
THE DATA SCIENCE LAB
Data Wrangling with Hadoop

COM 490 – Module 2c

Week 6

Agenda 2025 - Module 2c

COM490 2

Introduction to Data Science with Python19.02

(Bigger) Data Science with Python26.02

Introduction to Big Data Technologies05.03

Big Data Wrangling with Hadoop12.03

Advanced Big Data Queries19.03

Introduction to Spark26.03

Spark Data Frames02.04

Advanced Spark
09.04

Introduction to Stream Processing
16.04

Stream Processing with Kafka
30.04

Advanced Stream Processing
07.05

Final Project Q&A
14.06

Final Project Videos Due before midnight
22.05

Oral Sessions
28.05

Week 4 (module 2b) – Questions?

4COM490

Today’s Agenda

•Data table formats (Iceberg)

•NoSQL databases

• YARN – Yet Another Resource Negotiator

• Exercises
• Processing JSON tables
• Geospatial Functions

•Assessed projects
• Assignment 2
• Final project - preview

5COM490

Iceberg table format

• What is Iceberg?
• Open-source distributed file structure for table formats

• Designed to manage large-scale, analytical datasets

• Designed for and optimized for storage systems like HDFS and cloud S3

• Provides high performance, scalability, and reliability for big data processing

• Developed by Netflix to address limitations of the Hive Metastore

COM490 6

Hive Tables

COM490 7

Query engine
(Hive, Trino, …)

Data
(HDFS, S3, …)

Hive
Metastore

RDBMS

Metadata
File locations,
Columns and types, etc.

Iceberg Tables

COM490 8

Query engine
(Hive, Trino, …)

Data / Iceberg
(HDFS, S3, …)

Hive
Metastore

RDBMS

Metadata
File locations,
Columns and types, etc.

Iceberg
connector

In iceberg most of the
metadata is offloaded to
next to the data
• Increase scalability
• Improve performances
• Extend capabilities

metadata metadata

S0 S0 S1

Manifest
list S0

Manifest
list S1

Manifest
files

Manifest
files

Manifest
files

metadata directory (JSON, avro)

data directory (PARQUET, ORC)

DataDataData
DataDataData

DataDataData

Iceberg Tables

• Key Features
• Optimized for Big Data: Seamlessly integrates with Spark, Hive, Trino and other big

data processing engines

• Schema Evolution: allows schema changes without breaking existing data or queries
(including adding columns etc)

• Partitioning Flexibility: Supports dynamic partitioning
• Instead of hive partitioning hardcoded in the directory hierarchy: year=2024/month=01

• Partitioning is dynamic, year(pub_date), and layout is managed by iceberg (hidden)

• Versioned Data: Maintains historical data versions, enabling time travel and rollback
• https://trino.io/docs/current/connector/iceberg.html#time-travel-queries

• Independent Metadata Management: Separates metadata management for better
performance and scalability

COM490 9

https://trino.io/docs/current/connector/iceberg.html

See Also

• Delta Lake: https://docs.delta.io/latest/delta-intro.html (from Databricks, 2017)

• Zarr: https://zarr.dev/
• Designed for high dimensional scientific data (NetCDF, HDF5), e.g. used with xarray

COM490 10

https://docs.delta.io/latest/delta-intro.html
https://zarr.dev/

warehouse,
lakehouse query
engine (Trino, Hive)

External
Archives
(Historical
data)

Periodic data
Ingestion

HDFS
S3
...

Where are we in our big data journey?

COM490 11

• Ingestion (HDFS, S3) - typically periodic (weekly, monthly)
• Storage - data warehouse/lakehouse (schema on read)
• Transformation (ETL)

• Convert to efficient format (e.g. CSV/JSON to PARQUET/ORC)
• Types conversions (strings to integers/timestamps), cleansing, aggregations, …

• OLAP queries – ad-hoc aggregations, analysis
→ Scalable and efficient – cost efficient, latencies seconds/hours/days

ETL

OLAP queries

warehouse,
lakehouse query
engine (Trino, Hive)

Learn
(Spark)

BATCH (periodically learn a new model) - seen in Module 2 and 3

External
Archives
(Historical
data)

Periodic data
Ingestion

Validate
(Spark)

Train

Test

HDFS
S3
...

Feature
Extraction

(Spark)

Predictive
Models

ETL

What about real-time analytics?

COM490 12

Data Stream
(Kafka)

Prediction
(Spark streaming)

STREAMS (continuously process data on the fly) - seen in Module 4

ETAReal-time
GPS Data

Feature
extraction

(Spark streaming)

Real time
events

warehouse,
lakehouse query
engine (Trino, Hive)

Learn
(Spark)

BATCH (periodically learn a new model) - seen in Module 2 and 3

External
Archives
(Historical
data)

Periodic data
Ingestion

Validate
(Spark)

Train

Test

HDFS
S3
...

Feature
Extraction

(Spark)

Predictive
Models

ETL

What about real-time analytics?

COM490 13

Data Stream
(Kafka)

Prediction
(Spark streaming)

STREAMS (continuously process data on the fly) - seen in Module 4

ETAReal-time
GPS Data

Feature
extraction

(Spark streaming)

Real time
events

In this use-case scenario:
• Vehicle, train station details and other information need to be

queried quickly, on the fly during stream processing
• In-memory solution like Flink or Spark can handle the real-

time computation
• Databases are still necessary to persist the information

Real-Time Analytics – Beyond Data Warehouses & Lakehouses

• Data Warehouses/Lakehouses
• Optimized for OLAP queries on large, structured datasets

• Ideal for batch processing, if seconds/hours/days latency acceptable

• Not well-suited for real-time analytics

• Real-Time Analytics
• Best if data must be processed immediately as it arrives, often with millisecond-level

latency
• For real-time decision-making to provide immediate insights

• Requires streaming data platforms (e.g., Apache Kafka, Apache Flink, AWS Kinesis)

• Requires database designed to retrieve persisted information quickly and efficiently!

COM490 14

Addressing the Big Data Challenge – NoSQL

Storage

Resource Management

Batch
Processing

SQL
Data Warehouse

Stream processingNoSQL
Database

Machine Learning

COM490 15

Real time data
flow orchestration

Security

Batch tasks
scheduling (ETL)

NoSQL - HBase

• Key-Value Store: Functions like a distributed dictionary

• Indexed by RowKey & Column Families: Column families are defined at table creation and
represent a physical storage unit in the table

• Dynamic Columns: Columns (names and values) are created on the fly when rows are
updated or created. Each column family can contain many columns

• Sparse: Empty columns do not consume space; they are created when data is inserted

• Wide Column Store: Can handle billions of rows, each potentially having millions of columns

• Versioned: Each column can store multiple versions; changes create new versions

• Cell Access: Data is accessed using the tuple:
namespace:table {row-key, column-family:column-name, version}

16COM490

HBase Column Oriented Data Model

RowKey Column Family CF1 Column Family CF2 Column Family CF3 ...

Key1

Key2

Key3

...

...

• Column families (CF) group related columns that should be stored together for I/O efficiency
• RowKeys uniquely identify each row in CF, stored in order to optimize retrieval

HBase tableColumn Family

RowKey

17COM490

row scan

HBase Column Oriented Data Model

RowKey Column Family CF1 Column Family CF2 Column Family CF3 ...

Column
Qualifier
CQ1.1

Column
Qualifier
CQ1.2

Column
Qualifier
CQ2.1

Column
Qualifier(s)
...

Column
Qualifier
CQ3.1

Column
Qualifier(s)
...

...

Key1

Key2

Key3

...

...

• Column qualifier are conjured-up on the fly (when you insert values)
• Technically they do not use space in a RowKey/Column Family until they are declared
• Everywhere else, they don’t exist, and take no space

HBase table

Column Qualifier

Column Family

RowKey

18COM490

HBase Column Oriented Data Model

RowKey Column Family CF1 Column Family CF2 Column Family CF3 ...

Column
Qualifier
CQ1.1

Column
Qualifier
CQ1.2

Column
Qualifier
CQ2.1

Column
Qualifier(s)
...

Column
Qualifier
CQ3.1

Column
Qualifier(s)

t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1

Key1

Key2

Key3

...

...

HBase table

CELL

• RowKey + Column Family/Column Qualifier = CELL coordinates
• Cells store the values, along with timestamps (date and time)
• It is possible to retrieve earlier versions (earlier timestamps) of a cell’s value

Column Family

RowKey

Column Qualifier

19COM490

(*) The figure is misleading; each column qualifier can vary depending
on the RowKey and column family

HBase Architecture – Regions

RowKey Column Family CF1 Column Family CF2 Column Family CF3 ...

Column
Qualifier
CQ1.1

Column
Qualifier
CQ1.2

Column
Qualifier
CQ2.1

Column
Qualifier(s)
...

Column
Qualifier
CQ3.1

Column
Qualifier(s)
...

t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1

Key1

Key2

Key3

...

...

HBase table

• HBase tables are divided into regions stored on HDFS, typically with a size of 250MB per block.
• Each region corresponds to a single column family and covers a specific range of sorted RowKeys.
• Multiple regions can be accessed concurrently, enabling efficient distributed computing.

Region

20COM490

Hbase - Summary

• Hbase Row
Row-Key Column family cf1 Column family cf2
0123456abcdef col1={ 1, 2, 3 }, col2={“a”, ”b” } col3={ “v1”, “v2” }
0123456ghijklm col1={ 4, 5, 6 } col3={ “v3”, “v4” }
....

• Most common DDL operations
• create table ‘namespace:tablename’, { cf1 properties }, { cf2 properties }
• enable/disable table ‘namespace:tablename’
• drop tables ‘namespace:tablename’
• list ‘namespace:.*’

• Most common DML operations
• put ‘namespace:table’, ‘row-key’, ‘cf1:col1’, value, [‘version-ts’]
• get ‘namespace:table’, ‘row-key’, [time range, column, versions]
• scan ‘namespace:table’, [row range, time range, filters, ...]

21COM490

HBase – “Good” key design

• Column families (and their column qualifiers) are indexed by the
primary key

• Consecutive keys are stored in the same HRegion and can be
efficiently accessed by a “range scan”, i.e. Returns all keys in a
start/end range

• It is therefore important to design the keys according to the type of
queries we intend to perform on the data

• The choice of the key is made “before-hand”

22COM490https://svn.apache.org/repos/asf/hbase/hbase.apache.org/trunk/0.94/book/rowkey.design.html

HBase – “Good” key design

• For instance, to efficiently access time series of individual sensors identified
by a unique ID:
• Key SensorID.yyyymmddHHMMSS
• E.g. ZHLBC.20240320131500

• You can then perform a range scan, e.g. all measures of sensor ZHLBC on
March 20, 2024:
• Scan ZHLBC.20240320 will return the data (column families) of all the keys that begin

with the given sequence, i.e. All the measures for of ZHLBC on 2024.03.20.

• The same key is less efficient if we want to return the measures of ALL the
sensors at a particular time
• Because the key starts with the sensor ID, we have to repeat the query for each sensors;

we cannot get the data using a single range scan

23COM490https://svn.apache.org/repos/asf/hbase/hbase.apache.org/trunk/0.94/book/rowkey.design.html

HBase – Bulk Data Loading

• When loading data in bulk in HBase it is recommended to not insert monotonically increasing keys,
e.g. 1,2,3,4 …

• Doing otherwise may result in resource usage “hot-spots”, i.e. Large ranges of consecutive keys will
be grouped into HRegions and HRegions (i.e. HRegionServer) will be populated one at the time.

24COM490

(semi) random key Monotonically increasing key

https://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/

Apache HBase vs ... other NoSQL

• Apache Cassandra

• Apache Accumulo

• MongoDB

• ScyllaDB (OSS AGPL 6.2)

• Azure Cosmos DB (cloud)

• Amazon - AWS DynamoDB (cloud)

• Google BigTable (cloud)

• … to name a few

25COM490

https://cassandra.apache.org/_/index.html
https://accumulo.apache.org/

YARN
Yet Another Resource Negotiator

Addressing the Big Data Challenge – Resource Management

Storage

Resource Management

Batch
Processing

SQL
Data Warehouse

Stream processingNoSQL
Database

Machine Learning

COM490 27

Real time data
flow orchestration

Security

Batch tasks
scheduling (ETL)

Yet Another Resource Negotiator - YARN

• YARN

• Role of Application Masters in YARN
• Resource Request and Allocation

• Job Management and Task Scheduling

• Progress monitoring

• Failure Recovery

• Resource Cleanup

COM490 28

YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

HDFS Storage

Compute

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler

29

Initialize Spark
Application Master

Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application MasterSpark client

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler

30

HDFS Storage

Compute

negotiate YARN
containers (CPU,RAM)

Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application Master
Container (Map)

Container (Map)

Container (Reduce)

Container (Map)

Spark client

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler

31

HDFS Storage

Compute

negotiate YARN
containers (CPU,RAM)

Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application Master
Container (Map)

Container (Map)

Container (Reduce)

Container (Map)

Spark client

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler

32

Spark Client Mode
• Spark Driver runs locally
• Best for interactive sessions

Spark Driver

HDFS Storage

Compute

negotiate YARN
containers (CPU,RAM)

Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application Master
Spark Driver

Container (Map)

Container (Reduce)

Container (Map)

Spark client

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler

33

Spark Cluster Mode
• Spark Driver on cluster in a container
• Best for "production" jobs

HDFS Storage

Compute

Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application Master
Container (Map)

Container (Map)

Container (Reduce)

Container (Map)

Client

Resource Manager

Node Manager Node Manager Node Manager

queue(s)

Application Master

Container (Reduce)Container (Map)

Client
• Application Manager
• Scheduler

(...)

34

HDFS Storage

Compute

YARN – Capacity Scheduler

Client

Resource Manager

queue(s)

Client
• Application Manager
• Scheduler

(...)

35

https://blog.cloudera.com/yarn-capacity-scheduler/

• Queues are laid out in a hierarchical design, top most queue is the “root”
• Resource reservations of a queue can be shared by child queues

• Child queues are given a min and max % of its parent reservation
• Min: minimum % guaranteed when all resources are used
• Max: maximum % allowed when resources are underused

• When an applications is submitted (enter its assigned queue):
• It is deployed and run if the queue has enough reservation available for the application
• Otherwise the application waits for the resources to become available

Not enough resources? You will be placed in a queue until resources become available.

Module 2 – Self-evaluation

• When to consider distributed data technologies versus
(more) efficient single host solutions

• What is HDFS and purpose it serves, and what are
comparable technologies (S3, etc.)

• What are what are warehouse or lakehouses (Trino,
Hive), what they are used for

• What are NoSQL databases (Hbase, etc.) and what
purpose they serve

• Most popular storage encodings: ORC, PARQUET, ...

• Familiar with key words

• Copy data to and from HDFS, explore HDFS

• Move data around in HDFS, modify access rights

• Create and manage data warehouses & lakehouses

• Optimization techniques (partitioning, efficient data
format like ORC, PARQUET)

• Run ETL and OLAP queries

I know I am able to

36COM490

Next week – Module 3a

COM490 37

Pamela Delgado

Assignment 2
https://dslabgit.datascience.ch/course/2025/assignment-2

Fork in under your group and git clone

https://dslabgit.datascience.ch/course/2025/assignment-2

Start your engines
https://dslabgit.datascience.ch/course/2025/module-2c

(Fork and git clone)

https://dslabgit.datascience.ch/course/2025/module-2c

Appendix

A1 - HBase Architecture

Knowing the Hbase terminology is handy if you ever need to troubleshot it ...

• HRegion: tables are split into multiple HRegion, or blocks of continuous data between
start/end primary keys.

• HRegionServer: one per machine, manages a collection of HRegion on the big data
cluster.

• HMaster: does not store data, but is responsible for managing the meta-data with the
mapping of HRegions to HRegionServers. It’s possible to have several HMaster, however
only one at the time can be elected to orchestrate the work on the HRegionServer..

• HStore: underlying HBase storage consists of a memstore (in memory) and a store file
(HFile) on disk.

• HLog: or Write Ahead Log file, is responsible for atomicity and durability, in case of
HRegionServer failure, its HLog is split and distributed among the other HRegionServers
for replay.

41COM490

A1 - HBase Architecture

HMaster

Region Server Region Server Region Server

Zookeeper
(meta data

catalog)

Storage and
Compute

Client

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

HBase

42COM490

Hive SerDe – Serialization Deserialization

• Allows Hive to read in data from HDFS or a table, and write it back
out to HDFS or other storage in any custom format.

• E.g.
• JSON Format

• HBase

43COM490

A2 - JSON Format (Hive)

CREATE EXTERNAL TABLE my_table(line STRING)

STORED AS TEXTFILE

LOCATION '/my/table/jsondoc';

SELECT get_json_object(line, '$.first_name') AS first_name,

get_json_object(line, '$.last_name') AS last_name

FROM my_table;

44COM490

A2 - JSON SerDe (Hive)

CREATE EXTERNAL TABLE mytable(

first_name STRING,

last_name STRING)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'

WITH SERDEPROPERTIES("ignore.malformed.json"="true")

STORED AS TEXTFILE

LOCATION '/my/table/jsondoc';

• Starting with Hive 4.0.0, you are able to use STORED AS JSONFILE

45COM490

A3 - Hive / HBase SerDe

CREATE EXTERNAL TABLE hive_on_hbase(

SensorID STRING,

humidity STRING,

temperature STRING,

CO2 STRING

)

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

WITH SERDEPROPERTIES (

"hbase.columns.mapping"=":key, x:h, x:temp, y:co2"

)

TBLPROPERTIES(

"hbase.table.name"="my_namespace:my_table",

"hbase.mapred.output.outputtable"="my_namespace:my_table"

)

https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

It is possible to use HBase as a source to HiveQL or Spark.

Example, to join Hive tables with HBase tables: :
• Given HBase table my_namespace:my_table with 2

column families x and y

• Table definition on left maps SensorID to the RowKeys of
the hbase table, and other columns are mapped as
follow:

humidity -> x:h
temperature -> x:temp
CO2 -> y:co2

Note: In practice, you typically do not process the entire
content of an HBase table. Instead, queries are designed to
access subsets of data (with WHERE predicate).

46COM490

A4 - User Defined Functions (UDF)

• Hive QL comes with many UDF by default
• For a list, run the Hive query: SHOW FUNCTIONS;

• Or find them in the documentation
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-DateFunctions

• You can also create your own UDF
• Write a java plugin https://cwiki.apache.org/confluence/display/Hive/HivePlugins

• Then add the JAR file to your Hive session and create a function
• ADD JAR hdfs://<host>:<port>/<path>

• CREATE TEMPORARY FUNCTION <FUNCTION_NAME> AS <JAVA_CLASS_NAME>

• The above steps can be used to enable ESRI spatial framework UDF
(as of Hive 4.0.0 they are supported natively)

COM490 47

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/HivePlugins

	Slide 1: THE DATA SCIENCE LAB Data Wrangling with Hadoop
	Slide 2: Agenda 2025 - Module 2c
	Slide 4: Week 4 (module 2b) – Questions?
	Slide 5: Today’s Agenda
	Slide 6: Iceberg table format
	Slide 7: Hive Tables
	Slide 8: Iceberg Tables
	Slide 9: Iceberg Tables
	Slide 10: See Also
	Slide 11: Where are we in our big data journey?
	Slide 12: What about real-time analytics?
	Slide 13: What about real-time analytics?
	Slide 14: Real-Time Analytics – Beyond Data Warehouses & Lakehouses
	Slide 15: Addressing the Big Data Challenge – NoSQL
	Slide 16: NoSQL - HBase
	Slide 17: HBase Column Oriented Data Model
	Slide 18: HBase Column Oriented Data Model
	Slide 19: HBase Column Oriented Data Model
	Slide 20: HBase Architecture – Regions
	Slide 21: Hbase - Summary
	Slide 22: HBase – “Good” key design
	Slide 23: HBase – “Good” key design
	Slide 24: HBase – Bulk Data Loading
	Slide 25: Apache HBase vs ... other NoSQL
	Slide 26: YARN
	Slide 27: Addressing the Big Data Challenge – Resource Management
	Slide 28: Yet Another Resource Negotiator - YARN
	Slide 29: YARN
	Slide 30: Spark on YARN
	Slide 31: Spark on YARN
	Slide 32: Spark on YARN
	Slide 33: Spark on YARN
	Slide 34: Spark on YARN
	Slide 35: YARN – Capacity Scheduler
	Slide 36: Module 2 – Self-evaluation
	Slide 37: Next week – Module 3a
	Slide 38: Assignment 2
	Slide 39: Start your engines
	Slide 40: Appendix
	Slide 41: A1 - HBase Architecture
	Slide 42: A1 - HBase Architecture
	Slide 43: Hive SerDe – Serialization Deserialization
	Slide 44: A2 - JSON Format (Hive)
	Slide 45: A2 - JSON SerDe (Hive)
	Slide 46: A3 - Hive / HBase SerDe
	Slide 47: A4 - User Defined Functions (UDF)

