes")

2. Load static station info (e.g., from CSV)
station info = spark.read \

.option ("header", True) \

.csv ("station metadata.csv")

3. Perform the join (stream + static)
enriched stream = temperature stream.join (
station info,
on="station id",
how="1left"

4. Write to console (or sink)

query = enriched stream.writeStream \
.format ("console") \
.outputMode ("append") \
.option ("truncate", False) \
.start ()

COM490

Core Concepts (cont)

Concept

Source

Sink

Streaming DataFrame

Output Mode

Watermark

Windowing

Description

Where the data comes from (e.g., Kafka, files, sockets)
Where the data goes (e.g., console, Kafka, files, custom logic)
A logical table that continuously updates with new data
Controls what data is written: append, update, complete
Mechanism for handling late data

Group events based on time intervals

COM490

Event Time vs Processing Time

Event Time

[g © | o [O [
= (1 r, B o= . O
Processing Time delay

Event Time vs Processing Time

7
4 5
[
DDD. : .l
, O o= - O O
1,

EventTime 2,3,4,5,6, ...

1 5
[] []
zDDDG =, '.
! - .l B a

Processing Time

2,3,1,6,5,4,..

Event Time vs Processing Time

12:00 12:01 12:02 12:03" 12:04 12:05 12:06 12:07 12:08: 12:09

Input bytes = ‘ STREAM
PARSE

User scores , STREAM

SUM 120100 | 12:01:0¢ TABLE

Team totals \ STREAM

12:00 12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08 12:09

Event Time

Credits: Tyler Akidau (et al.), Streaming Systems, O’Reilly Media, 2018.

Event Time vs Processing Time

Event-time
skew ...,
’
P

Processing- el

time lag 2

/
. /
Reality J
l 9 = Concept Meaning
4
7 The time embedded in the data (e.g. when
7 ¢ Event Time a temperature reading was captured by a

/ sensor)

/ \
/
7 4 Ideal Processing Time The time system receives and processes
/ g the data (i.e. system clock time)
/
/

Credits: Tyler Akidau (et al.), Streaming Systems, O’Reilly Media, 2018.

What is a Watermark?

skew ’ How to deal with late-arriving data while still finalizing results?
7
. P
Processing- 7
time lag ad Solution: Watermark
Reality v/ * Tells System (e.g. Spark Streaming) :
(~= watermark) // “I’m okay with accepting events up to N minutes late, based on
v their event time.”
4
4
yad Behavior:
/’ * System continues to update aggregations until watermark
/ \ passes.
/ .
Re Ideal * Once watermark passes a window:
/ * System evicts the window from memory.
y ’ * Any event for that window arriving after > ignored.

Credits: Tyler Akidau (et al.), Streaming Systems, O’Reilly Media, 2018.

Watermark & Finalization

Event-time
skew ., Important Distinction:
7
p . P
rocessing- e Stage What happens?
time lag ’
] // Before watermark System may recompute results as new
Reality J (late) data arrives

(~=watermark)

System finalizes the result and stops
l /! After watermark y P
v
7

updates for that time window

Credits: Tyler Akidau (et al.), Streaming Systems, O’Reilly Media, 2018.

Watermarking in Spark Streaming

Average Temperature Every 5 Minutes (Tumbling Windows)

Problem Statement:

* A Kafka topic contains JSON data from weather stations:
* Fields: station id, timestamp, temperature

* Goal: Calculate average temperature every 5 minutes (non-
overlapping windows)

* e.8.[14:00-14:05], [14:05-14:10], ...

Assumptions:
* Events may arrive up to 10 minutes late
* Use event time for aggregation

Watermarking in Spark Streaming

Spark Pseudo-code: Tumbling Windows

readStream from Kafka - parse JSON
withWatermark ("timestamp", "10 minutes")
groupBy:

window (col ("timestamp"), "5 minutes"),

col ("station 1d")

agg:
avg ("temperature")

writeStream to console or sink

[14:00-14:05], [14:05-14:10], ...

Watermarking in Spark Streaming

Spark Pseudo-code: -fumbting Sliding Windows

readStream from Kafka - parse JSON
withWatermark ("timestamp", "10 minutes")
groupBy:
window (col ("timestamp"), "5 minutes", "1 minute"),

col ("station 1d")

agg:
avg ("temperature")

writeStream to console or sink

[14:00-14:05], [14:01-14:06], [14:02-14:07], ...

Useful references

[1] https://spark.apache.org/docs/latest/streaming-programming-guide.html

[2] https://kafka.apache.org/documentation/

[3] https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/

OREILLY"

[4] http://www.streamingbook.net/

[5] Streaming 101 and 102 St >
rearnin

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101 S t g

https://www.oreilly.com/radar/the-world-beyond-batch-streaming-102/ YS EIns)

Tyler Akidau, Slava Chernyak
& Reuven Lax

28.04.21 COM490

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://kafka.apache.org/documentation/
https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/
http://www.streamingbook.net/
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/radar/the-world-beyond-batch-streaming-102/

