THE DATA SCIENCE LAB
Data Wrangling with Hadoop

COM 490 — Module 2¢
Week 6



Agenda 2025 - Module 2c

Introduction to Data Science with Python Advanced Spark

09.04

(Bigger) Data Science with Python Introduction to Stream Processing

Introduction to Big Data Technologies Stream Processing with Kafka

Big Data Wrangling with Hadoop Advanced Stream Processing

:lier.  Advanced Big Data Queries Final Project Q&A

Final Project Videos Due before midnight

... Introduction to Spark

Spark Data Frames Oral Sessions
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Week 4 (module 2b) — Questions?




Today’s Agenda

e Data table formats (Iceberg)
* NoSQL databases
* YARN — Yet Another Resource Negotiator

e Exercises

* Processing JSON tables
e Geospatial Functions

* Assessed projects
* Assighment 2
* Final project - preview
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Iceberg table format

* What is Iceberg?

* Open-source distributed file structure for table formats
Designed to manage large-scale, analytical datasets
Designed for and optimized for storage systems like HDFS and cloud S3
Provides high performance, scalability, and reliability for big data processing
Developed by Netflix to address limitations of the Hive Metastore
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Hive Tables

Metadata (= ] ,__— =
File locations, = = °
Columns and types, etc.
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lceberg Tables

Metadata
File locations,

Columns and types, etc. metadata directory (JSON, avro)
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\l*n\iceberg most of the
metadata is offloaded to
next to the data
* Increase scalability

* Imprave performances

Extend capabilities
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lceberg Tables

* Key Features

* Optimized for Big Data: Seamlessly integrates with Spark, Hive, Trino and other big
data processing engines

* Schema Evolution: allows schema changes without breaking existing data or queries
(including adding columns etc)
» Partitioning Flexibility: Supports dynamic partitioning
* Instead of hive partitioning hardcoded in the directory hierarchy: year=2024 /month=01
* Partitioning is dynamic, year (pub date), and layout is managed by iceberg (hidden)
* Versioned Data: Maintains historical data versions, enabling time travel and rollback
* https://trino.io/docs/current/connector/iceberg.html#ttime-travel-queries

* Independent Metadata Management: Separates metadata management for better
performance and scalability
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https://trino.io/docs/current/connector/iceberg.html

See Also

* Delta Lake: https://docs.delta.io/latest/delta-intro.html (from Databricks, 2017)

* Zarr: https://zarr.dev/
* Designed for high dimensional scientific data (NetCDF, HDF5), e.g. used with xarray
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https://docs.delta.io/latest/delta-intro.html
https://zarr.dev/

Where are we in our big data journey?

* Ingestion (HDFS, S3) - typically periodic (weekly, monthly)
» Storage - data warehouse/lakehouse (schema on read)

E * Transformation (ETL)

SBBCFFFFS * Convert to efficient format (e.g. CSV/JSON to PARQUET/ORC)
* Types conversions (strings to integers/timestamps), cleansing, aggregations, ...
* OLAP queries — ad-hoc aggregations, analysis
-> Scalable and efficient — cost efficient, latencies seconds/hours/days

OLAP queries

Periodic data
Ingestion

External
Archives
(Historical
data)
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E Real time

SBB CFF FFS
events

What about real-time analytics?

STREAMS (continuously process data on the fly) - seen in Module 4

Feature

Prediction

Real-time w—— Data Stream extraction
(Kafka) : (Spark streaming)
(Spark streaming)

GPS Data

Periodic data
Ingestion

External
Archives
(Historical
data)

Feature
Extraction
(Spark)

Validate

(Spark)

Predictive
Models

BATCH (periodically learn a new model) - seen in Module 2 and 3

COM490

12

ET



real-time analytics?

E Real time

SBB CFF FFS
events

What about

STREAMS (continuously process data on the fly) - seen in Module 4

Real-time d Data Stream

GPS Data

Periodic data
Ingestion

External
Archives
(Historical
data)

L€1E)

Feature . ..
) Prediction
extraction ET

HDFS

S3

S

Spark streamin
(Spark streaming) (Sp g)

n this use-case scenario:
Vehicle, train station details and other information need to be
queried quickly, on the fly during stream processing
In-memory solution like Flink or Spark can handle the real-
time computation
Databases are still necessary to persist the information

Test Validate 1 Models
(Spark)

BATCH (periodically learn a new model) - seen in Module 2 and 3
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Real-Time Analytics — Beyond Data Warehouses & Lakehouses

* Data Warehouses/Lakehouses
 Optimized for OLAP queries on large, structured datasets
* |deal for batch processing, if seconds/hours/days latency acceptable
* Not well-suited for real-time analytics

* Real-Time Analytics

e Best if data must be processed immediately as it arrives, often with millisecond-level
latency

* For real-time decision-making to provide immediate insights
* Requires streaming data platforms (e.g., Apache Kafka, Apache Flink, AWS Kinesis)
* Requires database designed to retrieve persisted information quickly and efficiently!
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Addressing the Big Data Challenge — NoSQL

Batch
Processing

spark’ Sigrite

SQL |
Data Warehousﬂ‘

Y

NoSQL
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NoSQL - HBase

* Key-Value Store: Functions like a distributed dictionary

* Indexed by RowKey & Column Families: Column families are defined at table creation and
represent a physical storage unit in the table

 Dynamic Columns: Columns (hames and values) are created on the fly when rows are
updated or created. Each column family can contain many columns

e Sparse: Empty columns do not consume space; they are created when data is inserted
* Wide Column Store: Can handle billions of rows, each potentially having millions of columns
* Versioned: Each column can store multiple versions; changes create new versions

* Cell Access: Data is accessed using the tuple:
namespace:table {row-key, column-family:column-name, version}
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HBase Column Oriented Data Model

Column Family HBase table

Column Family CF1 Column Family CF2 Column Family CF3 _

‘ Key1l

Key?2

row scan Key3

* Column families (CF) group related columns that should be stored together for I/0 efficiency
* RowKeys uniquely identify each row in CF, stored in order to optimize retrieval
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HBase Column Oriented Data Model

Column Family HBase table

Column Family CF1 Column Family CF2 Column Family CF3 _

Column Column Column Column Column
Qualifier Qualifier Qualifier(s) Qualifier Qualifier(s)
cQil.2 cQ2.1 CQ3.1

Key1l

Key?2

Key3

Column Qualifier

—_— J

e Column qualifier are conjured-up on the fly (when you insert values)
* Technically they do not use space in a RowKey/Column Family until they are declared
* Everywhere else, they don’t exist, and take no space
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HBase Column Oriented Data Model

Column Family HBase table

Column Family CF1 Column Family CF2 Column Family CF3 _

Column Column Column Column Column
Qualifier Qualifier Qualifier(s) Qualifier Qualifier(s)
cQil.2 cQ2.1 CcQa3.1

4 t3 t2 t1|t4 t3 t2 tl

4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 tl

Key1l

Key?2

Key3

Column Qualifier

—_— < (*) The figure is misleading; each column qualifier can vary depending
on the RowKey and column family

* RowKey + Column Family/Column Qualifier = CELL coordinates
e Cells store the values, along with timestamps (date and time)
* Itis possible to retrieve earlier versions (earlier timestamps) of a cell’s value
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HBase Architecture — Regions

HBase table

Column Family CF1 Column Family CF2 Column Family CF3 _

Column Column Column Column Column Column
Qualifier Qualifier Qualifier Qualifier(s) Qualifier Qualifier(s)
cQl.1 cQl.2 CQ2.1 CQa3.1

RegiOn 4 t3 t2 t1 t4 t3 2 t1 4 t3 t2 t1 t4 3 t2 t1 t4 t3 t2 t1 4 t3 t2 ti

Key1l

Key2

Key3

* HBase tables are divided into regions stored on HDFS, typically with a size of 250MB per block.
e Each region corresponds to a single column family and covers a specific range of sorted RowKeys.
* Multiple regions can be accessed concurrently, enabling efficient distributed computing.
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Hbase - Summary

e Hbase Row

Row-Key Column family cf1 Column family cf2
0123456abcdef coll={1, 2, 3}, col2={"a”, "b” } col3={“v1”, “v2” }
0123456ghijklm coll1={4,5, 6} col3={ “v3”, “v4” }

* Most common DDL operations
e create table ‘namespace:tablename’, { cf1 properties }, { cf2 properties }
* enable/disable table ‘namespace:tablename’
e drop tables ‘namespace:tablename’
 list ‘namespace:.*’
* Most common DML operations
* put ‘namespace:table’, ‘row-key’, ‘cfl:coll’, value, [ ‘version-ts’ ]
* get ‘namespace:table’, ‘row-key’, [ time range, column, versions |
e scan ‘namespace:table’, [ row range, time range, filters, ...]
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HBase — “Good” key design

* Column families (and their column qualifiers) are indexed by the
primary key

* Consecutive keys are stored in the same HRegion and can be
efficiently accessed by a “range scan”, i.e. Returns all keys in a
start/end range

* It is therefore important to design the keys according to the type of
gueries we intend to perform on the data

* The choice of the key is made “before-hand”

https://svn.apache.org/repos/asf/hbase/hbase.apache.org/trunk/0.94/b ook/rowkey.design.html COM490




HBase — “Good” key design

* For instance, to efficiently access time series of individual sensors identified
by a unique ID:
* Key SensorID.yyyymmddHHMMSS
* E.g. ZHLBC.20240320131500

* You can then perform a range scan, e.g. all measures of sensor ZHLBC on
March 20, 2024:

e Scan ZHLBC.20240320 will return the data (column families) of all the keys that begin
with the given sequence, i.e. All the measures for of ZHLBC on 2024.03.20.

* The same key is less efficient if we want to return the measures of ALL the
sensors at a particular time

* Because the key starts with the sensor ID, we have to repeat the query for each sensors;
we cannot get the data using a single range scan

https://svn.apache.org/repos/asf/hbase/hbase.apache.org/trunk/0.94/b ook/rowkey.design.html COM490




HBase — Bulk Data Loading

 When loading data in bulk in HBase it is recommended to not insert monotonically increasing keys,
eg.1,2,34..

* Doing otherwise may result in resource usage “hot-spots”, i.e. Large ranges of consecutive keys will
be grouped into HRegions and HRegions (i.e. HRegionServer) will be populated one at the time.

(semi) random key

Monotonically increasing key
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Apache HBase vs ... other NoSQL

e Apache Cassandra

* Apache Accumulo

* MongoDB

* ScyllaDB (OSS AGPL 6.2)

e Azure Cosmos DB (cloud)

* Amazon - AWS DynamoDB (cloud)
* Google BigTable (cloud)

e ..toname a few
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Addressing the Big Data Challenge — Resource Management

Batch SQL NoSQL
Processing Data Warehouse Database
VAU —y
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Yet Another Resource Negotiator - YARN

* YARN

* Role of Application Masters in YARN
* Resource Request and Allocation
* Job Management and Task Scheduling
* Progress monitoring
* Failure Recovery
* Resource Cleanup
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Spark on YARN (.
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Spark on YARN
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Spark on YARN (.
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Spark on YARN

Spark Cluster Mode
* Spark Driver on cluster in a container
* Best for "production” jobs
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Spark on YARN
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YARN — Capacity Scheduler

Not enough resources? You will be placed in a queue until resources become available.

* Queues are laid out in a hierarchical design, top most queue is the “root”
* Resource reservations of a queue can be shared by child queues
* Child queues are given a min and max % of its parent reservation
*  Min: minimum % guaranteed when all resources are used
*  Max: maximum % allowed when resources are underused
Resource Manager *  When an applications is submitted (enter its assigned queue):
* |tisdeployed and run if the queue has enough reservation available for the application
* Otherwise the application waits for the resources to become available

Root
100%

Y Y Minimum Capacitys
Leafs of Root AdHoc Workflow Preference of root leafs add up
20% - 40% 60% - 80% 20% - 80% to 100%
I | 20+60+20 = 100
Y Y A ] y
Ingest ETL Low High Leafs of
Leafs of Workflow { 35% - 50% 65% - 80% 20% - 50% B0%-100% | Preference
Iy i .
(...) 2 https://blog.cloudera.com/yarn-capacity-scheduler/




Module 2 — Self-evaluation

| know lam able to

* When to consider distributed data technologies versus * Copy data to and from HDFS, explore HDFS

more) efficient single host solutions
( ) & * Move data around in HDFS, modify access rights

* What is HDFS and purpose it serves, and what are

comparable technologies (S3, etc.) * Create and manage data warehouses & lakehouses

* Optimization techniques (partitioning, efficient data
format like ORC, PARQUET)

* Run ETL and OLAP queries

* What are what are warehouse or lakehouses (Trino,
Hive), what they are used for

* What are NoSQL databases (Hbase, etc.) and what
purpose they serve

* Most popular storage encodings: ORC, PARQUET, ...

* Familiar with key words
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Next week — Module 3a

Pamela Delgado

Spoark

COM490 37






https://dslabgit.datascience.ch/course/2025/assignment-2

o _
® o "
-httpS@f/dglabgit

1
"1


https://dslabgit.datascience.ch/course/2025/module-2c




A1l - HBase Architecture

Knowing the Hbase terminology is handy if you ever need to troubleshot it ...

HRegion: tables are split into multiple HRegion, or blocks of continuous data between
start/end primary keys.

I-IlRegionServer: one per machine, manages a collection of HRegion on the big data
cluster.

HMaster: does not store data, but is responsible for managing the meta-data with the
mapping of HRegions to HRegionServers. It’s possible to have several HMaster, however
only one at the time can be elected to orchestrate the work on the HRegionServer..

HStore: underlying HBase storage consists of a memstore (in memory) and a store file
(HFile) on disk.

HLog: or Write Ahead Log file, is responsible for atomicity and durability, in case of
]IC-IRegiolnServer failure, its HLog is split and distributed among the other HRegionServers
or replay.
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A1l - HBase Architecture

e,

[ Client
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Hive SerDe — Serialization Deserialization

* Allows Hive to read in data from HDFS or a table, and write it back
out to HDFS or other storage in any custom format.

* E.g.
* JSON Format
* HBase
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A2 - JSON Format (Hive)

CREATE EXTERNAL TABLE my_table(line STRING)
STORED AS TEXTFILE

LOCATION '/my/table/jsondoc’;

SELECT get_json_object(line, 'S.first_name') AS first_name,
get_json_object(line, 'S.last_name') AS last_name
FROM my_table;
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A2 - JSON SerDe (Hive)

CREATE EXTERNAL TABLE mytable(

first_name STRING,

last_name STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
WITH SERDEPROPERTIES("ignore.malformed.json"="true")
STORED AS TEXTFILE
LOCATION '/my/table/jsondoc’;

e Starting with Hive 4.0.0, you are able to use STORED AS JSONFILE
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A3 - Hive / HBase SerDe

CREATE EXTERNAL TABLE hive_on_hbase(
SensorlD STRING,

It is possible to use HBase as a source to HiveQL or Spark.

humidity STRING, Example, to join Hive tables with HBase tables: :
temperature STRING, * Given HBase table my_namespace:my_table with 2
CO2 STRING column families x and y
) * Table definition on left maps SensorID to the RowKeys of
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' ;E?)Ielor:s?se table, and other columns are mapped as
WITH SERDEPROPERTIES ( humidity -> x:h
"hbase.columns.mapping"=":key, x:h, x:temp, y:co2" temperature -> x:temp
) CO2 -> y:co2
TBLPROPERTIES(
"hbase.table.name"="my_namespace:my_table", Note: In practice, you typically do not process the entire
"hbase.mapred.output.outputtable"="my_namespace:my_table" content of an HBase table. Instead, queries are designed to
) access subsets of data (with WHERE predicate).

https://cwiki.apache.org/confluence/display/Hive/HBaselntegration
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A4 - User Defined Functions (UDF)

* Hive QL comes with many UDF by default

* For alist, run the Hive query: SHOW FUNCTIONS;

* Or find them in the documentation
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ UDF#LanguageManualUDF-DateFunctions

* You can also create your own UDF

* Write a java plugin https://cwiki.apache.org/confluence/display/Hive/HivePlugins

 Then add the JAR file to your Hive session and create a function
* ADD JAR hdfs://<host>:<port>/<path>
* CREATE TEMPORARY FUNCTION <FUNCTION_NAME> AS <JAVA CLASS NAME>

* The above steps can be used to enable ESRI spatial framework UDF
(as of Hive 4.0.0 they are supported natively)
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