
THE DATA SCIENCE LAB
Introduction to Data Stream 

Processing
COM 490 – Spring 2025

Week 10



• Objectives
• Review concepts of stream processing
• Experiment with typical tools for

• Data ingestion and processing

• Week 9
• Concepts
• Experiments

• Week 10
• Advanced topics

• Operations on streaming data (joins)
• Time constraints

• Week 11
• Analytics on data at rest and data in motion

Stream Processing Module

COM490 3



Agenda for Today

• Lecture
• Presentation of Final Project
• Exercises

COM490 4



Reminder: Previous Lesson

COM490 5

• Why Stream Processing?
• Relevance (vs batch)

• Application of Stream Processing
• Computing, Real-time monitoring, Social Media, etc

• Constraints and Challenges
• Nature of Input, Output Considerations

• Window Processing
• And related Concepts

• Stream Processing Tools
• Introduction to Kafka and Spark Streaming
• Exercises



Kafka - Overview

COM490 6

Kafka is a distributed event 
streaming platform used to:

• Publish and subscribe to event 
streams
• Store streams of data reliably
• Process streams in real-time

Kafka Terminology
• Publisher => Producer
• Subscriber => Consumer



Kafka - Components

COM490 7

Component Role

Producer Sends data (events) to Kafka

Message Array of bytes (+optional key, otherwise round robin)

Broker Kafka server that stores data

Topic Named category where records are published

Partition Subdivision of a topic for parallelism

Offset Unique ID of each record within a partition

Consumer Reads data from Kafka

Consumer Group A group of consumers that share a workload

ZooKeeper (legacy) Coordinates brokers (being replaced by KRaft)



Kafka – Broker and Cluster

• A Kafka broker is a server that stores topics and serves data to 
clients
• A Kafka cluster = multiple brokers
• Each broker manages some partitions
• Kafka replicates partitions across brokers for fault tolerance

• A partition has a leader broker, others are followers

COM490 8



ZooKeeper or KRaft (New)

ZooKeeper (typically) used for:
• Broker registration
• Leader election
• Metadata management

Now being replaced by KRaft mode (Kafka Raft)
• Kafka becomes self-managing
• More scalable (auto-scaling)
• No external dependency needed (less complexity and more 

secure)

COM490 9



Kafka – Topics and Partitions

Topic = named stream of data (e.g. sensor-data, logs)

Each topic has one or more partitions
• A partition is an ordered log of records
• Enables parallelism across consumers and brokers
• Ensures scalability
• Improves performance 

COM490 10



Kafka – Messages

• A Kafka message (also called a record) is the smallest unit of 
data stored and transmitted in Kafka.
Each message is written to one partition within a topic

COM490 11

Field Description

Key (optional) Used to determine which partition the message goes to. Preserves order 
per key.

Value (required) The actual data payload (e.g. JSON, Avro, plain text)

Offset (auto) A unique, sequential ID within the partition — used for tracking

Timestamp Time when the message was created or received (event time vs processing 
time)

Headers (optional) Extra metadata (key-value pairs)



Kafka – Offsets: Tracking Position

• Every record in a partition has a unique offset
• Consumers use offsets to track what they’ve read
• Offsets can be:

• Committed manually or automatically
• Reset to latest, earliest, or a specific value

• Offsets are how Kafka achieves exactly-once or at-least-once
delivery semantics

COM490 12



Kafka – Producers

A producer sends data to a Kafka topic
Can:
• Send records with or without keys
• Control which partition data goes to (via key or partitioner)
• Choose acks settings for durability

COM490 13

Setting Behavior

acks=0 Fire-and-forget

acks=1 Wait for broker to ack

acks=all Wait for all replicas to ack (safest)



Kafka – Consumer Groups

A consumer group is a named group of consumers that share a 
subscription

Kafka distributes partitions across group members
• Each partition → assigned to only one consumer
• Enables horizontal scalability and fault tolerance

COM490 14



Spark (Structured) Streaming

Apache Spark Structured Streaming is a high-level streaming API
built on Spark SQL and DataFrames.

=> You write queries as if working with static data

COM490 15



Key Characteristics

Key Characteristics
• Unified with Spark SQL: write streaming jobs with 

SQL/DataFrames
• Handles event time, watermarking, stateful aggregations
• Supports exactly-once semantics (with proper sinks)
• Runs on the same Spark engine as batch jobs

COM490 16



Core Concepts

COM490 17

Concept Description

Source Where the data comes from (e.g., Kafka, files, sockets)

Sink Where the data goes (e.g., console, Kafka, files, custom logic)

Streaming DataFrame A logical table that continuously updates with new data

Output Mode Controls what data is written: append, update, complete

Watermark Mechanism for handling late data

Windowing Group events based on time intervals



Basic Example (Console Output)

df = spark.readStream.schema(schema).json("input_dir")

df_transformed = df.withColumn("temp_C", col("temp_F") - 32 * 5/9)

query = df_transformed.writeStream \

.format("console") \

.outputMode("append") \

.start()

COM490 18

This code reads streaming data from JSON files, transforms it, and writes results to the 
console.



Other  Supported Operations

COM490 19

• Streaming Joins
• Across Streams or with Static Data

• Stateful Operations
• Require Spark to remember past data across batches.

• Typical use cases
• Session tracking

• Deduplication

• Running totals

• Windowed aggregations with updates



Streaming Join Example

COM490 20

• Problem
• We want to join live temperature readings from weather stations with a 

static table of station metadata to enrich the stream with human-
readable info (e.g., location name, altitude).

• Stream 1 — Temperature Data (from Kafka)
• {"station_id": "S01", "timestamp": "2025-04-29T14:00:00", 
"temperature": 21.5 }

• Static Table — Station Info (from CSV or DB)
• station_id, location_name, altitude
• S01,"Zürich, CH",410
• S02,"Geneva, CH",375



Streaming Join Example

COM490 21

• Spark Code — Stream–Static Join
from pyspark.sql.functions import from_json, col, 
to_timestamp
from pyspark.sql.types import StructType, StringType, 
TimestampType, DoubleType

# Define schema for temperature data
temp_schema = StructType() \

.add("station_id", StringType()) \

.add("timestamp", TimestampType()) \

.add("temperature", DoubleType())

# 1. Read stream from Kafka
temperature_stream = spark.readStream \

.format("kafka") \

.option("kafka.bootstrap.servers", 
"localhost:9092") \

.option("subscribe", "temperature-stream") \

.load() \

.selectExpr("CAST(value AS STRING) AS json") \

.select(from_json(col("json"), 
temp_schema).alias("data")) \

.select("data.*") \

.withWatermark("timestamp", "10 minutes")

# 2. Load static station info (e.g., from CSV)
station_info = spark.read \

.option("header", True) \

.csv("station_metadata.csv")

# 3. Perform the join (stream + static)
enriched_stream = temperature_stream.join(

station_info,
on="station_id",
how="left"

)

# 4. Write to console (or sink)
query = enriched_stream.writeStream \

.format("console") \

.outputMode("append") \

.option("truncate", False) \

.start()



Core Concepts (cont)

COM490 22

Concept Description

Source Where the data comes from (e.g., Kafka, files, sockets)

Sink Where the data goes (e.g., console, Kafka, files, custom logic)

Streaming DataFrame A logical table that continuously updates with new data

Output Mode Controls what data is written: append, update, complete

Watermark Mechanism for handling late data

Windowing Group events based on time intervals



Event Time vs Processing Time

Event Time

Processing Time delay



Event Time vs Processing Time

Event Time

Processing Time

1

1

2
3

4 5

6

2

3

6 4

5

2, 3, 1, 6, 5 , 4, …

1, 2, 3, 4, 5, 6, …



Event Time vs Processing Time

Credits: Tyler Akidau (et al.), Streaming Systems, O’Reilly Media, 2018.



Event Time vs Processing Time

Credits: Tyler Akidau (et al.), Streaming Systems, O’Reilly Media, 2018.

Concept Meaning

Event Time
The time embedded in the data (e.g. when 
a temperature reading was captured by a 
sensor)

Processing Time The time system receives and processes
the data (i.e. system clock time)



What is a Watermark?

Credits: Tyler Akidau (et al.), Streaming Systems, O’Reilly Media, 2018.

Problem:
How to deal with late-arriving data while still finalizing results?

Solution: Watermark
• Tells System (e.g. Spark Streaming) :
“I’m okay with accepting events up to N minutes late, based on 
their event time.”

Behavior:
• System continues to update aggregations until watermark 
passes.
•Once watermark passes a window:

• System evicts the window from memory.
• Any event for that window arriving after → ignored.



Watermark & Finalization

Credits: Tyler Akidau (et al.), Streaming Systems, O’Reilly Media, 2018.

Important Distinction:

Stage What happens?

Before watermark System may recompute results as new 
(late) data arrives

After watermark System finalizes the result and stops 
updates for that time window



29

Watermarking in Spark Streaming
Average Temperature Every 5 Minutes (Tumbling Windows)

Problem Statement:
• A Kafka topic contains JSON data from weather stations:

• Fields: station_id, timestamp, temperature
• Goal: Calculate average temperature every 5 minutes (non-

overlapping windows)
• e.g. [14:00–14:05], [14:05–14:10], ...

Assumptions:
• Events may arrive up to 10 minutes late
• Use event time for aggregation



30

Watermarking in Spark Streaming

Spark Pseudo-code: Tumbling Windows

readStream from Kafka → parse JSON

withWatermark("timestamp", "10 minutes")

groupBy:
window(col("timestamp"), "5 minutes"),  # fixed windows
col("station_id")

agg:
avg("temperature")

writeStream to console or sink

[14:00–14:05], [14:05–14:10], ...



31

Watermarking in Spark Streaming

Spark Pseudo-code: Tumbling Sliding Windows

readStream from Kafka → parse JSON

withWatermark("timestamp", "10 minutes")

groupBy:
window(col("timestamp"), "5 minutes", "1 minute"),  # sliding windows
col("station_id")

agg:
avg("temperature")

writeStream to console or sink

[14:00–14:05], [14:01–14:06], [14:02–14:07], ...



Useful references

[1] https://spark.apache.org/docs/latest/streaming-programming-guide.html
[2] https://kafka.apache.org/documentation/
[3] https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/
[4] http://www.streamingbook.net/
[5] Streaming 101 and 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/radar/the-world-beyond-batch-streaming-102/

28.04.21 COM490 32

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://kafka.apache.org/documentation/
https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/
http://www.streamingbook.net/
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/radar/the-world-beyond-batch-streaming-102/

