
THE DATA SCIENCE LAB
Bigger Data Science with Python

COM 490 – Module 1b

Week 2

Agenda 2025 - Module 1b

COM490 2

Introduction to Data Science with Python19.02

(Bigger) Data Science with Python26.02

Introduction to Big Data Technologies05.03

Big Data Wrangling with Hadoop12.03

Advanced Big Data Queries19.03

Introduction to Spark26.03

Spark Data Frames02.04

Advanced Spark
09.04

Introduction to Stream Processing
16.04

Stream Processing with Kafka
30.04

Advanced Stream Processing
07.05

Final Project Q&A
14.06

Final Project Videos Due before midnight
22.05

Oral Sessions
28.05

Agenda

• Code versioning with Git

• Data Storage Formats

• Python – Scalable & Parallelized Data Processing Frameworks

COM490 3

Code Versioning with Git
Crash Course

• Tracks changes in computer files, used for coordinating collaborative
work among programmers
• Created in 2005 by Linus Torvald, now used for 95% of version control tasks

Git – distributed code version system

COM490 5

git remote
repository

• Tracks changes in computer files, used for coordinating collaborative
work among programmers
• Created in 2005 by Linus Torvald, now used for 95% of version control tasks

Repository hosting service
Manage:
• users/groups
• projects
• issues tracking

• merges
• ...

Git – distributed code version system

COM490 6

git remote
repository

git remote
Repository
(Read only)

Gitlab Fork

Git – Commit History (git log)

source: git-scm.com

• A commit is a single point in the commit history. It is a
snapshot of all the tracked files at that point.

• By default, a succession of commits follow
a linear evolutionCommit 1

Initial 0

Commit 2

Commit 3

COM490 7

(parent)

𝛥diff →

𝛥diff →

𝛥diff →

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git – Branching

source: git-scm.com

Commit 1

Initial 0

Commit 2

Commit 3

Commit 6

𝛥diff ⋃→

Commit 4

𝛥diff →

Commit 5

𝛥diff →

• A commit is a single point in the commit history. It is a
snapshot of all the tracked files at that point.

• By default, a succession of commits follow
a linear evolution

• Using Git, it is recommended to work in parallel on
separate branches
(e.g. stable master branch and development branches)

merge

Git branching strategies
• GitFlow (complex)
• Github Flow (easy)
• Gitlab Flow (easy)
• OneFlow (medium)
• ...

master branch (stable)

development branch

COM490 8

𝛥diff →

𝛥diff →

𝛥diff →

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git – File Lifecycle

source: git-scm.com

COM490 9

Origin

git clone <url>, then git pull

Files in local working directory remote

Committed

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git – File Lifecycle

new files

source: git-scm.com

edit files

COM490 10

Origin

Files in local working directory remote

Untracked Modified

git clone <url>, then git pull

Committed

File states and changes
are kept in a .git folder

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git – File Lifecycle

git add files

git commit --message "..."

new files

source: git-scm.com

git add filesedit files

COM490 11

Origin

git push

Files in local working directory remote

Untracked Modified Staged

A new commit is created in
the project repository

git clone <url>, then git pull

Committed

module-1a % git status
On branch main
Your branch is up to date with 'origin/main'.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

modified: README.md

Changes not staged for commit:
(use "git add <file>..." to update what wi ll be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: shell-cheat-sheet.sh

Untracked files:
(use "git add <file>..." to include in what wil l be committed)

requirements.txt

https://git-scm.com/book/fr/v2/Les-bases-de-Git-Enregistrer-des-modifications-dans-le-d%C3%A9p%C3%B4t

Git – File Lifecycle

git add files

git commit --message "..."

new files

git add filesedit files

COM490 12

Origin

git push

Files in local working directory remote

Untracked Modified Staged

git clone <url>, then git pull

Committed

module-1a % git status
On branch main
Your branch is up to date with 'origin/main'.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

modified: README.md

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: shell-cheat-sheet.sh

Untracked files:
(use "git add <file>..." to include in what will be committed)

requirements.txt

Git – Common Commands

• Copy a repository locally from a remote origin

• Stage files for a grouped commit

• Commit files from staged area

• Verify status of files repository (untracked, modified, staged files, …)

• Push local changes to remote (origin) repository

• Retrieve changes from remote (origin) repository

git clone https://com490-2024.epfl.ch/com490-2024/module1b.git

git status

git add files

git commit --message “description courte de la validation”

COM490 13

git push

git pull

Git – Best Practices (for starters)

• DO NOT commit large files
• If needed use git lfs (see appendix)

• DO NOT commit binaries, intermediate data files, notebooks with
outputs, or any files that can be regenerated from source

• DO use separate branches for ‘clean’ code and ‘development’ code
• git checkout –b yourname-dev
• git add & git commit
• git push --set-upstream origin yourname-dev
• Merge branch yourname-dev to main branch in gitlab (after review)

• DO use short but meaningful commit messages (wip, bufix, …)
• https://www.conventionalcommits.org/en/v1.0.0/

COM490 14

Git – Documentation

COM490 15

1. https://git-scm.com/docs

2. https://education.github.com/git-cheat-sheet-education.pdf

3. https://docs.gitlab.com/ee/topics/git/

4. Terminal tutorial

More Useful info in Appendix

https://git-scm.com/docs
https://education.github.com/git-cheat-sheet-education.pdf
https://docs.gitlab.com/ee/topics/git/
https://asciinema.org/a/643383

Data Storage Formats

Data Storage Formats - Introduction

• Different data formats offer trade-offs
• Storage efficiency (cost of storage)

• Schema flexibility (usability)

• Read/write performance (latency, and cost of query RAM/CPU req.)

• Popular formats(*)

• CSV, JSON, (XML), …

• Avro

• Parquet, ORC, Feather

• HDF5, NetCDF

• Choosing the right format depends on use cases like OLTP, OLAP, machine
learning, or scientific data analysis and technology used

COM490 17

(*) There are many other formats optimized for very specific applications (e.g. ONNX for DL, DICOM for imaging etc), we only discuss multi-purpose format here

Understanding Data Processing – OLTP vs OLAP

OLTP (Online Transaction Processing)

• Purpose: Handles real-time transactional data
(e.g., banking transactions).

• Data Type Format: Relational databases with
structured data (e.g., SQL databases like
MySQL or PostgreSQL).

• Key Characteristics: Fast, high-volume, row-
based.

OLAP (Online Analytical Processing)

• Purpose: Analyzes large datasets (e.g.
performance metrics).

• Data Type Format: Data warehouses and
multidimensional databases

• Key Characteristics: Large-scale, columnar
storage.

COM490 18

Understanding Data Processing – OLTP vs OLAP

OLTP (Online Transaction Processing) OLAP (Online Analytical Processing)

COM490 19

Operations on columns or slices along dimensions
Denormalized for faster querying and complex analysis

Row-based
Columnar-storage

Normalized for consistency

Understanding Data Processing – OLTP vs OLAP

OLTP (Online Transaction Processing) OLAP (Online Analytical Processing)

COM490 20

(Typical approaches to OLTP and OLAP)

"Schema on read"

(R)DBMS
CRUD/ACID

Data warehouse
Distributed Query Engines

DBMS-managed

High performance distributed storage
S3, HDFS, GFS, GPFS, GlusterFS …

Data Storage Formats – Key Considerations

COM490 21

See Appendix for a detailed comparison

DATA TYPE RECOMMENDED FORMAT BEST FOR WHY?

Tabular (Big Data) PARQUET or ORC (or Feather) OLAP Compact, fast reads, columnar
storage, indexing

Semi-structured /
Nested

Avro OLTP,
streaming

Compact, fast serialization,
schema evolution

Scientific, multi-
dimensional

HDF5 or NetCDF OLAP Optimized for large arrays, fast
random access, metadata-rich

Small-scale or Human
Readable

CSV (tabular), JSON (nested) N/A (manual
small data)

Simple, portable, human-
readable, slow reads (text parsing)

Data Storage Formats – Key Takeaways

• For the purpose of analytical queries, if you receive data in
• CSV

• Convert to Parquet or ORC for faster analytical queries and smaller storage footprint

• JSON or XML
• Tabular

• Convert to Parquet or ORC

• Nested or hierarchical:
• HDF5/NetCDF for scientific/multidimensional data

COM490 22

Data Storage Formats – Tradeoffs

COM490 23

Processing Time,
Storage Cost, …

Data Size,
Data Complexity, …

overhead
Storage type 1

Storage type 2

Python Data Processing
Libraries

Python Data Processing Libraries

COM490 25

DataFrame Libraries
Pandas, Modin
Vaex, Polars
DuckDB, …

Distributed Engines
Dask
Ray
PySpark

Specialized DataFrame Libraries
GeoPandas
Xarray, …

Machine Learning Libraries
Scikit-Learn
PyTorch, TensorFlow (DL)
Optuna (hyperparameter tuning), …

Data Exchange Libraries
PyArrow
Petastrom, …

Data Frame Libraries - Key Considerations

Tool Scalability Typically Used With Key Features

Pandas Single machine, slow CSV, Parquet Convenient, polyvalent …

Polars
Single machine, extremely
fast, lazy data loading
(reduced RAM overhead)

Parquet, CSV, JSON
Multi-threaded, Rust-
based, lazy evaluation

Vaex
Single machine, out-of-
core (lazy data streaming)

Parquet, CSV, HDF5
Memory-mapped, no
RAM overhead

Modin

Single machine (e.g.
unitdist MPI) or
distributed on Dask, Ray,
…

Parquet, CSV, JSON
Pandas "drop-in"
replacement for
parallelized Code

DuckDB
Single machine, SQL-
based, out-of-core, very
fast (great for 100Gb)

Parquet, CSV, JSON
In-memory OLAP, local
analytics

COM490 26

"Scalable pandas replacements"

Specialized Data Frame Libraries

Tool Scalability Integrate Well With Typically Used With

GeoPandas Geospatial Vector Data (2D) Dask, Pandas
Shapefiles, GeoJSON,
Parquet

xarray Multidimensional (N > 2) Dask, Pandas HDF5, NetCDF4

COM490 27

xarray tutorial: https://renkulab.io/projects/gregorl/tutorial-the-xarray-ecosystem

Distributed Data Processing Engines

Tool Key Features Typically Used With

Dask
Parallel computing on multi-servers (cluster),
integrates with Pandas (Modin), Xarray,
Optuna, and Scikit-Learn

Parquet, Avro, CSV, HDF5

Ray
Distributed ML and AI workloads, integrates
with Modin and Scikit-Learn

Parquet, CSV, JSON

Spark Massive scalability, SQL support, MLlib. Parquet, ORC, Avro, CSV, JSON

COM490 28

Data Interchange Libraries

Tool Key Features Integrate with Typically Used With

PyArrow
Foundational in-memory (zero-copy)
data exchange based on Arrow IPC,
Parquet I/O

Pandas, Polars, Modin, Dask,
Spark

Parquet, Feather, CSV, …

PetaStorm
Data access library developed by Uber.
Parallel data loading for Deep Learning,
ML frameworks.

TensorFlow, PyTorch, PySpark,
Spark

Parquet

COM490 29

Data Processing Technology – Tradeoffs

COM490 30

Processing Time,
Processing Cost, …

Data Size,
Complexity of analysis, …

overhead
Data processing technology 1

Data processing technology 2

References

• Modin https://modin.org/

• VAEX https://vaex.io/

• Dask https://www.dask.org/

• Polars https://pola.rs/

• Ray https://www.ray.io/

• Duckdb: https://duckdb.org/

• Xarray: https://xarray.dev/

• Arrow: https://arrow.apache.org/docs/python/index.html

COM490 31

https://modin.org/
https://vaex.io/
https://www.dask.org/
https://pola.rs/
https://www.ray.io/
https://duckdb.org/
https://xarray.dev/
https://arrow.apache.org/docs/python/index.html

Today’s check list – key objectives

COM490 32

• Most of you have formed the groups
• Otherwise contact us

• You have access to the exercises of module 1b
• You can login and clone https://dslabgit.datascience.ch/course/2025/module-1b

• You understand the purpose of git and master the most commons commands

• You should be able to determine an efficient data storage format for your needs
• Or at least avoid an obviously less efficient storage for the purpose

• You are aware of different python data processing technologies available to you
• And understand the tradeoffs

https://dslabgit.datascience.ch/course/2025/module-1b

Start your engines
Bootstrapping into Jupyter notebooks

1. Start a new terminal session

2. Open a terminal and in the terminal, type:

git clone git@dslabgit.datascience.ch:course/2025/module-1b.git

3. Press enter

4. You should have a new folder

./module-1b

5. Get the data (one time)

cd ./module-1b

./setup.sh

COM490 34

Jupyter Lab – Exercises module 1b

1. In Gitlab create a fork of the assignment project under your group name (/students/2025/GroupName) of project
https://dslabgit.datascience.ch/course/2025/assignment-1

(See appendix 2.)

COM490 35

Assignment 1

Your group name here

https://dslabgit.datascience.ch/course/2025/assignment-1

1. Start a new terminal session

2. Open a terminal and in the terminal, type (replace GroupName by your group name, e.g. A1)

git clone git@dslabgit.datascience.ch:students/2025/GroupName/assignment-1.git

3. Press enter

4. You should have a new folder

./assignment-1

5. Get the data (one time)

cd ./assignment-1

./setup.sh

6. Open the notebook assignment-1.py

COM490 36

Assignment 1 - continued

Appendix 1
GIT SETUP

Data Storage Formats - Comparison

COM490 38

FORMAT BEST FOR SCHEMA EVOLUTION STORAGE
EFFICIENCY

READ PERFORMANCE WRITE
PEFORMANCE

CSV Simple tabular, small data (few Mb),
interoperability

No (rigid) Poor (text heavy,
large)

Fast for small data Fast for simple
write

JSON Semi-structured data, flexible
schema

Yes (dynamic schema) Poor Slower (text parsing) Fast for simple
write

AVRO Data pipelines, schema evolution,
serialization

Yes (backward, forward) Compact Fast Fast

ORC Big data analytics (columnar, OLAP),
best for Hive, Hadoop. Complex
types, better suited for ACID
transactions.

Yes, but limited Highly efficient,
best compression

Very fast (columnar,
optimized predicate
pushdown)

Moderate

PARQUET Big data analytics, ML, (columnar,
OLAP), complex types, polyvalent.

Yes (optional field) Highly efficient Very fast (columnar) Moderate

HDF5
NetCDF(4)

Scientific data, large
multidimensional arrays

Limited Efficient Fast (optimized for arrays) Fast

Data Storage Formats – PARQUET vs ORC

COM490 39

FEATURE ORC PARQUET

File Format Type Columnar, optimized for analytical workloads (OLAP) Columnar, optimized for analytical workloads

ACID Transaction,
Insert/Update/Delete
Support

Provides native support for ACID insert/update/delete
operations, with built-in compaction for delta files and
updates

No native support, requires external frameworks (e.g.
Delta Lake, Hudi)

Column-level indexing Yes, with min/max indexes for predicate pushdown Limited, no built-in column-level indexing

Compression Optimized for efficient read with various compression
formats

Supports various compression formats (e.g., Snappy, Gzip)

Performance (I/O & queries) Faster for write-heavy workloads (ACID) Better for read-heavy analytical queries

Use Cases Best for Hadoop ecosystems (Hive, transactional systems) Best for Big Data analytics (Spark, Impala) and when
interoperability is a must.

Appendix 2
GIT SETUP

Git – Common Commands

• Display commit log (project history)

• Checkout earlier commit (or start a new branch)

• Show manual

• Move file

• Stop tracking a file

git log --all --graph

git checkout [-b new-branch-name] {commit-id | branch-name}

git help command

staged commits

COM490 41

git log --stat -M

git mv file-from file-to

git rm --cache file git reset file git restore --staged file

Git – Less Common Commands

• Unstage file and keep changes, or undo last n commits

• Undo changes to a file

• Show current changes (difference)

• Integrate changes between branches, rewrite history

git reset file

git checkout -- file

git diff [HEAD~n|commit-id|branch-name] [file]

staged commits

COM490 42

git reset HEAD^ngit restore --staged file

git rebase -i [commit-id|branch-name]

Before using gitlab you need to setup your credentials (ssh keys) so that you can authenticate with our gitlab service.

• This should be done automatically the first time you log in Jupyter Hub

• You should have received an email about a new key (com490) being added to your gitlab profile

• There should be a private ssh key in your home folder: ls ~/.ssh/com490_key

• An ssh-agent (key chain) should be running under your name: pgrep -u $USER ssh-agent

If you are still being asked for a password when using git, read-on this Gitlab Setup

Gitlab Setup

COM490 43

Before using gitlab you need to setup your credentials (ssh keys) so that you can authenticate with the gitlab service

1. Sign in to your assigned jupyter hub server iccluster***.iccluster.epfl.ch

2. In a terminal enter the command: ssh-keygen -t ed25519

3. Press enter to each prompt

Gitlab Setup

COM490 44

The last command should have created a private and a public ssh keys in the folder ~/.ssh

1. In a terminal enter the command to display the public key (.pub): cat ~/.ssh/id_ed25519.pub

2. Select and copy the content of the public key

Gitlab Setup

COM490 45

Gitlab Setup

1. Sign in to gitlab
You should have received an invitation email to set up your password, if expired you can request a new invitation.

2. In your profile (click on the avatar), select 'SSH keys', and ‘Add new key’

COM490 46

Copy the public key and click ‘Add key’ to save

Gitlab Setup

COM490 47

In the same folder ~/.ssh

• Create or edit the file ~/.ssh/config
• Or if this is easier create the file locally and upload it in Jupyter Hub.

• Add the following lines to it (id_ed25519 is the private key) and save

Gitlab Setup

COM490 48

Host dslabgit.datascience.ch

HostName dslabgit.datascience.ch

User git

IdentityFile ~/.ssh/id_ed25519

IdentitiesOnly yes

1. Sign in to gitlab and navigate to the project you want to copy
E.g. https://dslabgit.datascience.ch/course/2025/module-1b

2. Fork the project, under your name or gitlab group name (e.g. /students/2025/A1), set the visibility to

private

Gitlab – Making a copy (fork) of a git repository

COM490 49

https://dslabgit.datascience.ch/course/2025/module-1b

Clone your git repository

COM490 50

• In gitlab open your copy (after fork) of the git repository, and in ‘Code’ copy the git@dslabgit.datascience.ch:<repository>.git URL

• In a Jupyter terminal, enter the command: git clone paste-URL-you-just-copied

	Slide 1: THE DATA SCIENCE LAB Bigger Data Science with Python
	Slide 2: Agenda 2025 - Module 1b
	Slide 3: Agenda
	Slide 4: Code Versioning with Git
	Slide 5: Git – distributed code version system
	Slide 6: Git – distributed code version system
	Slide 7: Git – Commit History (git log)
	Slide 8: Git – Branching
	Slide 9: Git – File Lifecycle
	Slide 10: Git – File Lifecycle
	Slide 11: Git – File Lifecycle
	Slide 12: Git – File Lifecycle
	Slide 13: Git – Common Commands
	Slide 14: Git – Best Practices (for starters)
	Slide 15: Git – Documentation
	Slide 16: Data Storage Formats
	Slide 17: Data Storage Formats - Introduction
	Slide 18: Understanding Data Processing – OLTP vs OLAP
	Slide 19: Understanding Data Processing – OLTP vs OLAP
	Slide 20: Understanding Data Processing – OLTP vs OLAP
	Slide 21: Data Storage Formats – Key Considerations
	Slide 22: Data Storage Formats – Key Takeaways
	Slide 23: Data Storage Formats – Tradeoffs
	Slide 24: Python Data Processing Libraries
	Slide 25: Python Data Processing Libraries
	Slide 26: Data Frame Libraries - Key Considerations
	Slide 27: Specialized Data Frame Libraries
	Slide 28: Distributed Data Processing Engines
	Slide 29: Data Interchange Libraries
	Slide 30: Data Processing Technology – Tradeoffs
	Slide 31: References
	Slide 32: Today’s check list – key objectives
	Slide 33: Start your engines
	Slide 34: Jupyter Lab – Exercises module 1b
	Slide 35: Assignment 1
	Slide 36: Assignment 1 - continued
	Slide 37: Appendix 1
	Slide 38: Data Storage Formats - Comparison
	Slide 39: Data Storage Formats – PARQUET vs ORC
	Slide 40: Appendix 2
	Slide 41: Git – Common Commands
	Slide 42: Git – Less Common Commands
	Slide 43: Gitlab Setup
	Slide 44: Gitlab Setup
	Slide 45: Gitlab Setup
	Slide 46: Gitlab Setup
	Slide 47: Gitlab Setup
	Slide 48: Gitlab Setup
	Slide 49: Gitlab – Making a copy (fork) of a git repository
	Slide 50: Clone your git repository

