THE DATA SCIENCE LAB
Introduction to Spark
+ RDDs

COM 490 — Module 3a
Week 5

Agenda 2025 — Module 3a

Introduction to Data Science with Python Advanced Spark

09.04

(Bigger) Data Science with Python Introduction to Stream Processing

Introduction to Big Data Technologies Stream Processing with Kafka

Big Data Wrangling with Hadoop Advanced Stream Processing

Introduction to Spark Final Project Q&A

Final Project Videos Due before midnight

Advanced Big Data Queries

Spark Data Frames Oral Sessions

ddddddd
g€gaadada

Announcements

* Homework #1 due today
* Homework #2 out

* Module 3a today! 2 module 2c next week

Today’s Agenda

* Introduction to Spark

e Spark architecture overview
* RDDs
* Getting started with Spark

* Introduction to this week’s exercises

Getting started with

SHFAEHE&

oark

What is Spark?

Yet another- distributed computation framework

Apache Spark™ is a unified analytics engine for large-scale
data processing.

USED BY
- KEY FEATURES \(L : : A
) . * Internet applications (recommendation engines,
* Interactive data exploration .
usage analysis)
* In-memory data L :
, * Classic big data use cases e.g., text analysis
* Fault-tolerance, parallelism , ,
 Some academia, notably neuroscience

\§ '\ J

A bit of history

MapReduce OSDI 2004
Hadoop 2006, open source MR

Many applications & frameworks ! e

Mesos NSDI 2011
Spark NSDI 2012
Yarn SOCC 2013

NSDI *12 Home
Registration Information
Discounts

Organizers

At a Glance

Technical Sessions

Poster and Demo Session
Birds-of-a-Feather Sessions
Workshops

Sponsors

Activities

Calendar

Hotel and Travel Information
Students

Questions?

Help Promote

For Participants

connect with us

Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In- =
Memory Cluster Computing

Authors:
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and lon Stoica, University of California, Berkeley

Awarded Best Paper!

Awarded Community Award Honorable Mention!

Abstract:

We present Resilient Distributed Datasets (RDDs), a distributed memory abstraction that lets programmers perform in-
memory computations on large clusters in a fault-tolerant manner. RDDs are motivated by two types of applications that
current computing frameworks handle inefficiently: iterative algorithms and interactive data mining tools. In both cases,
keeping data in memory can improve performance by an order of magnitude. To achieve fault tolerance efficiently, RDDs
provide a restricted form of shared memory, based on coarse-grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are expressive enough to capture a wide class of computations, including
recent specialized programming models for iterative jobs, such as Pregel, and new applications that these models do
not capture. We have implemented RDDs in a system called Spark, which we evaluate through a variety of user
applications and benchmarks.

A bit of stats

e Language: Scala

* Since 2009, more than 1200 developers
have contributed to Spark!

* The project's committers come from more
than 25 organizations.

Mar 28, 2010 — Mar 29, 2023 Contributions: Commits ~
Contributions to master, excluding merge commits and bot accounts

150

100

50

0
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

https://spark.apache.org/committers.html

Why Spark?

Spark is just one solution that facilitates analysis on large data.

Other options:
e using the Message Passing Interface (MPI) library
* similar frameworks e.g. Apache Flink (more streaming-specific)

* Python-specific Dask (nice abstraction for scaling python-native
applications)

https://flink.apache.org/
https://dask.pydata.org/

Flexibility

Spark's flexibility is what makes it so popular.

The spark runtime can be deployed on:
* a single machine (local)
* a set of pre-defined machines (stand-alone)
* a dedicated Hadoop-aware scheduler (YARN/Mesos)
* "cloud", e.g. Amazon EC2
* Kubernetes

Incremental, interactive development

Deployment workflow: start small (local) and scale up to one of the
other solutions, depending on needs and resources.

In addition, you can run applications on any of these platforms either

* interactively through a shell (or a Jupyter notebook as we'll see)

* batch mode

No code changes to go between these methods of deployment!

Spark’s flexibility

Supported languages Supported data storage
* Scala e Cassandra
* Java e HDFS
* R * Alluxio
* Python e Hbase
« NET :

* Hive
e Julia
Specialized libraries
e SparkSQL
e SparkStreaming
* MLlib
* GraphX

PySpark components

Spark SQL and Pandas APl on Structured Machine

DataFrames Spark Streaming Lei[ging

Spark Core and RDDs

Spark Architecture Overview

Distributed computing framework

* Revisit

1. Distribute work

2. Orchestrate task execution
3. Collect results

e Fault-tolerant
e Efficient

Spark architecture

" erKod
Magte M
Jlastey b5\\\’(
/ r(}\(‘KD "

iDrva l

> (G\«Ko j

Driver

e coordinates the work to be done

* keeps track of tasks
0
D rlueLy * collects metrics about the tasks (disk |0,
memory, etc.)
%7\

e communicates with the workers (and the user)

Worker

* receive tasks to be done from the driver @Ox{k@d

 store data in memory or on disk

* perform calculations _
| W ores
* return results to the driver AN
4) coe
The user's access point to this Spark
universe is the Spark Context which | |
provides an interface to generate WOE@ Q™
RDDs. ’
_ J

Spark architecture

D] Kesource) Ao
rluLy | Negotiato - Exeator Siakelbikad
Tk G - ‘ x
5 O:Td%&
YRR\ a g

NESOS |
$ W O'\CKD;‘(\ —

A ’ Execov

Resilient Distributed Dataset

Basic Data Abstraction

RDD: primary interface of every Spark application
* keeps track of data distribution across the workers
e provides an interface to the user to access and operate on the data

 fault-tolerant and efficient for iterative algorithms

As a Spark user, you write applications that feed data into RDDs and
subsequently transform them into something useful

Why RDDs?

* Use case: iterative algorithms ML, graph, ad-hoc queries

 Hadoop MapReduce: stable storage
* HDFS, disk, replication (disk I/0O)
* for every stage!

200 171

* RDD keep data in memory 1 Hadoop

* Faster BUT
e expensive fault-tolerance

150

W Basic Spark

Spark + Controlled
Partitioning

Time per iteration (s)
[
o
o

 RDD lineage 0 -
* state can be rebuilt with lineage (cheap to replicate)
* limit operations: immutable, coarse-grained actions

RDD operations

Once an RDD is created, it is immutable - it can only be transformed
into a new RDD via a transformation.

A transformation, however, does not trigger any computation, only
updates the DAG.

Calculations are triggered by actions.

Transformations

Name Use

map (func) the most basic transformation with 1:1 correspondence to original data

filter (func) only keep those elements for which the filter function evaluates to True

mapPartitions (func) similar to map but done on a per-partition basis (requires a generator
function)

flatMap (func) similar to map but each element can be mapped to more than one
corresponding item (func returns a Seq)

distinct ([numPartitions]) only retain the unique elements of the entire RDD

reduceByKey (func, group elements by key and keep the data distributed

[numPartitions])

groupByKey ([numPartitions]) | sort elements based on keys K, where K implements Ordered

Transformations are evaluated "lazily" - only executed once an action is performed.

Transformations: map

T’\é?
lambda (k,v): (k, 2*v)
(7, 1)
(b, 2) \
(cy 3) o g
@ 4

Transformations: flatMap

r«b‘)
lambda (k,v): (k, range(v))

(», 1)

by 2) .

(c; 3 - -

d

(CH) ‘qatnaP

lambda (k,v): [(k,v) for v in range(v))]

(», 1)
b, 2) N
(c; 3) - -
@ Y4

Transformations: filter

filter
lambda (k,v): v%2
(3, 4)
by 2) \
(cy 3) o g
d 4

Transformations: reduceByKey

educe By Key
lambda x,y: x+ty
R o

(3, 1) : A

T~ 3, 1,3)))~ | (G W)
(b, 2)
(3, 3) ><

/ (b, C2,47))— > [(b, &)

Actions

Name Use

reduce (func) reduces the entire RDD to a single value

collect () pulls all elements of the RDD to the driver (often a bad ideal!)
first () returns the first element of the RDD to the driver

take (n) yields a desired number of items to the driver
countByKey () yields a hashmap of (K, Int) pairs with the count of each key

Don't worry, you will soon get to practice with most of these!

Lineage

e When an RDD is transformed, this transformation is not
automatically carried out.

* Instead, the system remembers how to get from one RDD to
another and only executes whatever is needed for the action that is

being done.

* this allows one to build up a complex "pipeline" and easily
tweak/rerun it in its entirety

Getting started with Spark

Initializing Spark

import pyspark

sc = pyspark.SparkContext()

Launches the Spark runtime and connects the application to the master.

This creates a driver which can now be used to dispatch work to the
resources allocated for the application.

Create an RDD: parallelize

rdd = sc.parallelize(data)

@< >@ o

U\) O\r\‘/\a rj

Transform an RDD: map

def square(x): wﬂé?
return Xx*x UL U U U U F -
/7 H; D
N\ 41 \
rdd = sc.parallelize(data) —| portrtion

rdd_squared = rdd.map(square)

S

|

/

~_—_—_—_—_—_

Caching

 RDD evalutations are lazy

 whenever an action is performed, the entire lineage graph is
recalculated

e unless! an intermediate RDD is cached -- then it is only calculated
once and reused from memory each subsequent time

* this allows for good performance when iterating on an RDD is
required

rdd = sc.parallelize(data) g " oY h

rdd2 = rdd.map(square) 7 N
S[partrtionn |
rdd2.cache() !

3B 3 (porkrbion 2

|
|

j

|

|

-

S| portrtion 3 :
]

|

. |

I

Caching example

rdd = sc.parallelize(data) ,7 TS0 0= ~
/ ﬂé? *-r"a}}? \
rdd2 = rdd.map(square) /__——_—_T —————— ~. \l
1
rdd2.cache() ,' S| portrtion ‘I S| porirtion A |
rdd3 = rdd2.map() : : :) :
) |) I
ci'ééta : : 2 @Tﬁﬂf&n 2+ - @mwm 21
| | :) I|
! |
)
: :)&3‘&1’{,\0113 || 3| portrtion3 II
| | - | .
| I y | l
Ny — portrtion 4 I’ S Pa"tmm*] /l
\\ \\ 7/ P V4

Partitioning

e data of each RDD is partitioned and each partition is assigned to an
executor

e each partition in a transformation results in a task

* there may be many more tasks than cores in the system, which
allows for good utilization by fine-graining the overall load.

References

* Spark official website https://spark.apache.org/

* Spark RDD documentation https://spark.apache.org/docs/latest/rdd-
programming-guide.html

* Spark RDD paper
https://www.usenix.org/system/files/conference/nsdil2/nsdil2-
final138.pdf

 Spark github repository https://github.com/apache/spark/

* MapReduce paper
https://dl.acm.org/doi/abs/10.1145/1327452.1327492

* Yarn paper https://dl.acm.org/doi/10.1145/2523616.2523633

https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://github.com/apache/spark/
https://dl.acm.org/doi/abs/10.1145/1327452.1327492
https://dl.acm.org/doi/10.1145/2523616.2523633

(fork and git clone)

https://dslabgit.datascience.ch/course/2025/module-3a

Time for the basic Spark tutorial!

e Gitlab repo for this week:

* https://dslabgit.datascience.ch/course/2025/module-3a

e Spark and RDDs

* Python refresher
e Spark introduction
* Gutenberg

https://dslabgit.datascience.ch/course/2025/module-3a

Analyzing the Gutenberg corpus

* The Gutenberg Project is a large free repository of books and other
media in different languages (but primarily English)

* We will use it to do some basic text analysis using key/value PairRDDs
in Spark.

http://www.gutenberg.org/

The data

* We have pre-processed the data already and created an RDD for you

to use. The RDD consisting of (ID, text) key-value pairs can be found
in

 HDFS /data/com-490/gutenberg/rdd

 This RDD will form the basis of the work in the notebook.

The goal

* The eventual goal is to produce something like the Google NGram
viewer, but for the Gutenberg corpus.

e Because the notebook is quite long, the last part of the notebook is
already filled in, but feel free to run it!

https://books.google.com/ngrams
https://books.google.com/ngrams

	Slide 1: THE DATA SCIENCE LAB Introduction to Spark + RDDs
	Slide 2: Agenda 2025 – Module 3a
	Slide 3: Announcements
	Slide 4: Today’s Agenda
	Slide 5: Introduction to Spark
	Slide 6: Getting started with
	Slide 7: What is Spark?
	Slide 8: A bit of history
	Slide 9: A bit of stats
	Slide 10: Why Spark?
	Slide 11: Flexibility
	Slide 12: Incremental, interactive development
	Slide 13: Spark’s flexibility
	Slide 14: PySpark components
	Slide 15: Spark Architecture Overview
	Slide 16: Distributed computing framework
	Slide 17: Spark architecture
	Slide 18: Driver
	Slide 19: Worker
	Slide 20: Spark architecture
	Slide 21: Resilient Distributed Dataset
	Slide 22: Basic Data Abstraction
	Slide 23: Why RDDs?
	Slide 24: RDDs
	Slide 25: RDD operations
	Slide 26: Transformations
	Slide 27: Transformations: map
	Slide 28: Transformations: flatMap
	Slide 29: Transformations: filter
	Slide 30: Transformations: reduceByKey
	Slide 31: Actions
	Slide 32: Lineage
	Slide 33: Getting started with Spark
	Slide 34: Initializing Spark
	Slide 35: Create an RDD: parallelize
	Slide 36: Transform an RDD: map
	Slide 37: Caching
	Slide 38: Caching
	Slide 39: Caching example
	Slide 40: Partitioning
	Slide 41: References
	Slide 42: Start your engines
	Slide 43: Time for the basic Spark tutorial!
	Slide 44: Analyzing the Gutenberg corpus
	Slide 45: The data
	Slide 46: The goal

