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Introduction to Data Science with Python19.02

(Bigger) Data Science  with Python26.02

Introduction to Big Data Technologies05.03

Big Data Wrangling with Hadoop12.03

Advanced Big Data Queries19.03

Introduction to Spark26.03

Spark Data Frames02.04

Advanced Spark
09.04

Introduction to Stream Processing
16.04

Stream Processing with Kafka
30.04

Advanced Stream Processing
07.05

Final Project Q&A
14.06

Final Project Videos Due before midnight
22.05

Oral Sessions
28.05



Week 4 (module 2b) – Questions?
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Today’s Agenda

•Data table formats (Iceberg)

•NoSQL databases

• YARN – Yet Another Resource Negotiator

• Exercises
• Processing JSON tables
• Geospatial Functions

•Assessed projects
• Assignment 2
• Final project - preview
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Iceberg table format

• What is Iceberg?
• Open-source distributed file structure for table formats

• Designed to manage large-scale, analytical datasets

• Designed for and optimized for storage systems like HDFS and cloud S3

• Provides high performance, scalability, and reliability for big data processing

• Developed by Netflix to address limitations of the Hive Metastore
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Hive Tables
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Iceberg Tables

COM490 8

Query engine
(Hive, Trino, …)

Data / Iceberg
(HDFS, S3, …)

Hive
Metastore

RDBMS

Metadata
File locations,
Columns and types, etc.

Iceberg
connector

In iceberg most of the 
metadata is offloaded to 
next to the data
• Increase scalability
• Improve performances
• Extend capabilities

metadata metadata

S0 S0 S1

Manifest
list S0

Manifest
list S1

Manifest
files

Manifest
files

Manifest
files

metadata directory (JSON, avro)

data directory (PARQUET, ORC)
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Iceberg Tables

• Key Features
• Optimized for Big Data: Seamlessly integrates with Spark, Hive, Trino and other big 

data processing engines

• Schema Evolution: allows schema changes without breaking existing data or queries 
(including adding columns etc)

• Partitioning Flexibility: Supports dynamic partitioning
• Instead of hive partitioning hardcoded in the directory hierarchy:  year=2024/month=01

• Partitioning is dynamic, year(pub_date), and layout is managed by iceberg (hidden)

• Versioned Data: Maintains historical data versions, enabling time travel and rollback
• https://trino.io/docs/current/connector/iceberg.html#time-travel-queries

• Independent Metadata Management: Separates metadata management for better 
performance and scalability
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See Also

• Delta Lake: https://docs.delta.io/latest/delta-intro.html (from Databricks, 2017)

• Zarr: https://zarr.dev/
• Designed for high dimensional scientific data (NetCDF, HDF5), e.g. used with xarray
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Where are we in our big data journey?
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• Ingestion (HDFS, S3) - typically periodic (weekly, monthly)
• Storage - data warehouse/lakehouse (schema on read)
• Transformation (ETL)

• Convert to efficient format (e.g. CSV/JSON to PARQUET/ORC)
• Types conversions (strings to integers/timestamps), cleansing, aggregations, …

• OLAP queries – ad-hoc aggregations, analysis 
→ Scalable and efficient – cost efficient, latencies seconds/hours/days

ETL

OLAP queries



warehouse, 
lakehouse query 
engine (Trino, Hive)

Learn
(Spark)

BATCH (periodically learn a new model) - seen in Module 2 and 3
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What about real-time analytics?
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Data Stream
(Kafka)

Prediction
(Spark streaming)

STREAMS (continuously process data on the fly) - seen in Module 4

ETAReal-time
GPS Data

Feature 
extraction

(Spark streaming)

Real time
events

In this use-case scenario:
• Vehicle, train station details and other information need to be 

queried quickly, on the fly during stream processing
• In-memory solution like Flink or Spark can handle the real-

time computation
• Databases are still necessary to persist the information



Real-Time Analytics – Beyond Data Warehouses & Lakehouses

• Data Warehouses/Lakehouses
• Optimized for OLAP queries on large, structured datasets

• Ideal for batch processing, if seconds/hours/days latency acceptable

• Not well-suited for real-time analytics

• Real-Time Analytics
• Best if data must be processed immediately as it arrives, often with millisecond-level 

latency
• For real-time decision-making to provide immediate insights

• Requires streaming data platforms (e.g., Apache Kafka, Apache Flink, AWS Kinesis)

• Requires database designed to retrieve persisted information quickly and efficiently!
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Addressing the Big Data Challenge – NoSQL

Storage

Resource Management

Batch
Processing

SQL
Data Warehouse

Stream processingNoSQL
Database

Machine Learning
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NoSQL - HBase

• Key-Value Store: Functions like a distributed dictionary

• Indexed by RowKey & Column Families: Column families are defined at table creation and 
represent a physical storage unit in the table

• Dynamic Columns: Columns (names and values) are created on the fly when rows are 
updated or created. Each column family can contain many columns

• Sparse: Empty columns do not consume space; they are created when data is inserted

• Wide Column Store: Can handle billions of rows, each potentially having millions of columns

• Versioned: Each column can store multiple versions; changes create new versions

• Cell Access: Data is accessed using the tuple:
namespace:table {row-key, column-family:column-name, version}
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HBase Column Oriented Data Model

RowKey Column Family CF1 Column Family CF2 Column Family CF3 ...

Key1

Key2

Key3

...

...

• Column families (CF) group related columns that should be stored together for I/O efficiency
• RowKeys uniquely identify each row in CF, stored in order to optimize retrieval

HBase tableColumn Family

RowKey
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row scan



HBase Column Oriented Data Model

RowKey Column Family CF1 Column Family CF2 Column Family CF3 ...

Column 
Qualifier 
CQ1.1

Column 
Qualifier 
CQ1.2

Column
Qualifier 
CQ2.1

Column 
Qualifier(s)
...

Column 
Qualifier 
CQ3.1

Column 
Qualifier(s)
...

...

Key1

Key2

Key3

...

...

• Column qualifier are conjured-up on the fly (when you insert values)
• Technically they do not use space in a RowKey/Column Family until they are declared
• Everywhere else, they don’t exist, and take no space

HBase table

Column Qualifier

Column Family

RowKey
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HBase Column Oriented Data Model

RowKey Column Family CF1 Column Family CF2 Column Family CF3 ...

Column 
Qualifier 
CQ1.1

Column 
Qualifier 
CQ1.2

Column
Qualifier 
CQ2.1

Column 
Qualifier(s)
...

Column 
Qualifier 
CQ3.1

Column 
Qualifier(s)

t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1

Key1

Key2

Key3

...

...

HBase table

CELL

• RowKey + Column Family/Column Qualifier = CELL coordinates
• Cells store the values, along with timestamps (date and time)
• It is possible to retrieve earlier versions (earlier timestamps) of a cell’s value

Column Family

RowKey

Column Qualifier
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(*) The figure is misleading; each column qualifier can vary depending 
on the RowKey and column family



HBase Architecture – Regions

RowKey Column Family CF1 Column Family CF2 Column Family CF3 ...

Column 
Qualifier 
CQ1.1

Column 
Qualifier 
CQ1.2

Column
Qualifier 
CQ2.1

Column 
Qualifier(s)
...

Column 
Qualifier 
CQ3.1

Column 
Qualifier(s)
...

t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 t4 t3 t2 t1

Key1

Key2

Key3

...

...

HBase table

• HBase tables are divided into regions stored on HDFS, typically with a size of 250MB per block.
• Each region corresponds to a single column family and covers a specific range of sorted RowKeys.
• Multiple regions can be accessed concurrently, enabling efficient distributed computing.

Region
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Hbase - Summary

• Hbase Row
Row-Key Column family cf1 Column family cf2
0123456abcdef col1={ 1, 2, 3 }, col2={“a”, ”b” } col3={ “v1”, “v2” }
0123456ghijklm col1={ 4, 5, 6 } col3={ “v3”, “v4” }
....

• Most common DDL operations
• create table ‘namespace:tablename’, { cf1 properties }, { cf2 properties }
• enable/disable table ‘namespace:tablename’
• drop tables ‘namespace:tablename’
• list  ‘namespace:.*’

• Most common DML operations
• put ‘namespace:table’, ‘row-key’, ‘cf1:col1’, value, [ ‘version-ts’ ]
• get ‘namespace:table’, ‘row-key’, [ time range, column, versions ]
• scan ‘namespace:table’, [ row range, time range, filters, ...]
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HBase – “Good” key design

• Column families (and their column qualifiers) are indexed by the 
primary key

• Consecutive keys are stored in the same HRegion and can be 
efficiently accessed by a “range scan”, i.e. Returns all keys in a 
start/end range

• It is therefore important to design the keys according to the type of 
queries we intend to perform on the data

• The choice of the key is made “before-hand”

22COM490https://svn.apache.org/repos/asf/hbase/hbase.apache.org/trunk/0.94/book/rowkey.design.html



HBase – “Good” key design

• For instance, to efficiently access time series of individual sensors identified 
by a unique ID:
• Key  SensorID.yyyymmddHHMMSS
• E.g.  ZHLBC.20240320131500

• You can then perform a range scan, e.g. all measures of sensor ZHLBC on 
March 20, 2024:
• Scan ZHLBC.20240320 will return the data (column families) of all the keys that begin 

with the given sequence, i.e. All the measures for of ZHLBC on 2024.03.20.

• The same key is less efficient if we want to return the measures of ALL the 
sensors at a particular time
• Because the key starts with the sensor ID, we have to repeat the query for each sensors;  

we cannot get the data using a single range scan

23COM490https://svn.apache.org/repos/asf/hbase/hbase.apache.org/trunk/0.94/book/rowkey.design.html



HBase – Bulk Data Loading

• When loading data in bulk in HBase it is recommended to not insert monotonically increasing keys, 
e.g. 1,2,3,4 …

• Doing otherwise may result in resource usage “hot-spots”, i.e. Large ranges of consecutive keys will 
be grouped into HRegions and HRegions (i.e. HRegionServer) will be populated one at the time.
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(semi) random key Monotonically increasing key

https://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/



Apache HBase vs ... other NoSQL

• Apache Cassandra

• Apache Accumulo

• MongoDB

• ScyllaDB (OSS AGPL 6.2)

• Azure Cosmos DB (cloud)

• Amazon - AWS DynamoDB (cloud)

• Google BigTable (cloud)

• … to name a few
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YARN
Yet Another Resource Negotiator



Addressing the Big Data Challenge – Resource Management

Storage

Resource Management

Batch
Processing

SQL
Data Warehouse

Stream processingNoSQL
Database

Machine Learning
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Real time data 
flow orchestration

Security

Batch tasks 
scheduling (ETL)



Yet Another Resource Negotiator - YARN

• YARN

• Role of Application Masters in YARN
• Resource Request and Allocation

• Job Management and Task Scheduling

• Progress monitoring

• Failure Recovery

• Resource Cleanup
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YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

HDFS Storage

Compute

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler
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Initialize Spark
Application Master

Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application MasterSpark client

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler

30

HDFS Storage
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negotiate YARN
containers (CPU,RAM)

Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application Master
Container (Map)

Container (Map)

Container (Reduce)

Container (Map)

Spark client

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler
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HDFS Storage
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negotiate YARN
containers (CPU,RAM)

Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application Master
Container (Map)

Container (Map)

Container (Reduce)

Container (Map)

Spark client

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler
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Spark Client Mode
• Spark Driver runs locally
• Best for interactive sessions

Spark Driver

HDFS Storage

Compute



negotiate YARN
containers (CPU,RAM)

Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application Master
Spark Driver

Container (Map)

Container (Reduce)

Container (Map)

Spark client

Node Manager Node Manager Node Manager

Resource Manager

queue(s)

• Application Manager
• Scheduler
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Spark Cluster Mode
• Spark Driver on cluster in a container
• Best for "production" jobs

HDFS Storage

Compute



Spark on YARN

DataNode DataNodeDataNode

NameNode

Master Node Worker Node Worker Node

Application Master
Container (Map)

Container (Map)

Container (Reduce)

Container (Map)

Client

Resource Manager

Node Manager Node Manager Node Manager

queue(s)

Application Master

Container (Reduce)Container (Map)

Client
• Application Manager
• Scheduler

(...)

34

HDFS Storage

Compute



YARN – Capacity Scheduler

Client

Resource Manager

queue(s)

Client
• Application Manager
• Scheduler

(...)
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https://blog.cloudera.com/yarn-capacity-scheduler/

• Queues are laid out in a hierarchical design, top most queue is the “root”
• Resource reservations of a queue can be shared by child queues

• Child queues are given a min and max % of its parent reservation
• Min: minimum % guaranteed when all resources are used
• Max: maximum % allowed when resources are underused

• When an applications is submitted (enter its assigned queue):
• It is deployed and run if the queue has enough reservation available for the application
• Otherwise the application waits for the resources to become available

Not enough resources? You will be placed in a queue until resources become available.



Module 2 – Self-evaluation

• When to consider distributed data technologies versus 
(more) efficient single host solutions 

• What is HDFS and purpose it serves, and what are 
comparable technologies (S3, etc.)

• What are what are warehouse or lakehouses (Trino, 
Hive), what they are used for

• What are NoSQL databases (Hbase, etc.) and what 
purpose they serve

• Most popular storage encodings: ORC, PARQUET, ...

• Familiar with key words

• Copy data to and from HDFS, explore HDFS

• Move data around in HDFS, modify access rights

• Create and manage data warehouses & lakehouses

• Optimization techniques (partitioning, efficient data 
format like ORC, PARQUET)

• Run ETL and OLAP queries

I know I am able to
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Next week – Module 3a
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Pamela Delgado



Assignment 2
https://dslabgit.datascience.ch/course/2025/assignment-2

Fork in under your group and git clone

https://dslabgit.datascience.ch/course/2025/assignment-2


Start your engines
https://dslabgit.datascience.ch/course/2025/module-2c

(Fork and git clone)

https://dslabgit.datascience.ch/course/2025/module-2c


Appendix



A1 - HBase Architecture

Knowing the Hbase terminology is handy if you ever need to troubleshot it ...

• HRegion: tables are split into multiple HRegion, or blocks of continuous data between 
start/end primary keys.

• HRegionServer: one per machine, manages a collection of HRegion on the big data 
cluster.

• HMaster: does not store data, but is responsible for managing the meta-data with the 
mapping of HRegions to HRegionServers. It’s possible to have several HMaster, however 
only one at the time can be elected to orchestrate the work on the HRegionServer..

• HStore: underlying HBase storage consists of a memstore (in memory) and a store file 
(HFile) on disk.

• HLog: or Write Ahead Log file, is responsible for atomicity and durability, in case of 
HRegionServer failure, its HLog is split and distributed among the other HRegionServers
for replay.
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A1 - HBase Architecture

HMaster

Region Server Region Server Region Server

Zookeeper
(meta data 

catalog)

Storage and
Compute

Client

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

Region

Hfile MemStore
WAL

HBase
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Hive SerDe – Serialization Deserialization

• Allows Hive to read in data from HDFS or a table, and write it back 
out to HDFS or other storage in any custom format.

• E.g.
• JSON Format

• HBase
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A2 - JSON Format (Hive)

CREATE EXTERNAL TABLE  my_table(line STRING)

STORED AS TEXTFILE

LOCATION '/my/table/jsondoc';

SELECT  get_json_object(line, '$.first_name') AS first_name,

get_json_object(line, '$.last_name') AS last_name

FROM my_table;
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A2 - JSON SerDe (Hive)

CREATE EXTERNAL TABLE mytable(

first_name STRING,

last_name STRING)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'

WITH SERDEPROPERTIES("ignore.malformed.json"="true")

STORED AS TEXTFILE

LOCATION '/my/table/jsondoc';

• Starting with Hive 4.0.0, you are able to use STORED AS JSONFILE
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A3 - Hive / HBase SerDe

CREATE EXTERNAL TABLE hive_on_hbase(

SensorID STRING,

humidity  STRING,

temperature STRING,

CO2 STRING

) 

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

WITH SERDEPROPERTIES (

"hbase.columns.mapping"=":key, x:h, x:temp, y:co2"

)

TBLPROPERTIES(

"hbase.table.name"="my_namespace:my_table",

"hbase.mapred.output.outputtable"="my_namespace:my_table"

)

https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

It is possible to use HBase as a source to HiveQL or Spark.

Example, to join Hive tables with HBase tables: :
• Given HBase table my_namespace:my_table with 2 

column families x and y

• Table definition on left maps SensorID to the RowKeys of
the hbase table, and other columns are mapped as 
follow:

humidity -> x:h
temperature -> x:temp
CO2 ->  y:co2

Note: In practice, you typically do not process the entire 
content of an HBase table. Instead, queries are designed to 
access subsets of data (with WHERE predicate).
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A4 - User Defined Functions (UDF)

• Hive QL comes with many UDF by default
• For a list, run the Hive query:   SHOW FUNCTIONS;

• Or find them in the documentation 
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-DateFunctions

• You can also create your own UDF
• Write a java plugin https://cwiki.apache.org/confluence/display/Hive/HivePlugins

• Then add the JAR file to your Hive session and create a function
• ADD JAR hdfs://<host>:<port>/<path>

• CREATE TEMPORARY FUNCTION <FUNCTION_NAME> AS <JAVA_CLASS_NAME>

• The above steps can be used to enable ESRI spatial framework UDF 
(as of Hive 4.0.0 they are supported natively)
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https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/HivePlugins
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