
THE DATA SCIENCE LAB
General Introduction to Big Data

COM 490 – Module 2a

Week 3

Agenda 2025 - Module 2a

COM490 2

Introduction to Data Science with Python19.02

(Bigger) Data Science with Python26.02

Introduction to Big Data Technologies05.03

Big Data Wrangling with Hadoop12.03

Advanced Big Data Queries19.03

Introduction to Spark26.03

Spark Data Frames02.04

Advanced Spark
09.04

Introduction to Stream Processing
16.04

Stream Processing with Kafka
30.04

Advanced Stream Processing
07.05

Final Project Q&A
14.06

Final Project Videos Due before midnight
22.05

Oral Sessions
28.05

Week 2 – Questions?

Objectives Module 2a

• Most of you have formed the groups

• You have access to the exercises of module 1b

• You understand the purpose of git and master the most
commons commands

• You should be able to determine an efficient data
storage format for your needs (Parquet, HDF5, …)

• You are aware of other (than pandas) python data
processing technologies readily available to you (polars,
dask, vaex, ray, duckdb, …)

Solutions exercises Module 1b

$ git branch –a

* main

solutions

remotes/origin/HEAD -> origin/main

remotes/origin/main

remotes/origin/solutions

$ git checkout solutions

Switched to branch 'solutions'

Your branch is up to date with

'origin/solutions'.

COM490 3

Today’s Agenda

• Bootstrapping your digitalization journey
• An overview and terminology of big data technology

• Hadoop, HDFS, MapReduce, …

• Lab week 3
• First steps with Hadoop Distributed File System (HDFS)
• Start building your Data Lake

COM490 4

Bootstrapping Your
Digitalization Journey

Intro - Addressing the Big Data Challenges

CPU

RAM

DISK, IO

Break the
CPU/RAM/Disk
bounds

COM490 6

Intro - Addressing the Big Data Challenges

CPU

RAM

DISK, IO

Break the
CPU/RAM/Disk
bounds

Use bigger machines: scale up (a.k.a vertical scaling)
… the High-Performance Computing way (HPC)

capability

scale upHardware
cost

COM490 7

Intro - Addressing the Big Data Challenges

CPU

RAM

DISK

Break the
CPU/RAM/Disk
bounds

Use more machines: scale out (a.k.a horizontal scaling)
… the commodity hardware (cloud) way

(…)

Hardware
cost

capability

scale up

COM490 8

Intro - Addressing the Big Data Challenge

• Horizontal scaling entails (shared) distributed computing across a large number of
compute servers

• Advantages of distributed computing are:
• Parallel execution
• Easier to run code closer the data - minimize data transfer

• Challenges of distributed computing are:
• The same code should work seamlessly on 1, 10, or 10,000 servers

• Assume the problem can be broken down into chunks, each chunk calculated locally
• The data must be accessible from anywhere

• Optimized resource utilization
• Minimize hot-spots with an effective load-balancing strategy
• Bring compute to data (data locality)
=> A resource manager is required to ensure fair and efficient use of resources

• Fault tolerant and high availability
• The system must handle one or more server failures with no impact on operations

• Support for elastic scaling
• Add/remove machines without requiring down-times or complex maintenance

COM490 9

Big Data
Machine Learning
AI

Google Trends

The ML, AI and Data (MAD) – A Moving Target

(Sources: Matt Turck - http://mattturck.com ; trends.google.ch search terms, all categories)

2014 2016 2018 2020

COM490 10

The ML, AI and Data (MAD) – 2012

COM490 11

The ML, AI and Data (MAD) – 2024

Source: https://mattturck.com/mad2024/ COM490 12

Today’s First Objective

• Familiarize yourselves with the Big Data ecosystems
• Find your way in the Big Data jungle, explore it more efficiently

COM490 13

Big Data’s 4Vs

COM490 14

The Clash: Should I BATCH, or should I STREAM?

• Your application can wait until all information is available for a complete answer? BATCH
• AKA: Data at rest
• Method: Operates on finite size data sets (e.g. monthly update), and terminate after all data

has been processed, repeat.
• Application: create reports, training models, …
• Data warehouses (Hive, …), Hadoop Map Reduce, Spark Batch

• Your application needs results as soon as more information becomes available? STREAMS
• AKA: Data in motion, or Fast data
• Method: Continuous computation that never stops, processes infinite amount of data on the fly

• Designed to keep size of in-memory state bounded, regardless of how much data is processed
• Operates on small time windows
• Update the answer as more data becomes available

• Application: Often used in critical systems, where fast response time to event is essential
• Spark Streaming, Kafka, Flink, Storm

COM490 15

Learn
(Spark)

BATCH (periodically learn a new model) - seen in Module 2 and 3

External
Archives
(Historical
data)

historical data

Validate
(Spark)

Train

Test

HDFS
Data Warehouse
...

STREAMS and BATCH Illustrated

Predictive Model

Data Stream
(Kafka)

Prediction
(Spark streaming)

STREAMS (continuously process data on the fly) - seen in Module 4

Real-time
GPS Data ETA

Feature
extraction

(Spark streaming)

Feature
Extraction

(Spark)

COM490 16

Predictive
Models

In-Memory

• Entire dataset (or at least the part being
processed) fits into memory (RAM) during
computation

• Faster, once data is in memory

• Limited by available RAM

• E.g. Pandas

Out-of-Core

• Data is loaded in chunks into memory during
processing

• More Disk/Network I/O: needed to retrieve
chunks of data

• Used when data set exceeds RAM

• E.g. Vaex, Polars, DuckDB, pyarrow

In-Memory Versus Out-of-Core Processing

COM490 17

Understanding Push-down In Data Processing

• Delegate operations to the underlying data source (database, storage, etc.)
• Operation is performed closer to the data

• Reduce the volume of data transferred (over network, from disk)

• Leverage the data source's native optimizations

• Example:
• Parquet and ORC formats store column statistics (e.g., min/max values)

• With DuckDB and PyArrow's predicate pushdown, queries like the following read only
relevant data:

SELECT Date,Temp FROM weather WHERE Date > '2025-01-01'

COM490 18

Understanding Hive Partitioning In Data Storage

• Organizes data into directories based on column values, e.g., year, month, day

• Reduces I/O by skipping irrelevant partitions during queries

• Can be used in predicate pushdown to further optimize queries

E.g. … WHERE year=2025 AND month>6

(1) Hive partitioning is not the only scheme for partitioning data in the file system, but it is one of the most widely supported schemes.

…/weather/year=2025/month=01/day=01/*.parquet

/day=02/*.parquet

…

/month=02/day=01/*.parquet

COM490 19

Understanding Tradeoffs of Distributed Data Stores – C.A.P

C.A.P Theorem “It is impossible for a distributed data store to simultaneously provide more than two out of the following three
guarantees” (Brewer's Conjecture, 2000)

• Consistency: All clients see the same data (last update) (1)

• Availability: Every request get a response, even if partition (2) happens (node, or network failure)
• Partition tolerance: C and/or A holds despite messages being dropped or delayed between partitions

In distributed systems (scale out), network partition tolerance (P) is unavoidable

We therefore must choose between Consistency (C+P) or Availability (A+P) during partition

• C+P: System refuses to answer, and thus forfeit Availability but guarantee Consistency
• A+P: Proceed with the operation and thus provide Availability but risks Inconsistency

Choose your technology based on whether consistency or availability is more important for your application!

(1)Defined differently from strict consistency of Atomicity Consistency Isolation Durability (ACID transaction)

(1)This is server partitioning, which is not the same as file or data partitioning such as seen in Hive partitioning

COM490 20

Addressing the Big Data Challenge – Big Data Stack

Storage

Resource Management

Batch
Processing

SQL
Data Warehouse

Stream processingNoSQL
Database

Machine Learning

COM490 21

Real time data
flow orchestration

Security

Batch tasks
scheduling (ETL)

Addressing the Big Data Challenge - Other Technologies

https://dask.org/

Familiar for python users

Scale up to clusters (including Apache YARN-managed)

Integrate with existing python projects

https://ray.io/

(Ray Cluster)

COM490 22

How Shall I Start the Journey?

• Easy! I’ll go ahead and start building ML models, right?

• Instead, start by…

- Ingesting data

- Cleaning data

- Integrating data

• In most companies, this actually represents 75% of the work

• Only then can you make the last 25% (analytics) successful

• Build a data lake to tame your data first!
© P. Cudre-Mauroux https:\\exascale.info

Wrong!

COM490 23

https://exascale.info/

Hadoop Distributed File
Systems HDFS

Technology Overview

Hadoop Distributed File Systems Top Features

• Large Data Sets
• Size of a file only limited to total HDFS cluster capacity, and can exceed the size of its largest disks

• Horizonal scalability (cost effective)
• Need more space? add more machines with more disks

• Fault Tolerance & High Availability
• Redundance guarantees that if a disk fail, copies of lost data blocks can be found on another disk

• High Throughput
• Support parallel file I/O and processing with “end-to-end” partitioning from input data to results

• Data Locality
• Moving computation to the data instead of moving data to the computation (less network bottleneck)

• Data Integrity
• Checksums are used to detect corrupted data

• Data security
• Access Control Lists (ACL)
• Transparent end-to-end encryption (multi encryption zones, i.e. multi-tenant)

COM490 25

Hadoop Distributed File Systems Essentials

• Main Concepts
• HDFS is a DISTRIBUTED (networked) cost-efficient file systems

• NameNode: (master node) manages namespace, must have at least one, preferably two for high
availability

• DataNode: (worker nodes) serves the data, one per server

• Data blocks are in units of 128MB max (default Hadoop 2)

• E.g. 500 MB file is 3 x 128 MB blocks + 116 MB block

• Write-once & read many times: a file cannot be modified in place, it must be replaced (but append is
possible)

• Redundancy, all blocks replicated x3 by default (200% overhead **)

• Redundancy against failures

• Statistically easier to move computation next to the data and load-balance the CPU usage

• HDFS command line, a POSIX-like file systems interface (Hadoop2):
• hdfs dfs [--help]

** more recently Hadoop 3 uses code erasure with 50% overhead using parity blocks instead of redundancy
same level of fault tolerance, but less replicas - best for rarely accessed data)

COM490 26

Hadoop Distributed File Systems Essentials

What about other storages like block storage (e.g AWS S3) ?

It works too, main differences:

• Block storage is more cost-efficient

• Block storage scales better and is more elastic than HDFS

• HDFS has better latency and performances than S3

Others: security, durability, persistence, ... depends on the providers,
on-premise vs in cloud etc.

COM490 27

DataNode:D DataNode:E DataNode:F

Hadoop Distributed File Systems (HDFS) Essentials

HDFS
client

NameNode

1. create

data block -> nodes

b1:A , B, C
b2:D, E, F
b3:D, B, F
b4:A, E, C
...

DataNode:A DataNode:B DataNode:C

4. Ack 4. Ack

3. copy

b1

3. copy

b1b1

b1 2. write b1→(A,B,C)

4. Ack

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

HDFS

write

COM490 28

DataNode:D DataNode:E DataNode:F

Hadoop Distributed File Systems (HDFS) Essentials

HDFS
client

NameNode

1. create

data block -> nodes

b1:A , B, C
b2:D, E, F
b3:D, B, F
b4:A, E, C
...

DataNode:A DataNode:B DataNode:C

b1 b1

b2

DataNode:D DataNode:E DataNode:F

b2 b2 b2

b1

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

HDFS

write

COM490 29

Hadoop Distributed File Systems (HDFS) Essentials

HDFS
client

NameNode

1. create

b3

DataNode:D DataNode:E DataNode:F

DataNode:A DataNode:B DataNode:C

b1 b1 b1

b2 b2 b2

b3

b3 b3

data block -> nodes

b1:A , B, C
b2:D, E, F
b3:D, B, F
b4:A, E, C
...

HDFS

write

COM490 30

Hadoop Distributed File Systems (HDFS) Essentials

HDFS
client

NameNode

1. create

b4

DataNode:D DataNode:E DataNode:F

DataNode:A DataNode:B DataNode:C

b1 b1 b1

b2 b2 b2

b4 b3 b4

b3 b4 b3

2. write b4→(A,E,F)

data block -> nodes

b1:A , B, C
b2:D, E, F
b3:D, B, F
b4:A, E, C
...

HDFS

write

COM490 31

Hadoop Map Reduce
Algorithm Overview

Map Reduce in a Nutshell

Split

Input data

Intermediate results on HDFS file systems or in-memory

1

1

1

1

1

1

Map

(key-value pairs)

1

1

1

COM490 33

worker 1

worker 2

worker 3

Map Reduce in a Nutshell

Split

Input data

Intermediate results on HDFS file systems or in-memory

• HDFS data is already split into HDFS blocks !
• “Mapping” can be done in parallel on worker nodes

placed closest to datanodes where blocks of input
data are stored

1

1

1

1

1

1

Map

(key-value pairs)

1

1

1

Input data blocks

DataNode:A

DataNode:B

DataNode:C

COM490 34

worker 1

Map Reduce in a Nutshell – Hadoop Splittable

Split

Input data

• HDFS data is already split into blocks !
• “Mapping” can be done in parallel on worker nodes

placed closest to datanodes where blocks of input data
are stored

• But ... , effective only if input data is Hadoop splittable !
• Otherwise

• Data blocks of Input data encoded using non-splittable
algorithms are meaningless binary blobs, e.g.:

• Gzip-compressed input data
• Input data encrypted without using HDFS native

encryption
• They must be copied and reassembled in a worker node,

and processed sequentially (e.g. decompressed), then
split.

Map

Intermediate results on HDFS file systems or in-memory

a

b

c

Split

Splittable Input dataInput data blobs

DataNode:A

DataNode:B

DataNode:C

COM490 35

Map Reduce in a Nutshell

4

3

2

Reduce

4

3

2

Output

1

1

1

1

1

1

Map

(key-value pairs)

1

1

1

1

1

1

1

1

1

1

Shuffle (keys)

1

1

Intermediate results on HDFS file systems or in-memory

Input data blocks

DataNode:A

DataNode:B

DataNode:C

COM490 36

Map Reduce in a Nutshell

4

3

2

Reduce

4

3

2

Output

1

1

1

1

1

1

Map

(key-value pairs)

1

1

1

1

2

1

2

1

1

Shuffle (keys)

1

Intermediate results on HDFS file systems or in-memory

1

1

1

1

1

2

2

Combine

Input data blocks

DataNode:A

DataNode:B

DataNode:C

COM490 37

Quiz – Which one is best ?

COM490 38

MapReduce gotchas

Shuffling is the network bottleneck of MapReduce operations, because placement of
“reducers” cannot be optimized based on data locality.

COM490 39

MapReduce Best Practices

Optimization starts with good data partitioning practices to (1) better balance the load on
CPU and RAM, and (2) minimize data shuffling and expensive network IO.

COM490 40

Today’s check list – key objectives

COM490 41

• You have formed the groups
• Otherwise contact us

• You have access to the exercises of module 2a

• You understand some of the fundamental concepts presented in class
• Scale-out vs Scale-up, challenges of scaling out, Hive Partitioning, Predicate Push down, HDFS, Splittable

data format, Map Reduce, consistency availability tradeoffs, out-of-core computing (and what to do
when pandas runs out-of-memory)

• You have a clearer understanding of the various Hadoop technologies and their use cases, and you can
recognize when other technologies offer similar features.

• You can navigate HDFS and manage data on HDFS

Start your engines

Uploading and managing data on HDFS

COM490 43

EPFL
VPN

Home folder

Jupyter lab
Notebooks

Big Data cluster

Trino

Hadoop Distributed
File Systems (data)

Map
Reduce

Spark Kafka Yarn

hdfs …

*.iccluster.epfl.ch

*.iccluster.epfl.ch

dslabgit.datascience.ch

EPFL

Uploading and managing data on HDFS - CLI

Purpose of today's exercises: upload data to HDFS

hdfs dfs –ls hdfs-path

hdfs dfs –mkdir hdfs-path

hdfs dfs {–copyFromLocal|-put|-moveFromLocal} local-file(s) hdfs-dest

hdfs dfs –mv hdfs-from-path hdfs-dest-path

hdfs dfs –chmod permissions hdfs-from-path hdfs-dest-path

hdfs dfs –setfacl acl-spec hdfs-from-path hdfs-dest-path

hdfs dfs –getfacl hdfs-dest-path

hdfs dfs –rm hdfs-dest-path

hdfs dfs –du hdfs-dest-path

COM490 44

Processing data on HDFS programmatically

PANDAS

• Python application programming interface (API) convenient library, can be used
read or write data on different file systems, including HDFS (based on pyarrow)

Pyarrow

• Arrow: Low level API to abstract operations on different file systems, used to
integrate data processing technologies and storage or data transfer systems

• Pyarrow: is the Python API wrapper of Arrow (others for C++, Rust, etc)

DuckDB

• Query data on HDFS (using pyarrow)

COM490 45

Reminder - Popular Storage Formats

• Plain text (csv, json, xml, …),
• Row-oriented (most common)

• Often sourced externally
• Best for OLTP
• Compression: None, Gzip, Bzip2, ...
• Batch and stream processing

• Splittable (if one line per record, depend on compression)

• Parquet
• Column-oriented, ideal for OLAP workload

• Integrated compression: SNAPPY, ZLIB, ZSTD, …
• Splittable
• Best suited for write once, read many (WORM)
• Batch processing only

• ORC
• Column-oriented, optimized for OLAP

• Data stored in stripes (typically 250MB)
• Indexed, splittable
• Integrated compression: SNAPPY, ZLIB, ZSTD, …
• Optimized for WORM

• Batch processing only

• Avro
• Row-oriented,

• Splittable
• Block level compression
• Best for OLTP
• Support schema evolution

• HDF5 / NetCDF4
• Hierarchical, Multidimensional (D > 2)
• Optimized for large datasets
• Compression: ZLIB, SZIP, …
• Splittable (with chunks)
• Best for scientific and high-performance computing

COM490 46

	Slide 1: THE DATA SCIENCE LAB General Introduction to Big Data
	Slide 2: Agenda 2025 - Module 2a
	Slide 3: Week 2 – Questions?
	Slide 4: Today’s Agenda
	Slide 5: Bootstrapping Your Digitalization Journey
	Slide 6: Intro - Addressing the Big Data Challenges
	Slide 7: Intro - Addressing the Big Data Challenges
	Slide 8: Intro - Addressing the Big Data Challenges
	Slide 9: Intro - Addressing the Big Data Challenge
	Slide 10: The ML, AI and Data (MAD) – A Moving Target
	Slide 11: The ML, AI and Data (MAD) – 2012
	Slide 12: The ML, AI and Data (MAD) – 2024
	Slide 13: Today’s First Objective
	Slide 14: Big Data’s 4Vs
	Slide 15: The Clash: Should I BATCH, or should I STREAM?
	Slide 16: STREAMS and BATCH Illustrated
	Slide 17: In-Memory Versus Out-of-Core Processing
	Slide 18: Understanding Push-down In Data Processing
	Slide 19: Understanding Hive Partitioning In Data Storage
	Slide 20: Understanding Tradeoffs of Distributed Data Stores – C.A.P
	Slide 21: Addressing the Big Data Challenge – Big Data Stack
	Slide 22: Addressing the Big Data Challenge - Other Technologies
	Slide 23: How Shall I Start the Journey?
	Slide 24: Hadoop Distributed File Systems HDFS
	Slide 25: Hadoop Distributed File Systems Top Features
	Slide 26: Hadoop Distributed File Systems Essentials
	Slide 27: Hadoop Distributed File Systems Essentials
	Slide 28: Hadoop Distributed File Systems (HDFS) Essentials
	Slide 29: Hadoop Distributed File Systems (HDFS) Essentials
	Slide 30: Hadoop Distributed File Systems (HDFS) Essentials
	Slide 31: Hadoop Distributed File Systems (HDFS) Essentials
	Slide 32: Hadoop Map Reduce
	Slide 33: Map Reduce in a Nutshell
	Slide 34: Map Reduce in a Nutshell
	Slide 35: Map Reduce in a Nutshell – Hadoop Splittable
	Slide 36: Map Reduce in a Nutshell
	Slide 37: Map Reduce in a Nutshell
	Slide 38: Quiz – Which one is best ?
	Slide 39: MapReduce gotchas
	Slide 40: MapReduce Best Practices
	Slide 41: Today’s check list – key objectives
	Slide 42: Start your engines
	Slide 43: Uploading and managing data on HDFS
	Slide 44: Uploading and managing data on HDFS - CLI
	Slide 45: Processing data on HDFS programmatically
	Slide 46: Reminder - Popular Storage Formats

