THE DATA SCIENCE LAB
Data Wrangling with Hadoop

COM 490 — Module 2b
Week 4

Agenda 2025 - Module 2b

Introduction to Data Science with Python Advanced Spark

09.04

(Bigger) Data Science with Python Introduction to Stream Processing

Introduction to Big Data Technologies Stream Processing with Kafka

Big Data Wrangling with Hadoop Advanced Stream Processing

Advanced Big Data Queries Final Project Q&A

Introduction to Spark Final Project Videos Due before midnight

Spark Data Frames Oral Sessions

COM490 p

ddddddd
g€gaadada

Module 2a — Questions?

Objective Module 2a

* You have formed the groups

e Otherwise contact us

* Understand fundamental concepts of the big data journey

* Distributed computing and challenges

* Scale-out vs Scale-up, Hive Partitioning, Predicate Push down, HDFS,
Splittable data format, Map Reduce, C.A.P theorem tradeoffs, out-
of-core computing (and what to do when pandas runs out-of-

memory)
* Understand why HDFS and Map Reduce work well together

* Get an understanding of the various Hadoop technologies and their
applications - can group technologies into groups that offer similar
features (storage, data warehouse, nosq|, ...)

* You can navigate HDFS and manage data on HDFS (exercises)

COM490 3

Module 2a - Review

Module 2a - Lab

RAMCOMPULE « Transferred data to HDFS: We uploaded data to the HDFS for storage and processing.
i@}ﬁ ; o o o v * Executed data query tasks locally: We performed data analysis using local tools (e.g.,
:\'U" T [e [0 I () DUCkDB) to querythe data.
£5s o O LD * Data was copied from HDFS to the local machine to perform computations out-of-
/DR S S core, preventing potential Out-of-Memory errors by processing data in smaller
ata
chunks.

CPU

COM490 4

Module 2b

Module 2a - Lab

RAMCOMPULE * Transferred data to HDFS: We uploaded data to the HDFS for storage and processing.
i@}ﬁ ; o o o v * Executed data query tasks locally: We performed data analysis using local tools (e.g.,
o & e 0 wn) DuckDB) to query the data.
ave °o D D * Data was copied from HDFS to the local machine to perform computations out-of-
b D S S core, preventing potential Out-of-Memory errors by processing data in smaller
data
chunks.
CPU
Module 2b - Lab
query_ compute
RAM R T * Run analytics tasks in parallel on the cluster: We will leverage the distributed computing
n; =7 results OE power of the cluster to execute analytics tasks concurrently (more RAM, more CPU)
* Process data directly on HDFS: Instead of moving data to local storage, we will perform
A dota LD analytics directly on the HDFS data
o] <
DISK
¥cpu

COM490)

Addressing the Big Data Challenge — Data Warehouse(*)

Batch sQL
Processing Data Warehouse
& apache . S; §_ ‘
Spork ngnite Apache Impala .
|/
) e . it
@}ﬁf@,gmi > trino presto ."
Storage @ /A ALLuxio

(*) And data lakehouses

COM490 6

Today’s Agenda

* Data Warehouses Concepts
* Hive (lecture), Trino (lab)

* Exercises Module 2b
* Data wangling with Trino, CSV and PARQUET

COM490 7

What is a Data Warehouse?

* Designed to provide an interface for querying large amounts of
structured data

e Data is typically stored in external storage systems such as HDFS, S3, or other
distributed file systems

* Optimized for:
* Analytical processing (OLAP) rather than transactional (OLTP)
 Complex queries and historical data analysis

* High level query language, e.g. HiveQL (similar to SQL)

COM490 9

Data Definition Language (DDL) — E.g. HiveQL

Create a database — this is like a namespace.
CREATE DATABASE IF NOT EXISTS mydatabase;

USE mydatabase; Make mydatabase the default (not required but

useful)

CREATE EXTERNAL TABLE mydatabase.mytable | Create table mytable in the database mydatabase

betriebstag STRING, The schema: comma separated list

ElrE BEBsEhnGy SIS, «——— ofcolumn names and their types
betreiber_id STRING yp

)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ";"
STORED AS TEXTFILE

LOCATION '/data/sbb/csv/istdaten’;

Storage format

Optional Location of data, on HDFS in example

COM490 10

Schema On Read

e Schema on READ

* You write the data on store (e.g. HDFS, or S3) first, and then you apply a schema later, when
the data is being read off of the store; the same data at the given physical location can be
accessed using different schemas

* Pros:
* No need to plan ahead, save the data and decide of the schema later

* Support for Schema Evolution, (e.g. PARQUET, Avro, ...): as you add more data to the store, new data do not
need to be exactly the same schema as the old data

* Cons: limited type safety, analytics must be ready to handle bad data; limited opportunities
for "schema-aware" optimization

e Versus. Traditional RDBMS - Schema on Write

* You must decide what is the schema of the database table first, then you can write data to
the tables. The schema cannot change after you created the table.

* Pros: better type safety; optimization possible if schema is known beforehand
* Cons: you must plan ahead; it is harder to have different views of same data

COM490 11

Data Definition Language (DDL)

CREATE EXTERNAL TABLE mydatabase.mytable (e If EXTERNAL

[--.] * You manage the data

* The data is not deleted when you DROP
LOCATION '/data/csv/sbb/istdaten’; the table (only the meta-data of the
Hive table definitions)

* If not EXTERNAL

e Data is managed by Hive
CREATE TABLE catalog.schema.mytable (.
] * The data is deleted when you DROP the

) table I
* In Hive EXTERNAL is NOT the default

external_location '/data/csv/sbb/istdaten’ * On pre-existing data, make it
); Trino EXTERNAL

)

WITH(

COM490 12

Data Retrieval Queries — E.g. HiveQL

SELECT product_id, COUNT(*) FROM mydatabase.mytable SQL like select query
GROUP BY product_id;

\js automatically converted and executed as a map reduce application

Split Map Combi:ne Shuffle (keys) Reduce

COM490 13

Data Storage and Partitioning

* Hive Partitioning

Example, file structure found on HDFS

/data —(...)
/csv /istdaten /year=2021 il
) /year=2022
/year=2023 /month=01

(...)
/month=12

COM490 14

Data Storage and Partitioning

* Hive Partitioning

Example, file structure found on HDFS

if you use this as the table location, Hive will read all the files
/data (... / under that folder when running an SQL SELECT query.

1 [/istdaten ,. /year=2021 Eamdii

/csv ‘ ,

—(...)

/year=2022

/year=2023 /month=01

CREATE EXTERNAL TABLE mydatabase.mytable ((...
betriebstag STRING, /month=12
[...]

)
STORED AS TEXTFILE

LOCATION '/data/csv/sbb/istdaten’;

COM490 15

Data Storage and Partitioning

* Hive Partitioning

Example, file structure found on HDFS

If you create the tables using a location in a sub-folder, Hive will only
look under that folder ...

/istdaten
(...

— (...)

‘ /year=2023 '.

/month=01

(...)
/month=12

CREATE EXTERNAL TABLE mydatabase.mytable (
betriebstag STRING,
[...]

)
STORED AS TEXTFILE

LOCATION '/data/csv/sbb/istdaten/year=2023';

COM490 16

Data Storage and Partitioning

* Hive Partitioning

CREATE EXTERNAL TABLE mydatabase.mytable (
betriebstag STRING,

[...] You are giving a hint that the folder structure under
) istdaten is organized into year folders containing
PARTITIONED BY (year INT. month |NT) ¢ month folders. They CANNOT be the same column
ROW FORMAT DELIMITED FIELDS TERMINATED BY ";" TETES §5 1 i SERETE

STORED AS TEXTFILE
LOCATION '/data/csv/sbb/istdaten’;

MSCK REPAIR TABLE myatabase.mytable [ADD PARTITIONS]: AlElE VO T TS EL TS (RIS S, ENfe L
look for folders year=.../month=... and will create

columns corresponding to those folders.

SELECT COUNT(*) FROM mydatabase.mytable WHERE year=2022 Partitioning columns are used in Hive SQL queries like

AND month=12 AND betriebstag='01.12.2022", any other columns. Hive will optimize the query to
read only data found in the corresponding folders.

COM490 17

ETL - Extract Transform Load

Data Warehouses not only handle OLAP queries but also serve as powerful tools for transforming
raw data through the ETL process:

* Extract:
* Pull data from various sources (databases, HDFS, S3, APls, etc.)
* Sources can be structured, semi-structured, or unstructured

* Transform: (SELECT ...)
e Clean and process the raw data (e.g., standardization, filtering, handling missing values).

* Apply business rules and aggregate data for analytics

* Load:
» Store the transformed data into tables within the data warehouse, e.g. on HDFS, S3 — (CREATE AS
SELECT, INSERT).

e Data is now ready for analysis and querying.

COM490 18

Create Table as Select (CTAS) — E.g. HiveQL

Example of CTAS:

CREATE TABLE mydatabase.mynewtable
STORED AS PARQUET
LOCATION '/data/parquet/sbb/istdaten’
AS SELECT * FROM mydatabase.mytable;

Create Table As Select (CTAS), note that in the new table:

* We do not need to specify the schema of the new table (it is derived
from the source table

* We can specify a different storage format.

* You can specify a partitioning (since 3.2.0)

This is convenient if you want for instance to create a ORC or PARQUET
format from a data in CSV format.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTableAsSelect(CTAS)

COM490 19

INSERT/LOAD — E.g. HiveQL

Example of CREATE + INSERT:

CREATE EXTERNAL TABLE mydatabase.mynewtable (
betriebstag STRING,

)
PARTITIONED BY (year INT, month INT)

STORED AS PARQUET
LOCATION '/data/com-490/parquet/sbb/istdaten’;

Create table and insert from another table. This option
INSERT INTO TABLE mydatabase.mynewtable provides more flexibility (partitioning, clustering, external

SELECT * FROM mydatabase.mytable; tables etc) than CTAS.

https://cwiki.apache.org/confluence/display/Hive/Language Manual+DML

COM490 20

Storage Formats

CREATE EXTERNAL TABLE mydatabase.mynewtable (
betriebstag STRING,

)
PARTITIONED BY (year INT, month INT)

STORED AS PARQUET
LOCATION '/data/com-490/parquet/sbb/istdaten’;

Storage formats: ORC, PARQUET, TEXTFILE (with additional field/record separator, header parameters, etc)

https://cwiki.apache.org/confluence/display/Hive/Language Manual+DML

COM490 21

Reminder - Popular Storage Formats

* Plain text (csv, json, xml, ...), * ORC
* Row-oriented (most common) * Column-oriented, optimized for OLAP
* Often sourced externally * Data stored in stripes (typically 250MB)
* Best for OLTP * Indexed, splittable
* Compression: None, Gzip, Bzip2, ... * Integrated compression: SNAPPY, ZLIB, ZSTD, ...
* Batch and stream processing * Optimized for WORM
* Splittable (if one line per record, depend on compression) * Batch processing only
* Parquet * Avro
* Column-oriented, ideal for OLAP workload * Row-oriented,
* Integrated compression: SNAPPY, ZLIB, ZSTD, ... * Splittable
* Splittable * Block level compression
* Best suited for write once, read many (WORM) * Best for OLTP
* Batch processing only * Support schema evolution

* HDF5 / NetCDF4
* Hierarchical, Multidimensional (D > 2)
* Optimized for large datasets
* Compression: ZLIB, SZIP, ...
* Splittable (with chunks)
» Best for scientific and high-performance computing

COM490 22

Other Data Warehouses

* Open Source

* Hive - serverless
. Prest@a fork of Presto) - server based

* Cloud
« Amazon AWS: Athena (Trino)
* Microsoft Azure: Synapse Analytics (T-SQL)
* Google: BigQuery

COM490 23

Apache Hive Under the Hood

Hive (HiveServer2, Driver, Executes the plan on
Hadoop cluster

] Compiler), handle query

Execution

O
) [Engine

y
Hive Metastore (RDBMS)

A
Stores metadata (table

[Compiler]
schemas, locations).

execution, translation,
optimization, and client
interaction
O O e [e) y
..... o EXRTEN EXETEN

.....

/Hive Meta-store

Distributed Storage, where (Facebook 2010)

data is stored

Hive
Data Warehous\e

COM490

Hive Under the Hood

create database

|
create external table(...)
location ‘hdfs-path’

create table(...)
location ‘hdfs-path’

[Compiler] lcreate table(...)

/Hive Meta-store\

Tableg
Tablep
Hive

Data Warehouse J Managed Tables ~ Managed Tables ' External Tables

e - - - ————

COM490

Hive Under the Hood

[ap ‘I

O Execution i !
m Engin Applicatio aster |(REEEt > ap Reduce g
select ... from ... ap ’:

HiveServer2

0
=
©

===

Meta-store)

Database

Table
Tablep
Hive
Data Warehouse % Managed Tables Managed Tables ' External Tables |

COM490

Hive Under the Hood

Execution
Reduce

Meta-store) Results

Table Tablep
Tablepj Tablep
Hive

Data Warehouse) Managed Tables

Managed Tables

COM490

Trino Under the Hood

Runtime Metastore

Trino Clients
Trino Cluster

JDBC —

~ Coordinator Hive

Metastore

CLI —

Worker Worker Worker

File Storage

Trino - fork of Presto (Facebook 2013)

COM490 28

Start your engines

https://dsIabgit.datascieﬁnce.ch/course/2025/modu|e-2b

	Slide 1: THE DATA SCIENCE LAB Data Wrangling with Hadoop
	Slide 2: Agenda 2025 - Module 2b
	Slide 3: Module 2a – Questions?
	Slide 4: Module 2a - Review
	Slide 5: Module 2b
	Slide 6: Addressing the Big Data Challenge – Data Warehouse(*)
	Slide 7: Today’s Agenda
	Slide 8: Data Warehouse
	Slide 9: What is a Data Warehouse?
	Slide 10: Data Definition Language (DDL) – E.g. HiveQL
	Slide 11: Schema On Read
	Slide 12: Data Definition Language (DDL)
	Slide 13: Data Retrieval Queries – E.g. HiveQL
	Slide 14: Data Storage and Partitioning
	Slide 15: Data Storage and Partitioning
	Slide 16: Data Storage and Partitioning
	Slide 17: Data Storage and Partitioning
	Slide 18: ETL - Extract Transform Load
	Slide 19: Create Table as Select (CTAS) – E.g. HiveQL
	Slide 20: INSERT/LOAD – E.g. HiveQL
	Slide 21: Storage Formats
	Slide 22: Reminder - Popular Storage Formats
	Slide 23: Other Data Warehouses
	Slide 24: Apache Hive Under the Hood
	Slide 25: Hive Under the Hood
	Slide 26: Hive Under the Hood
	Slide 27: Hive Under the Hood
	Slide 28: Trino Under the Hood
	Slide 30: Start your engines

