THE DATA SCIENCE LAB
General Introduction to Big Data

COM 490 — Module 23
Week 3



Agenda 2025 - Module 2a

Introduction to Data Science with Python Advanced Spark

09.04

(Bigger) Data Science with Python Introduction to Stream Processing

Introduction to Big Data Technologies Stream Processing with Kafka

Big Data Wrangling with Hadoop Advanced Stream Processing

Advanced Big Data Queries Final Project Q&A

Introduction to Spark Final Project Videos Due before midnight

Spark Data Frames Oral Sessions
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Week 2 — Questions?

Objectives Module 2a Solutions exercises Module 1b
* Most of you have formed the groups

* You have access to the exercises of module 1b 7 git branch -a
. * main
* You understand the purpose of git and master the most

solutions
commons commands

remotes/origin/HEAD -> origin/main
* You should be able to determine an efficient data

remotes/origin/main
storage format for your needs (Parquet, HDFS5, ...) J

remotes/origin/solutions
git checkout solutions
Switched to branch 'solutions'

* You are aware of other (than pandas) python data S
processing technologies readily available to you (polars,

dask, vaex, ray, duckdb, ...)
Your branch is up to date with

'origin/solutions'.
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Today’s Agenda

* Bootstrapping your digitalization journey

* An overview and terminology of big data technology
 Hadoop, HDFS, MapReduce, ...

*Lab week 3
* First steps with Hadoop Distributed File System (HDFS)
e Start building your Data Lake
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Bootstrapping Your
Digitalization Journey



Intro - Addressing the Big Data Challenges

Break the
CPU/RAM/Disk
bounds
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Intro - Addressing the Big Data Challenges

Hardware | scale up
cost
Use bigger machines: scale up (a.k.a vertical scaling)
... the High-Performance Computing way (HPC)
A capabiliti
Break the
CPU/RAM/Disk
bounds
S -
DISK, 10
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Intro - Addressing the Big Data Challenges

Hardware | scale up
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Use more machines: scale out (a.k.a horizontal scaling)
... the commodity hardware (cloud) way
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Intro - Addressing the Big Data Challenge

* Horizontal scaling entails (shared) distributed computing across a large number of
compute servers

* Advantages of distributed computing are:

e Parallel execution
* Easier to run code closer the data - minimize data transfer

* Challenges of distributed computing are:

* The same code should work seamlessly on 1, 10, or 10,000 servers
* Assume the problem can be broken down into chunks, each chunk calculated locally

* The data must be accessible from anywhere

* Optimized resource utilization
* Minimize hot-spots with an effective load-balancing strategy

* Bring compute to data (data locality)
=> A resource manager is required to ensure fair and efficient use of resources

* Fault tolerant and high availability
* The system must handle one or more server failures with no impact on operations

* Support for elastic scaling
* Add/remove machines without requiring down-times or complex maintenance
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The ML, Al and Data (MAD) — A Moving Target

BIG DATA LANDSCAPE, VERSION 3.0

Big Data Landscape 2016 (Version 3.0) B1G DATA & Al LANDSCAPE 2018
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The ML, Al and Data (MAD) — 2012

Big Data Landscape
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The ML, Al and Data (MAD) — 2024
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Today’s First Objective

* Familiarize yourselves with the Big Data ecosystems
* Find your way in the Big Data jungle, explore it more efficiently
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Big Data’s

SCALE OF DATA
VOLUME

VERACITY
UNCERTAINTY OF DATA
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The Clash: Should | , or should |

* Your application can wait until all information is available for a complete answer? BATCH
* AKA: Data at rest

* Method: Operates on finite size data sets (e.g. monthly update), and terminate after all data
has been processed, repeat.

* Application: create reports, training models, ...
» Data warehouses (Hive, ...), Hadoop Map Reduce, Spark Batch

e Your application needs results as soon as more information becomes available? STREAMS
 AKA: Data in motion, or Fast data

* Method: Continuous computation that never stops, processes infinite amount of data on the fly
* Designed to keep size of in-memory state bounded, regardless of how much data is processed
* Operates on small time windows
e Update the answer as more data becomes available

* Application: Often used in critical systems, where fast response time to event is essential

* Spark Streaming, Kafka, Flink, Storm
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STREAMS and BATCH lllustrated

STREAMS (continuously process data on the fly) - seen in Module 4

SBB CFF FFS
Real-time Data Stream Featut'e Prediction

extraction , ETA
GPS Data (Kafka) (Spark streaming)

(Spark streaming)

Predictive Model

Feature
Extraction

cal data (Spark)

External HDFS ": Predictive
Archives Data Warehouse Validate Models
(Historical (Spark)

data)

BATCH (periodically learn a new model) - seen in Module 2 and 3
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Versus Processing

In-Memory Out-of-Core
* Entire dataset (or at least the part being * Data is loaded in chunks into memory during
processed) fits into memory (RAM) during processing
computation * More Disk/Network 1/0: needed to retrieve
* Faster, once datais in memory chunks of data
* Limited by available RAM * Used when data set exceeds RAM
* E.g. Pandas * E.g. Vaex, Polars, DuckDB, pyarrow
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Understanding In Data Processing

* Delegate operations to the underlying data source (database, storage, etc.)

* Operation is performed closer to the data
* Reduce the volume of data transferred (over network, from disk)
* Leverage the data source's native optimizations

* Example:
* Parquet and ORC formats store column statistics (e.g., min/max values)

e With DuckDB and PyArrow's predicate pushdown, queries like the following read only
relevant data:

SELECT Date,Temp FROM weather WHERE Date > '2025-01-01'
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Understanding In Data Storage

* Organizes data into directories based on column values, e.g., year, month, day

../weather/year=2025/month=01/day=01/* .parquet
/day=02/* .parquet

/monthzOZ;day=Ol/*.parquet
* Reduces I/0 by skipping irrelevant partitions during queries

e Can be used in predicate pushdown to further optimize queries

E.g. .. WHERE year=2025 AND month>6

(1) Hive partitioning is not the only scheme for partitioning data in the file system, but it is one of the most widely supported schemes.
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Understanding Tradeoffs of Distributed Data Stores —

C.A.P Theorem “It is impossible for a distributed data store to simultaneously provide more than two out of the following three
guarantees” (Brewer's Conjecture, 2000)

* Consistency: All clients see the same data (last update) (%)
* Availability: Every request get a response, even if partition (2 happens (node, or network failure)
* Partition tolerance: C and/or A holds despite messages being dropped or delayed between partitions

In distributed systems (scale out), network partition tolerance (P) is unavoidable

We therefore must choose between Consistency (C+P) or Availability (A+P) during partition

* C+P: System refuses to answer, and thus forfeit Availability but guarantee Consistency
* A+P: Proceed with the operation and thus provide Availability but risks Inconsistency

Choose your technology based on whether consistency or availability is more important for your application!

(Upefined differently from strict consistency of Atomicity Consistency Isolation Durability (ACID transaction)

(UThis is server partitioning, which is not the same as file or data partitioning such as seen in Hive partitioning
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Addressing the Big Data Challenge — Big Data Stack

Machine Learning
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Addressing the Big Data Challenge - Other Technologies

https://dask.org/

Familiar for python users

# Arrays implement the NumPy API

import dask.array as da

X = da.random.random(size=(10000, 10000),
chunks=(1000, 1000))

X + X.T - x.mean(axis=0)

# Dataframes implement the pandas API
import dask.dataframe as dd

df = dd.read_csv('s3://.../2018-*-* csv')
df . groupby(df.account_id) .balance.sum()

# Dask-ML implements the scikit-learn API
from dask_ml.linear_model \
import LogisticRegression
lr = LogisticRegression()
1r.fit(train, test)

oSp RAY

Integrate with existing python projects

NumPy pandas scikit-learn

: '!i %iie’iag

Scale up to clusters (including Apache YARN-managed)

https://ray.io/

ray.autoscaler.sdk request_resources
request_resources(num_cpus=1000)

request_resources(
num_cpus=64, bundles=[{"GPU": 1, "CPU": 4}])

request_resources (
bundles=[{"CPU": 1}, {"CPU": 1}, {"CPU": 1}])

COM490
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How Shall | Start the Journey?

* Easyll-l gooheadandstartbuilding MbLmedelsright wrong!

* Instead, start by...
- Ingesting data
- Cleaning data
- Integrating data

* In most companies, this actually represents 75% of the work
* Only then can you make the last 25% (analytics) successful

* Build a data lake to tame your data first!

© P. Cudre-Mauroux https:\\exascale.info
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Hadoop Distributed File
Systems HDFS

Technology Overview



Hadoop Distributed File Systems Top Features

« Large Data Sets
» Size of a file only limited to total HDFS cluster capacity, and can exceed the size of its largest disks

« Horizonal scalability (cost effective)
* Need more space? add more machines with more disks

« Fault Tolerance & High Availability
» Redundance guarantees that if a disk fail, copies of lost data blocks can be found on another disk

« High Throughput
» Support parallel file I/O and processing with “end-to-end” partitioning from input data to results

« Data Locality
» Moving computation to the data instead of moving data to the computation (less network bottleneck)

« Data Integrity
» Checksums are used to detect corrupted data

- Data security
» Access Control Lists (ACL)
« Transparent end-to-end encryption (multi encryption zones, i.e. multi-tenant)
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Hadoop Distributed File Systems Essentials

* Main Concepts
 HDFS is a DISTRIBUTED (networked) cost-efficient file systems

* NameNode: (master node) manages namespace, must have at least one, preferably two for high
availability

* DataNode: (worker nodes) serves the data, one per server
* Data blocks are in units of 128 MB max (default Hadoop 2)
* E.g. 500 MB file is 3x 128 MB blocks + 116 MB block

* Write-once & read many times: a file cannot be modified in place, it must be replaced (but append is
possible)

* Redundancy, all blocks replicated x3 by default (200% overhead **)
* Redundancy against failures

» Statistically easier to move computation next to the data and load-balance the CPU usage

* HDFS command line, a POSIX-like file systems interface (Hadoop?2):
* hdfs dfs [-—help]

** more recently Hadoop 3 uses code erasure with 50% overhead using parity blocks instead of redundancy
same level of fault tolerance, but less replicas - best for rarely accessed data)
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Hadoop Distributed File Systems Essentials o>

What about other storages like block storage (e.g AWS S3) ?

It works too, main differences:

* Block storage is more cost-efficient
* Block storage scales better and is more elastic than HDFS
 HDFS has better latency and performances than S3

Others: security, durability, persistence, ... depends on the providers,
on-premise vs in cloud etc.
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Hadoop Distributed File Systems (HDFS) Essentials ¢

b1 2. write b,~>(A,B,C)

4. Ack
data block -> nodes
A, B, C by b, b,
1. create :D, E, F
b;:D, B, F
b,:A E, C
h DataNode:D DataNode:E DataNode:F
XN oI oIEs oIn
o _IIII [ oI
I I L

NameNode

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
28
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Hadoop Distributed File Systems (HDFS) Essentials ¢

DataNode:A DataNode:B DataNode:C

write

b,
) <
data block -> nodes b1 bl
A, B C
1. create :D, E, F
b;:D, B, F
b,:A E, C
h DataNode:D DataNode:E DataNode:F
X (o ] » CEXED > XD
.. XTI OIS . oI
I — _w._ _w._ _”I_
NameNode
b, b, b,

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
29
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Hadoop Distributed File Systems (HDFS) Essentials

DataNode:A DataNode:B DataNode:C

. b,
1. create L
b;:D, B, F
b,:A E, C
h DataNode:E ataNode:F
X Xl XD (eo0 ]
w (oo ] X XN
—  — _w._ _w_ _”_
NameNode
b2 b2 bz
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Hadoop Distributed File Systems (HDFS) Essentials ¢

. DataNode:A DataNode:B DataNode:C
2. write b,~>(A,E,F)

data block -> nodes

A, B, C

1. create :D, E, F
bs:D, B, F

b,A, E, C
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Hadoop Map Reduce

Algorithm Overview



in-a Nutshell

Input data

Split Map

Intermediate results on HDFS file systems or in-memory
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Map Reduce in-a Nutshell

g HDFS data is already split into HDFS blocks !
am *  “Mapping” can be done in parallel on worker nodes
placed closest to datanodes where blocks of input
Datmiistle:A data are stored
worker 1
o
s
o=
DataNode:B
worker 2
[
oz
o=
DataNode:C
worker 3

Intermediate results on HDFS file systems or in-memory
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Map Reduce in a Nutshell —

Input data blobs  Splittable Input data

o=
==
DataNode:A = /
* But..., effective only if input data is Hadoop splittable !
- e Otherwise
o= — * Data blocks of Input data encoded using non-splittable
algorithms are meaningless binary blobs, e.g.:
. « Gzip-compressed input data
* Input data encrypted without using HDFS native
encryption
. \ * They must be copied and reassembled in a worker node,
i o - and processed sequentially (e.g. decompressed), then
split.
DataNode:C

Map worker 1 Split

Intermediate results on HDFS file systems or in-memory
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Map Reduce in-a Nutshell

Input data blocks _
(key-value pairs)

il

DataNode:A

o
o
o=
DataNode:B
Output
oI
] 1
o=
DataNode:C 1
Map Shuffle (keys) Reduce

Intermediate results on HDFS file systems or in-memory
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Map Reduce in-a Nutshell

Input data blocks

(key-value pairs)

[ - ]
X
L ___ 18 |
DataNode:A
X
[ ]
I
DataNode:B
Output
[ ]
(... ]
I
DataNode:C 1

Map Combine Shuffle (keys) Reduce

Intermediate results on HDFS file systems or in-memory
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Quiz—Which one is best ?




MapReduce gotchas

\
M)
-

Shuffling is the network bottleneck of MapReduce operations, because placement of
“reducers” cannot be optimized based on data locality.

)
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MapReduce Best Practices

Optimization starts with good data partitioning practices to (1) better balance the load on
CPU and RAM, and (2) minimize data shuffling and expensive network I0.
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Today’s check list — key objectives

You have formed the groups
e Otherwise contact us

You have access to the exercises of module 2a

You understand some of the fundamental concepts presented in class

* Scale-out vs Scale-up, challenges of scaling out, Hive Partitioning, Predicate Push down, HDFS, Splittable
data format, Map Reduce, consistency availability tradeoffs, out-of-core computing (and what to do
when pandas runs out-of-memory)

* You have a clearer understanding of the various Hadoop technologies and their use cases, and you can
recognize when other technologies offer similar features.

You can navigate HDFS and manage data on HDFS

COM490 41







Uploading and managing data on HDFS

Big Data cluster

> : Map
T

Hadoop Distributed

EPFL Jupyter lab

‘ - “ VPN Notebooks

File Systems (data)

Home foIder

s . R *.iccluster.epfl.ch
e’ [ A

— R we ab *.iccluster.epfl.ch

4 T

&l eprL GitLab

g dslabgit.datascience.ch
—
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Uploading and managing data on HDFS - CLI

Purpose of today's exercises: upload data to HDFS

hdfs dfs -1s hdfs-path

hdfs dfs —mkdir hdfs-path

hdfs dfs {-copyFromlocal |-put|-moveFromLocal} local-file(s) hdfs-dest
hdfs dfs —-mv hdfs-from-path hdfs-dest-path

hdfs dfs -chmod permissions hdfs-from-path hdfs-dest-path

hdfs dfs -setfacl acl-spec hdfs-from-path hdfs-dest-path

hdfs dfs —-getfacl hdfs-dest-path

hdfs dfs —rm hdfs-dest-path

hdfs dfs —-du hdfs-dest-path
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Processing data on HDFS programmatically

PANDAS

* Python application programming interface (API) convenient library, can be used
read or write data on different file systems, including HDFS (based on pyarrow)

Pyarrow

* Arrow: Low level API to abstract operations on different file systems, used to
integrate data processing technologies and storage or data transfer systems

e Pyarrow: is the Python APl wrapper of Arrow (others for C++, Rust, etc)

DuckDB
e Query data on HDFS (using pyarrow)
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Reminder - Popular Storage Formats

* Plain text (csv, json, xml, ...), * ORC
* Row-oriented (most common) * Column-oriented, optimized for OLAP
* Often sourced externally * Data stored in stripes (typically 250MB)
* Best for OLTP * Indexed, splittable
* Compression: None, Gzip, Bzip2, ... * Integrated compression: SNAPPY, ZLIB, ZSTD, ...
* Batch and stream processing * Optimized for WORM
* Splittable (if one line per record, depend on compression) * Batch processing only
* Parquet * Avro
* Column-oriented, ideal for OLAP workload * Row-oriented,
* Integrated compression: SNAPPY, ZLIB, ZSTD, ... * Splittable
* Splittable * Block level compression
* Best suited for write once, read many (WORM) * Best for OLTP
* Batch processing only * Support schema evolution

* HDF5 / NetCDF4
* Hierarchical, Multidimensional (D > 2)
* Optimized for large datasets
* Compression: ZLIB, SZIP, ...
* Splittable (with chunks)
» Best for scientific and high-performance computing
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