THE DATA SCIENCE LAB
Bigger Data Science with Python

COM 490 — Module 1b
Week 2

Agenda 2025 - Module 1b

Introduction to Data Science with Python Advanced Spark

09.04

(Bigger) Data Science with Python Introduction to Stream Processing

Introduction to Big Data Technologies Stream Processing with Kafka

Big Data Wrangling with Hadoop Advanced Stream Processing

Advanced Big Data Queries Final Project Q&A

Introduction to Spark Final Project Videos Due before midnight

Spark Data Frames Oral Sessions

COM490 p

ddddddd
g€gaadada

Agenda

* Code versioning with Git

* Data Storage Formats

* Python — Scalable & Parallelized Data Processing Frameworks

COM490 3

Code Versioning with Git

Crash Course

Git — distributed code version system

* Tracks changes in computer files, used for coordinating collaborative
work among programmers
* Created in 2005 by Linus Torvald, now used for 95% of version control tasks

repository

Git — distributed code version system

* Tracks changes in computer files, used for coordinating collaborative
work among programmers

* Created in 2005 by Linus Torvald, now used for 95% of version control tasks

. V GitLab
cl . . .
2", git py Repository hosting service
8it pusp i git remote Manage:
® users/groups

repository projects

issues tracking
merges

Gitlab Fork
— git remote
Repository
(Read only)

COM490 6

O O O
el @° @

Git — Commit History (git log)

[Initial O J * A commitis a single point in the commit history. Itisa
Y snapshot of all the tracked files at that point.
(parent)
* By default, a succession of commits follow

{ Commit 1 } a linear evolution

{ Commit 3 }

source: git-scm.com

COM490 7

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git — Branching

master branch (stable)

. Initialo |

A

development branch

Agige 14

(Commit 3 J
Age 3US5—6]

merge

* A commitisasingle pointin the commit history. It is a
snapshot of all the tracked files at that point.

* By default, a succession of commits follow
a linear evolution

* Using Git, it is recommended to work in parallel on
separate branches
(e.g. stable master branch and development branches)

Git branching strategies
* GitFlow (complex)

e Github Flow (easy)

* Gitlab Flow (easy)

* OneFlow (medium)

source: git-scm.com

COM490 8

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git — File Lifecycle

Files in local working directory remote v GitLab
(: \ (: \
< git clone <url>, then git pull

source: git-scm.com

COM490 9

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git — File Lifecycle

Files in local working directory

|
(\
m Committed Modified

new files

N
/

remote v GitLab
A

git

clone <url>, then git pull

<

edit files

N
)/

File states and changes
are kept in a .git folder

source: git-scm.com

COM490

10

\

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git — File Lifecycle

Files in local working directory remote v GitLab

A A
[) [)

< git clone <url>, then git pull

module-1a % git status
On branch main
newfiles / gi t add fi l e S > Your branch isup to date with 'origin/main'.
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
\ modified: README.md

edit files / git add files

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)
modified: shell-cheat-sheet.sh

- - 1A 1)

git commit -—--message "... _
Untracked files:

(use "git add <file>..." to include in what will be committed)

requirements.txt

git push >

A new commit is created in
the project repository source: git-scm.com

COM490 11

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git — File Lifecycle

Files in local working directory remote v GitLab
))

[) [)

module-1a % git status
On branch main
Your branch is up to date with 'origin/main’'.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: README.md

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)
modified: shell-cheat-sheet.sh

Untracked files:
(use "git add <file>..." to include in what will be committed)
requirements.txt

COM490 12

Git — Common Commands

Copy a repository locally from a remote origin
git clone https://comd90-2024.epfl.ch/comd90-2024/modulelb.git

» Stage files for a grouped commit
git add files
 Commit files from staged area

git commit --message “description courte de la validation”

» Verify status of files repository (untracked, modified, staged files, ...)
git status

e Push local changes to remote (origin) repository
git push
* Retrieve changes from remote (origin) repository

git pull

COM490 13

Git — Best Practices (for starters)

* DO NOT commit large files
* If needed use git Ifs (see appendix)

* DO NOT commit binaries, intermediate data files, notebooks with
outputs, or any files that can be regenerated from source

* DO use separate branches for ‘clean’ code and ‘development’ code
* git checkout -b yourname-dev
*git add & git commit
* git push --set-upstream origin yourname-dev
* Merge branch yourname-dev to main branch in gitlab (after review)

* DO use short but meaningful commit messages (wip, bufix, ...)
 https://www.conventionalcommits.org/en/v1.0.0/

COM490 14

Git — Documentation

Diff

1. https://git-scm.com/docs

2. https://education.github.com/git-cheat-sheet-education.pdf

3. https://docs.gitlab.com/ee/topics/git/

4. Terminal tutorial

More Useful info in Appendix

COM490 15

https://git-scm.com/docs
https://education.github.com/git-cheat-sheet-education.pdf
https://docs.gitlab.com/ee/topics/git/
https://asciinema.org/a/643383

Data Storage Formats - Introduction

e Different data formats offer trade-offs

» Storage efficiency (cost of storage)
* Schema flexibility (usability)

» Read/write performance (latency, and cost of query RAM/CPU req.)

* Popular formats!®
e CSV, JSON, (XML), ...
* Avro
* Parquet, ORC, Feather
e HDF5, NetCDF

* Choosing the right format depends on use cases like OLTP, OLAP, machine
learning, or scientific data analysis and technology used

(*) There are many other formats optimized for very specific applications (e.g. ONNX for DL, DICOM for imaging etc), we only discuss multi-purpose format here

COM490 17

Understanding Data Processing — OLTP vs OLAP

OLTP (Online Transaction Processing) OLAP (Online Analytical Processing)
* Purpose: Handles real-time transactional data * Purpose: Analyzes large datasets (e.g.
(e.g., banking transactions). performance metrics).
* Data Type Format: Relational databases with * Data Type Format: Data warehouses and
structured data (e.g., SQL databases like multidimensional databases
MySQL or PostgresQl). * Key Characteristics: Large-scale, columnar
* Key Characteristics: Fast, high-volume, row- storage.
based.

COM490 18

Understanding Data Processing — OLTP vs OLAP

OLTP (Online Transaction Processing) OLAP (Online Analytical Processing)

Kee X ¥y 2

Row-based ,
‘ { Columnar-storage

AT :j L_E_ju\

< 7

. Operations on columns or slices along dimensions
Normalized for consistency Denormalized for faster querying and complex analysis

COM490 19

Understanding Data Processing — OLTP vs OLAP

OLTP (Online Transaction Processing)

+—>
&

N

(Typical approaches to OLTP and OLAP)

(R)DBMS
CRUD/ACID

DBMS-managed

OLAP (Online Analytical Processing)

COM490

Data warehouse

Distributed Query Engines

I "Schema on read"

[

High performance distributed storage
S3, HDFS, GFS, GPFS, GlusterFs ...

20

Data Storage Formats — Key Considerations

DATA TYPE RECOMMENDED FORMAT BEST FOR

Tabular (Big Data) PARQUET or ORC (or Feather) OLAP Compact, fast reads, columnar
storage, indexing

Semi-structured / Avro OLTP, Compact, fast serialization,
Nested streaming schema evolution

Scientific, multi- HDF5 or NetCDF OLAP Optimized for large arrays, fast
dimensional random access, metadata-rich
Small-scale or Human CSV (tabular), JSON (nested) N/A (manual Simple, portable, human-
Readable small data) readable, slow reads (text parsing)

See Appendix for a detailed comparison

COM490 21

Data Storage Formats — Key Takeaways

* For the purpose of analytical queries, if you receive data in
e CSV

e Convert to Parquet or ORC for faster analytical queries and smaller storage footprint

 JSON or XML

e Tabular
* Convert to Parquet or ORC
* Nested or hierarchical:
 HDF5/NetCDF for scientific/multidimensional data

COM490 22

Data Storage Formats — Tradeoffs

Processing Time,
Storage Cost, ...

A

A

Storage type 1

overhead

Storage type 2

»

COM490

»

Data Size,
Data Complexity, ...

23

Python Data Processing
Libraries

Python Data Processing Libraries

Scikit-Learn

Machine Learning Libraries

PyTorch, TensorFlow (DL)
Optuna (hyperparameter tuning), ...

DataFrame Libraries
Pandas, Modin
Vaex, Polars
DuckDB, ...

Specialized DataFrame Libraries
GeoPandas
Xarray, ...

Distributed Engines
Dask

Ray

PySpark

Data Exchange Libraries
PyArrow
Petastrom, ...

COM490

25

Data Frame Libraries - Key Considerations

Pandas Single machine, slow CSV, Parquet Convenient, polyvalent ...

Single machine, extremely
Polars fast, lazy data loading Parquet, CSV, JSON
(reduced RAM overhead)

Multi-threaded, Rust-
based, lazy evaluation

Single machine, out-of- Memory-mapped, no
D
Vaex core (lazy data streaming) Parquet, LSV, HDFS RAM overhead
e e €5
Modin Parquet, CSV, JSON replacement for

distributed on Dask, Ray, parallelized Code

Single machine, SQL-
DuckDB based, out-of-core, very Parquet, CSV, JSON
fast (great for 100Gb)

In-memory OLAP, local
analytics

"Scalable pandas replacements”

COM490 26

Specialized Data Frame Libraries

Scalability Integrate Well With Typically Used With

Shapefiles, GeoJSON,
Parquet

xarray Multidimensional (N > 2) Dask, Pandas HDF5, NetCDF4

GeoPandas Geospatial Vector Data (2D) Dask, Pandas

xarray tutorial: https://renkulab.io/projects/gregorl/tutorial-the-xarray-ecosystem

COM490 27

Distributed Data Processing Engines

Parallel computing on multi-servers (cluster),
Dask integrates with Pandas (Modin), Xarray, Parquet, Avro, CSV, HDF5
Optuna, and Scikit-Learn

Distributed ML and Al workloads, integrates
with Modin and Scikit-Learn

Spark Massive scalability, SQL support, MLlib. Parquet, ORC, Avro, CSV, JSON

Ray Parquet, CSV, JSON

COM490 28

Data Interchange Libraries

Foundational in-memory (zero-copy)
PyArrow data exchange based on Arrow IPC,
Parquet /O

Pandas, Polars, Modin, Dask,

Spark Parquet, Feather, CSV, ...

Data access library developed by Uber.
PetaStorm Parallel data loading for Deep Learning,
ML frameworks.

TensorFlow, PyTorch, PySpark,

Sosils Parquet

COM490 29

Data Processing Technology — Tradeoffs

Processing Time,
Processing Cost, ...

A

o

Data processing technology 1

overhead

Data processing technology 2

»
»

Data Size,
Complexity of analysis, ...

COM490 30

References

* Modin https://modin.org/
 VAEX https://vaex.io/
e Dask https://www.dask.org/

e Polars https://pola.rs/

* Ray https://www.ray.io/
* Duckdb: https://duckdb.org/
e Xarray: https://xarray.dev/

 Arrow: https://arrow.apache.org/docs/python/index.html

COM490 31

https://modin.org/
https://vaex.io/
https://www.dask.org/
https://pola.rs/
https://www.ray.io/
https://duckdb.org/
https://xarray.dev/
https://arrow.apache.org/docs/python/index.html

Today’s check list — key objectives

Most of you have formed the groups
e Otherwise contact us

You have access to the exercises of module 1b
* You can login and clone https://dslabgit.datascience.ch/course/2025/module-1b

You understand the purpose of git and master the most commons commands

You should be able to determine an efficient data storage format for your needs
* Or at least avoid an obviously less efficient storage for the purpose

You are aware of different python data processing technologies available to you
* And understand the tradeoffs

COM490 32

https://dslabgit.datascience.ch/course/2025/module-1b

- Bootstrapping into Jupyter.r KS
® . | ® .

& @
&

Jupyter Lab — Exercises module 1b

1. Start a new terminal session

2. Open aterminal and in the terminal, type:

git clone git@dslabgit.datascience.ch:course/2025/module-1b.git
3. Pressenter

4. You should have a new folder

./module-1Db
5. Getthe data (one time)

cd./module-1b

./setup.sh

COM490 34

Assignment 1

1. In Gitlab create a fork of the assighment project under your group name (/students/2025/GroupName) of project
https://dslabgit.datascience.ch/course/2025/assignment-1

(See appendix 2.)

Create new fork Your group name here
H| 0O~ | ¥rsStar o :

Project name

assignment-1 ’

Must start with a lowercase or uppercase letter, digit, emoji, or upderscore. Can also contain dots, pluses, dashes, or spaces.

Project URL Project slug

https://dslabgit.datascience.ch/ || students/2025/A1 v assignment-1 ’

Want to organize several dependent projects under the same namespace? Create a group

COM490 35

https://dslabgit.datascience.ch/course/2025/assignment-1

Assignment 1 - continued

1. Start a new terminal session

2. Open aterminal and in the terminal, type (replace GroupName by your group name, e.g. Al)

git clone git@dslabgit.datascience.ch:students/2025/GroupName/assignment-1.git
3. Pressenter

4. You should have a new folder

./assignment-1
5. Getthe data (one time)

cd./assignment-1

./setup.sh

o

Open the notebook assignment-1.py

COM490 36

Data Storage Formats - Comparison

FORMAT

csv

JSON

AVRO

ORC

PARQUET

HDF5
NetCDF(4)

BEST FOR

Simple tabular, small data (few Mb),
interoperability

Semi-structured data, flexible
schema

Data pipelines, schema evolution,
serialization

Big data analytics (columnar, OLAP),
best for Hive, Hadoop. Complex
types, better suited for ACID
transactions.

Big data analytics, ML, (columnar,
OLAP), complex types, polyvalent.

Scientific data, large
multidimensional arrays

SCHEMA EVOLUTION

No (rigid)

Yes (dynamic schema)

Yes (backward, forward)

Yes, but limited

Yes (optional field)

Limited

COM490

STORAGE
EFFICIENCY

Poor (text heavy,
large)
Poor

Compact

Highly efficient,
best compression

Highly efficient

Efficient

READ PERFORMANCE

Fast for small data

Slower (text parsing)

Fast

Very fast (columnar,
optimized predicate
pushdown)

Very fast (columnar)

Fast (optimized for arrays)

WRITE
PEFORMANCE

Fast for simple
write

Fast for simple
write

Fast

Moderate

Moderate

Fast

38

Data Storage Formats — PARQUET vs ORC

FEATURE (0]:{® PARQUET

File Format Type Columnar, optimized for analytical workloads (OLAP) Columnar, optimized for analytical workloads

ACID Transaction, Provides native support for ACID insert/update/delete No native support, requires external frameworks (e.g.

Insert/Update/Delete operations, with built-in compaction for delta files and Delta Lake, Hudi)

Support updates

Column-level indexing Yes, with min/max indexes for predicate pushdown Limited, no built-in column-level indexing

Compression Optimized for efficient read with various compression Supports various compression formats (e.g., Snappy, Gzip)
formats

Performance (I/O & queries) Faster for write-heavy workloads (ACID) Better for read-heavy analytical queries

Use Cases Best for Hadoop ecosystems (Hive, transactional systems) Best for Big Data analytics (Spark, Impala) and when

interoperability is a must.

COM490 39

Git — Common Commands

staged commits

e Display commit log (project history)

git log --all --graph git log —--stat -M
* Checkout earlier commit (or start a new branch)

git checkout [-b new-branch-name] {commit-id | branch-name}
* Show manual

git help command
* Move file

glit mv file-from file-to
» Stop tracking a file

git rm --cache file git reset file git restore —--staged file

COM490 41

Git — Less Common Commands

Unstage file and keep changes, or undo last n commits

git reset file git restore --staged file

Undo changes to a file
git checkout -- file

Show current changes (difference)

git diff [HEAD~n|commit-id|branch—-name] [file]

Integrate changes between branches, rewrite history

git rebase -1 [commit-id|branch-name]

COM490

staged commits

git reset HEAD"n

42

Gitlab Setup

Before using gitlab you need to setup your credentials (ssh keys) so that you can authenticate with our gitlab service.

* This should be done automatically the first time you log in Jupyter Hub

* You should have received an email about a new key (com490) being added to your gitlab profile

* Thereshould be a private ssh key in your home folder: 1s ~/.ssh/com490 key

* Anssh-agent (key chain) should be running under your name: pgrep -u $USER ssh-agent

If you are still being asked for a password when using git, read-on this Gitlab Setup

COM490 43

Gitlab Setup

Before using gitlab you need to setup your credentials (ssh keys) so that you can authenticate with the gitlab service
1. Signin to your assigned jupyter hub server iccluster***.iccluster.epfl.ch
2. Inaterminal enterthe command: ssh-keygen -t ed25519

3. Press enter to each prompt

t Tabs Settings Help

Terminal 1 X |+

jovyan@jupyter—ebouille:~$\ssh—keygen -t ed25519

Generating public/private ed25519 key pair.

Enter file in which to save the key (/home/jovyan/.ssh/id_ed25519):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/jovyan/.ssh/id_ed25519
Your public key has been saved in /home/jovyan/.ssh/id_ed25519.pub
The key fingerprint is:
SHA256:K15EArCpJZ4hT5gji70a099rinz7NgBL/QgT8dS4KvY jovyan@jupyter—ebouille
The key's randomart image is:

+—[ED25519 256]-——+

| .oo0+ |

| +0+ 0 |

|[BsBaw o . |

|=&00 © |

|=0B o S |

lo+ 0 . . . |

IB.. .o |

|=% E + 0 |

|@00.+.0 |

+————[SHA256] ————- +

jovyan@jupyter-ebouille:~$ I

COM490 a4

Gitlab Setup

The last command should have created a private and a public ssh keys in the folder ~/.ssh

1. In a terminal enter the command to display the public key (.pub): cat ~/.ssh/id ed25519.pub
2. Select and copy the content of the public key

Git Tabs Settings Help

B Terminal 1 X |+

jovyan@jupyter—ebouille:~$ cat ~/.ssh/id_ed25519.pub

ssh—ed25519 AAAAC3NzaC11ZDIINTESAAAAIGQ2j2yG+qAefUGALl/JgI4LTGVi73cCdPuwSEIRWakkT jovyan@jupyter—ebouille
jovyan@jupyter—-ebouille:~$%

P

COM490 45

Gitlab Setup

1. Signin to gitlab

You should have received an invitation email to set up your password, if expired you can request a new invitation.

2. Inyour profile (click on the avatar), select 'SSH keys', and ‘Add new key’

L oD + &
;

L4

" % b g 0 0

0 b9 ~

Q Search or go to...
User settings

@ Profile

8% Account

oo
oo

Applications
Chat

Access Tokens
Emails
Password
Notifications
SSH Keys

GPG Keys

User Settings / SSH Keys

[Q Search page

SSH Keys
SSH keys allow you to establish a secure connection between your computer and GitLab. SSH fingerprints verify that the client is connecting to
the correct host. Check the current instance configuration. 5

Your SSHkeys 2 0 Add new key

There are no SSH keys with access to your account.

COM490 46

Gitlab Setup

Copy the public key and click ‘Add key’ to save

o ¢

Q Search or go to...

User settings

®
&%

oo
oo

%% %o @ 00

o

Profile

Account
Applications
Chat

Access Tokens
Emails
Password
Notifications
SSH Keys

GPG Keys
Preferences
Comment Templates
Active Sessions

Authentication Log

User Settings | SSH Keys

SSH Keys
Add an SSH key

Add an SSH key for secure access to GitLab. Learn more.

Key x
ssh-ed25519 AAAAC3NzaCUZDIINTESAAAAIGQ2j2yG+gAefUGALGIALIGVI73cCdPuwSETRWakkT jovyan@jupytereboui[le(

Begins with 'ssh-rsa’, 'ssh-dss', 'ecdsa-sha2-nistp256', 'ecdsa-sha2-nistp384’, "ecdsa-sha2-nistp521', 'ssh-ed25519', 'sk-ecdsa-
sha2-nistp256@openssh.com’, or 'sk-ssh-ed25519@openssh.com’.

Title

jovyan@jupyter-ebouille

Key titles are publicly visible.
Usage type
Authentication & Signing v

Expiration date

2025-02-26 oo

1 Optional but recommended. If set, key becomes invalid on the specified date

Add key Cancel

User settings

®
8%

Y v e 0 0

2
=

COM490 47

User Settings /| SSH Keys |/ jovyan@jupyter-ebouille

O e &

[Q Search page

Q_ Search or go to...

SSH Key: jovyan@jupyter-ebouille

Profile
Key details
Account
Applications Usage type Created Last used Expires
Chat Authentication & Signing Feb 27, 2024 8:10pm Never Feb 26, 2025 12:00am
Access Tokens
Emails SSH Key
Password
ssh-ed25519 AAAAC3NzaC1lZDIINTESAAAAIGG2]2yG+qAefUGAL/JgI4LFGVi73cCdPUWSEIRWakKT jovyan@jupyter-ebouille [7
Notifications
SSHiKeys Fingerprints
GPG Keys
MD5 0d:f8:b8:68:af:3d:7e:4f:af:2e:ab:8e:e3:8a:a6:55
Preferences
Comment Templates SHA256 05KGECMO3Yn3USqUERLVEMaH39XcH5DvyialgHhNNG

Active Sessions

Gitlab Setup

In the same folder ~/.ssh

* Create or edit the file ~/.ssh/config
Or if this is easier create the file locally and upload it in Jupyter Hub.

: File Edit View rnel Tab
 Add the following lines to it (id ed25519 is the private key) and save
B lnestontid- Private ey - :)o
oad Files
o ‘Filterfiles by name O\]
Host dslabgit.datascience.ch Y
HostName dslabgit.datascience.ch
User git

IdentityFile ~/.ssh/id ed25519
ITdentitiesOnly vyes

COM490 48

Gitlab — Making a copy (fork) of a git repository

1. Signin to gitlab and navigate to the project you want to copy
E.g. https://dslabgit.datascience.ch/course/2025/module-1b

2. Fork the project, under your name or gitlab group name (e.g. /students/2025/A1), set the visibility to
private

Project name

module-1b J

Must start with a lowercase or uppercase LetteN"\, emoji, or underscore. Can also contain dots, pluses, dashes, or spaces.

sject URL Project slug
Create new fork ittps://dslabgit.datascience.ch/ | eric v module-1b }
. int to organize several dependent projects under the same namespace? Create a group

N~ ¥¢ Star

yject description (optional)

Branches to include
© Allbranches

@) Onlyﬁefault branch main

Visibility level (3
© & Private
Project access must be granted explicitly to each user. If this project is part of a group, access will be granted to members of the group.
) @ Internal
The project can be accessed by any logged in user.
) @ Public
The project can be accessed without any authentication.

Fork project Cancel

COM490 49

https://dslabgit.datascience.ch/course/2025/module-1b

Clone your git repository

. . . .y)
* In gitlab open your copy (after fork) of the git repository, and in ‘Code’ copy the git@dslabgit.datascience.ch:<repository>.git URL
M module_1b S] Clone with SSH N
| git@dslabgit.datascience.ch:com
gﬁ D v * Star 0 ? Fork 1 Actions v Clone with HTTPS Copy URL
https://dslabgit.datascience.ch [&
-0- 2 Commits ¥ 2 Branches { 0 Tags £ 15 KiB Project Storage
Open in your IDE
Visual Studio Code (SSH)
+#s: it solutions i)
23K <
Y Eric Bouillet authored 6 hours i 0770de3d I:'_, Visual Studio Code (HTTPS)
IntelliJ IDEA (SSH)
IntelliJ IDEA (HTTPS)
¥ master v module-1b / | + v History Find file Edit v
Download source code
[README = 3 Auto DevOps enabled | | (& Add LICENSE | | @ Add CHANGELOG | Zip
| @ Add CONTRIBUTING | | 3 Configure Integrations | tar.gz
"""""""""""""""" D tar.bz2
tar
[]

In a Jupyter terminal, enter the command: git clone paste-URL-you-just—-copied

COM490 50

	Slide 1: THE DATA SCIENCE LAB Bigger Data Science with Python
	Slide 2: Agenda 2025 - Module 1b
	Slide 3: Agenda
	Slide 4: Code Versioning with Git
	Slide 5: Git – distributed code version system
	Slide 6: Git – distributed code version system
	Slide 7: Git – Commit History (git log)
	Slide 8: Git – Branching
	Slide 9: Git – File Lifecycle
	Slide 10: Git – File Lifecycle
	Slide 11: Git – File Lifecycle
	Slide 12: Git – File Lifecycle
	Slide 13: Git – Common Commands
	Slide 14: Git – Best Practices (for starters)
	Slide 15: Git – Documentation
	Slide 16: Data Storage Formats
	Slide 17: Data Storage Formats - Introduction
	Slide 18: Understanding Data Processing – OLTP vs OLAP
	Slide 19: Understanding Data Processing – OLTP vs OLAP
	Slide 20: Understanding Data Processing – OLTP vs OLAP
	Slide 21: Data Storage Formats – Key Considerations
	Slide 22: Data Storage Formats – Key Takeaways
	Slide 23: Data Storage Formats – Tradeoffs
	Slide 24: Python Data Processing Libraries
	Slide 25: Python Data Processing Libraries
	Slide 26: Data Frame Libraries - Key Considerations
	Slide 27: Specialized Data Frame Libraries
	Slide 28: Distributed Data Processing Engines
	Slide 29: Data Interchange Libraries
	Slide 30: Data Processing Technology – Tradeoffs
	Slide 31: References
	Slide 32: Today’s check list – key objectives
	Slide 33: Start your engines
	Slide 34: Jupyter Lab – Exercises module 1b
	Slide 35: Assignment 1
	Slide 36: Assignment 1 - continued
	Slide 37: Appendix 1
	Slide 38: Data Storage Formats - Comparison
	Slide 39: Data Storage Formats – PARQUET vs ORC
	Slide 40: Appendix 2
	Slide 41: Git – Common Commands
	Slide 42: Git – Less Common Commands
	Slide 43: Gitlab Setup
	Slide 44: Gitlab Setup
	Slide 45: Gitlab Setup
	Slide 46: Gitlab Setup
	Slide 47: Gitlab Setup
	Slide 48: Gitlab Setup
	Slide 49: Gitlab – Making a copy (fork) of a git repository
	Slide 50: Clone your git repository

