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Agenda 2025 - Module 2a
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Introduction to Data Science with Python19.02

(Bigger) Data Science  with Python26.02

Introduction to Big Data Technologies05.03

Big Data Wrangling with Hadoop12.03

Advanced Big Data Queries19.03

Introduction to Spark26.03

Spark Data Frames02.04

Advanced Spark
09.04

Introduction to Stream Processing
16.04

Stream Processing with Kafka
30.04

Advanced Stream Processing
07.05

Final Project Q&A
14.06

Final Project Videos Due before midnight
22.05

Oral Sessions
28.05



Week 2 – Questions?

Objectives Module 2a

• Most of you have formed the groups

• You have access to the exercises of module 1b

• You understand the purpose of git and master the most 
commons commands

• You should be able to determine an efficient data 
storage format for your needs (Parquet, HDF5, …)

• You are aware of other (than pandas) python data 
processing technologies readily available to you (polars, 
dask, vaex, ray, duckdb, …)

Solutions exercises Module 1b

$ git branch –a

* main

solutions

remotes/origin/HEAD -> origin/main

remotes/origin/main

remotes/origin/solutions

$ git checkout solutions

Switched to branch 'solutions'

Your branch is up to date with 

'origin/solutions'.
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Today’s Agenda

• Bootstrapping your digitalization journey
• An overview and terminology of big data technology

• Hadoop, HDFS, MapReduce, …

• Lab week 3
• First steps with Hadoop Distributed File System (HDFS)
• Start building your Data Lake

COM490 4



Bootstrapping Your 
Digitalization Journey



Intro - Addressing the Big Data Challenges

CPU 

RAM

DISK, IO

Break the
CPU/RAM/Disk 
bounds
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Intro - Addressing the Big Data Challenges

CPU 

RAM

DISK, IO

Break the
CPU/RAM/Disk 
bounds

Use bigger machines: scale up (a.k.a vertical scaling)
… the High-Performance Computing way (HPC)

capability

scale upHardware
cost
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Intro - Addressing the Big Data Challenges

CPU 

RAM

DISK

Break the
CPU/RAM/Disk 
bounds

Use more machines: scale out (a.k.a horizontal scaling)
… the commodity hardware (cloud) way

(…)

Hardware
cost

capability

scale up
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Intro - Addressing the Big Data Challenge

• Horizontal scaling entails (shared) distributed computing across a large number of 
compute servers

• Advantages of distributed computing are:
• Parallel execution
• Easier to run code closer the data - minimize data transfer

• Challenges of distributed computing are:
• The same code should work seamlessly on 1, 10, or 10,000 servers

• Assume the problem can be broken down into chunks, each chunk calculated locally
• The data must be accessible from anywhere

• Optimized resource utilization
• Minimize hot-spots with an effective load-balancing strategy
• Bring compute to data (data locality)
=> A resource manager is required to ensure fair and efficient use of resources

• Fault tolerant and high availability
• The system must handle one or more server failures with no impact on operations

• Support for elastic scaling
• Add/remove machines without requiring down-times or complex maintenance
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Big Data
Machine Learning
AI

Google Trends

The ML, AI and Data (MAD) – A Moving Target

(Sources: Matt Turck - http://mattturck.com ;  trends.google.ch search terms, all categories)

2014 2016 2018 2020
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The ML, AI and Data (MAD) – 2012
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The ML, AI and Data (MAD) – 2024

Source: https://mattturck.com/mad2024/ COM490 12



Today’s First Objective

• Familiarize yourselves with the Big Data ecosystems
• Find your way in the Big Data jungle, explore it more efficiently
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Big Data’s 4Vs
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The Clash: Should I BATCH, or should I STREAM?

• Your application can wait until all information is available for a complete answer?   BATCH
• AKA: Data at rest
• Method: Operates on finite size data sets (e.g. monthly update), and terminate after all data 

has been processed, repeat.
• Application: create reports, training models, …
• Data warehouses (Hive, …), Hadoop Map Reduce, Spark Batch

• Your application needs results as soon as more information becomes available?  STREAMS
• AKA: Data in motion, or Fast data
• Method: Continuous computation that never stops, processes infinite amount of data on the fly

• Designed to keep size of in-memory state bounded, regardless of how much data is processed
• Operates on small time windows
• Update the answer as more data becomes available

• Application: Often used in critical systems, where fast response time to event is essential
• Spark Streaming, Kafka,  Flink,  Storm
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Learn
(Spark)

BATCH (periodically learn a new model) - seen in Module 2 and 3

External
Archives
(Historical
data)

historical data

Validate
(Spark)

Train

Test

HDFS
Data Warehouse
...

STREAMS and BATCH Illustrated

Predictive Model

Data Stream
(Kafka)

Prediction
(Spark streaming)

STREAMS (continuously process data on the fly) - seen in Module 4

Real-time
GPS Data ETA

Feature 
extraction

(Spark streaming)

Feature 
Extraction

(Spark)
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In-Memory

• Entire dataset (or at least the part being 
processed) fits into memory (RAM) during 
computation

• Faster, once data is in memory

• Limited by available RAM

• E.g. Pandas

Out-of-Core

• Data is loaded in chunks into memory during 
processing

• More Disk/Network I/O: needed to retrieve 
chunks of data

• Used when data set exceeds RAM

• E.g. Vaex, Polars, DuckDB, pyarrow

In-Memory Versus Out-of-Core Processing
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Understanding Push-down In Data Processing

• Delegate operations to the underlying data source (database, storage, etc.)
• Operation is performed closer to the data

• Reduce the volume of data transferred (over network, from disk)

• Leverage the data source's native optimizations

• Example:
• Parquet and ORC formats store column statistics (e.g., min/max values)

• With DuckDB and PyArrow's predicate pushdown, queries like the following read only 
relevant data:

SELECT Date,Temp FROM weather WHERE Date > '2025-01-01'
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Understanding Hive Partitioning In Data Storage

• Organizes data into directories based on column values, e.g., year, month, day

• Reduces I/O by skipping irrelevant partitions during queries

• Can be used in predicate pushdown to further optimize queries

E.g.  … WHERE year=2025 AND month>6

(1) Hive partitioning is not the only scheme for partitioning data in the file system, but it is one of the most widely supported schemes.

…/weather/year=2025/month=01/day=01/*.parquet

/day=02/*.parquet

…

/month=02/day=01/*.parquet
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Understanding Tradeoffs of Distributed Data Stores – C.A.P

C.A.P Theorem “It is impossible for a distributed data store to simultaneously provide more than two out of the following three 
guarantees” (Brewer's Conjecture, 2000)

• Consistency: All clients see the same data (last update) (1)

• Availability:   Every request get a response, even if partition (2) happens (node, or network failure)
• Partition tolerance: C and/or A holds despite messages being dropped or delayed between partitions

In distributed systems (scale out), network partition tolerance (P) is unavoidable

We therefore must choose between Consistency (C+P) or Availability (A+P) during partition

• C+P: System refuses to answer, and thus forfeit Availability but guarantee Consistency
• A+P: Proceed with the operation and thus provide Availability but risks Inconsistency

Choose your technology based on whether consistency or availability is more important for your application! 

(1)Defined differently from strict consistency of Atomicity Consistency Isolation Durability (ACID transaction)

(1)This is server partitioning, which is not the same as file or data partitioning such as seen in Hive partitioning
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Addressing the Big Data Challenge – Big Data Stack

Storage

Resource Management

Batch
Processing

SQL
Data Warehouse

Stream processingNoSQL
Database

Machine Learning
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Real time data 
flow orchestration

Security

Batch tasks 
scheduling (ETL)



Addressing the Big Data Challenge - Other Technologies

https://dask.org/

Familiar for python users

Scale up to clusters (including Apache YARN-managed)

Integrate with existing python projects

https://ray.io/

(Ray Cluster)
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How Shall I Start the Journey?

• Easy! I’ll go ahead and start building ML models, right?

• Instead, start by…

- Ingesting data

- Cleaning data

- Integrating data

• In most companies, this actually represents 75% of the work

• Only then can you make the last 25% (analytics) successful

• Build a data lake to tame your data first! 
© P. Cudre-Mauroux https:\\exascale.info  

Wrong!
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Hadoop Distributed File 
Systems HDFS

Technology Overview



Hadoop Distributed File Systems Top Features

• Large Data Sets
• Size of a file only limited to total HDFS cluster capacity, and can exceed the size of its largest disks

• Horizonal scalability (cost effective)
• Need more space? add more machines with more disks

• Fault Tolerance & High Availability
• Redundance guarantees that if a disk fail, copies of lost data blocks can be found on another disk

• High Throughput
• Support parallel file I/O and processing with “end-to-end” partitioning from input data to results

• Data Locality
• Moving computation to the data instead of moving data to the computation (less network bottleneck)

• Data Integrity
• Checksums are used to detect corrupted data

• Data security
• Access Control Lists (ACL)
• Transparent end-to-end encryption (multi encryption zones, i.e. multi-tenant)
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Hadoop Distributed File Systems Essentials

• Main Concepts
• HDFS is a DISTRIBUTED (networked) cost-efficient file systems

• NameNode: (master node) manages namespace, must have at least one, preferably two for high 
availability

• DataNode: (worker nodes) serves the data, one per server

• Data blocks are in units of 128MB max (default Hadoop 2)

• E.g. 500 MB file is 3 x 128 MB blocks + 116 MB block

• Write-once & read many times: a file cannot be modified in place, it must be replaced (but append is 
possible)

• Redundancy, all blocks replicated x3 by default (200% overhead **)

• Redundancy against failures

• Statistically easier to move computation next to the data and load-balance the CPU usage

• HDFS command line, a POSIX-like file systems interface (Hadoop2):
• hdfs dfs  [--help]

** more recently Hadoop 3 uses code erasure with 50% overhead using parity blocks instead of redundancy
same level of fault tolerance, but less replicas - best for rarely accessed data)
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Hadoop Distributed File Systems Essentials

What about other storages like block storage (e.g AWS S3) ?

It works too, main differences:

• Block storage is more cost-efficient

• Block storage scales better and is more elastic than HDFS

• HDFS has better latency and performances than S3

Others: security, durability, persistence, ... depends on the providers, 
on-premise vs in cloud etc.
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DataNode:D DataNode:E DataNode:F

Hadoop Distributed File Systems (HDFS) Essentials

HDFS
client

NameNode

1. create

data block -> nodes

b1:A , B, C
b2:D, E, F
b3:D, B, F
b4:A, E, C
...

DataNode:A DataNode:B DataNode:C

4. Ack 4. Ack

3. copy

b1

3. copy

b1b1

b1 2. write b1→(A,B,C)

4. Ack

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

HDFS

write
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DataNode:D DataNode:E DataNode:F

Hadoop Distributed File Systems (HDFS) Essentials

HDFS
client

NameNode

1. create

data block -> nodes

b1:A , B, C
b2:D, E, F
b3:D, B, F
b4:A, E, C
...

DataNode:A DataNode:B DataNode:C

b1 b1

b2

DataNode:D DataNode:E DataNode:F

b2 b2 b2

b1

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

HDFS

write
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Hadoop Distributed File Systems (HDFS) Essentials

HDFS
client

NameNode

1. create

b3

DataNode:D DataNode:E DataNode:F

DataNode:A DataNode:B DataNode:C

b1 b1 b1

b2 b2 b2

b3

b3 b3

data block -> nodes

b1:A , B, C
b2:D, E, F
b3:D, B, F
b4:A, E, C
...

HDFS

write
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Hadoop Distributed File Systems (HDFS) Essentials

HDFS
client

NameNode

1. create

b4

DataNode:D DataNode:E DataNode:F

DataNode:A DataNode:B DataNode:C

b1 b1 b1

b2 b2 b2

b4 b3 b4

b3 b4 b3

2. write b4→(A,E,F)

data block -> nodes

b1:A , B, C
b2:D, E, F
b3:D, B, F
b4:A, E, C
...

HDFS

write
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Hadoop Map Reduce
Algorithm Overview



Map Reduce in a Nutshell

Split

Input data

Intermediate results on HDFS file systems or in-memory

1

1

1

1

1

1

Map

(key-value pairs)

1

1

1
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worker 1

worker 2

worker 3

Map Reduce in a Nutshell

Split

Input data

Intermediate results on HDFS file systems or in-memory

• HDFS data is already split into HDFS blocks !
• “Mapping” can be done in parallel on worker nodes 

placed closest to datanodes where blocks of input 
data are stored

1

1

1

1

1

1

Map

(key-value pairs)

1

1

1

Input data blocks

DataNode:A

DataNode:B

DataNode:C
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worker 1

Map Reduce in a Nutshell – Hadoop Splittable

Split

Input data

• HDFS data is already split into blocks ! 
• “Mapping” can be done in parallel on worker nodes 

placed closest to datanodes where blocks of input data 
are stored

• But ... , effective only if input data is Hadoop splittable !
• Otherwise

• Data blocks of Input data encoded using non-splittable
algorithms are meaningless binary blobs, e.g.:

• Gzip-compressed input data
• Input data encrypted without using HDFS native 

encryption
• They must be copied and reassembled in a worker node, 

and processed sequentially (e.g. decompressed), then 
split.

Map

Intermediate results on HDFS file systems or in-memory

a

b

c

Split

Splittable Input dataInput data blobs

DataNode:A

DataNode:B

DataNode:C
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Map Reduce in a Nutshell

4

3

2

Reduce

4

3

2

Output

1

1

1

1

1

1

Map

(key-value pairs)

1

1

1

1

1

1

1

1

1

1

Shuffle (keys)

1

1

Intermediate results on HDFS file systems or in-memory

Input data blocks

DataNode:A

DataNode:B

DataNode:C
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Map Reduce in a Nutshell

4

3

2

Reduce

4

3

2

Output

1

1

1

1

1

1

Map

(key-value pairs)

1

1

1

1

2

1

2

1

1

Shuffle (keys)

1

Intermediate results on HDFS file systems or in-memory

1

1

1

1

1

2

2

Combine

Input data blocks

DataNode:A

DataNode:B

DataNode:C
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Quiz – Which one is best ?
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MapReduce gotchas

Shuffling is the network bottleneck of MapReduce operations, because placement of 
“reducers” cannot be optimized based on data locality.
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MapReduce Best Practices

Optimization starts with good data partitioning practices to (1) better balance the load on 
CPU and RAM, and (2) minimize data shuffling and expensive network IO.
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Today’s check list – key objectives
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• You have formed the groups
• Otherwise contact us

• You have access to the exercises of module 2a

• You understand some of the fundamental concepts presented in class
• Scale-out vs Scale-up, challenges of scaling out, Hive Partitioning, Predicate Push down, HDFS, Splittable

data format, Map Reduce, consistency availability tradeoffs, out-of-core computing (and what to do 
when pandas runs out-of-memory)

• You have a clearer understanding of the various Hadoop technologies and their use cases, and you can 
recognize when other technologies offer similar features.

• You can navigate HDFS and manage data on HDFS



Start your engines



Uploading and managing data on HDFS
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EPFL
VPN

Home folder

Jupyter lab
Notebooks

Big Data cluster

Trino

Hadoop Distributed
File Systems (data)

Map
Reduce

Spark Kafka Yarn

hdfs …

*.iccluster.epfl.ch

*.iccluster.epfl.ch

dslabgit.datascience.ch

EPFL



Uploading and managing data on HDFS - CLI

Purpose of today's exercises: upload data to HDFS

hdfs dfs –ls hdfs-path

hdfs dfs –mkdir hdfs-path

hdfs dfs {–copyFromLocal|-put|-moveFromLocal} local-file(s) hdfs-dest

hdfs dfs –mv hdfs-from-path hdfs-dest-path

hdfs dfs –chmod permissions hdfs-from-path hdfs-dest-path

hdfs dfs –setfacl acl-spec hdfs-from-path hdfs-dest-path

hdfs dfs –getfacl hdfs-dest-path

hdfs dfs –rm hdfs-dest-path

hdfs dfs –du hdfs-dest-path
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Processing data on HDFS programmatically

PANDAS

• Python application programming interface (API) convenient library, can be used 
read or write data on different file systems, including HDFS (based on pyarrow)

Pyarrow

• Arrow: Low level API to abstract operations on different file systems, used to 
integrate data processing technologies and storage or data transfer systems

• Pyarrow: is the Python API wrapper of Arrow (others for C++, Rust, etc)

DuckDB

• Query data on HDFS (using pyarrow)
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Reminder - Popular Storage Formats

• Plain text (csv, json, xml, …),
• Row-oriented (most common)

• Often sourced externally
• Best for OLTP
• Compression: None, Gzip, Bzip2, ...
• Batch and  stream processing

• Splittable (if one line per record, depend on compression)

• Parquet
• Column-oriented, ideal for OLAP workload

• Integrated compression: SNAPPY,  ZLIB, ZSTD, …
• Splittable
• Best suited for write once, read many (WORM)
• Batch processing only

• ORC
• Column-oriented, optimized for OLAP

• Data stored in stripes (typically 250MB)
• Indexed, splittable
• Integrated compression: SNAPPY, ZLIB, ZSTD, …
• Optimized for WORM

• Batch processing only

• Avro
• Row-oriented,

• Splittable
• Block level compression
• Best for OLTP
• Support schema evolution

• HDF5 / NetCDF4
• Hierarchical, Multidimensional (D > 2)
• Optimized for large datasets
• Compression: ZLIB, SZIP, …
• Splittable (with chunks)
• Best for scientific and high-performance computing
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