® [
| o

U x

JAVASCRI PT PART 2

IIIIIIIIIIIII

https://www.kirellbenzi.com

Questions?

METOOMENTUM ABOUT e

Trending seeds

Trending seeds are the most popular tweets from October 2017
through March 2018.

While media outlets generated significant awareness on Twitter
regarding the issue, the hashtag #MeToo has allowed both
celebrities and regular people to share their personal feelings °
and experiences — using social media as a platform for open
discussion.

Hover over each seed to read individual tweets or explore
conversations around key events.

EXPLORE TIMELINE

\|/

¢ Log. distance: No. of retweets Size: No. of followers Colour. No. of likes Pattemn: No. of comments

https://medium.muz.li/the-anatomy-of-a-hashtag-a-visual-analysis-of-the-metoo-movement-ba4ecf9b130b

Let’s get back to the DOM

The Document Object Model
DOM) is a programming
interface for HTML and XML
documents.

It represents the page so that
programs can change the
document structure, style and
content.

The DOM represents the
document as nodes and objects.

Node

nodeName : DOMString {readonly}
nodeType : NodeTypeEL {readonly)
nodeValue : DOMString
textContent : DOMString
parrentNode : Node {readonly)
childNodes : NodeList {readonly}
firstChild : Node {readonly}
lastChild : Node {readonly}
previousSibling : Node {readonly}
nextSibling : Node {readonly}
ownerDocument : Document {readonly}

DOM4 Core

«enumeration»
NodeTypeEL

ELEMENT _NODE = 1

TEXT NODE =3

PROCESSING INSTRUCTION NODE =7
COMMENT NODE = 8

DOCUMENT _NODE = 9
DOCUMENT_TYPE_NODE = 10
DOCUMENT _FRAGMENT NODE = 11

«enumeration»
Historical Node Types
ATTRIBUTE _NODE =2
CDATA_SECTION NODE =4
ENTITY REFERENCE NODE =5
ENTITY_NODE =6
NOTATION_NODE = 12

«interfaces
HTMLCollection

length : unsigned long(idl) {readonly}

item(in index : unsigned long(idl)) : Node

insertBefore() nameditem(in name : DOMString) : Element
replaceChild()
: Attr -

removeChild() i «interface»

appendChild() name : DOMString {readonly} NodeList

hasChildNodes() specuﬁ.ed : boolean(idy) {readoniy} length : unsigned long(idl) {readonly}

cloneNode() value : DOMString ' _ _ : : :

ZP ownerElement : Element {readonly} item(in index - unsigned long(idl)) : Node
Document Element CharacterData DocumentFragment

doctype[0..1] : DocumentType {readonly} tagName[1] : DOMString {readonly} data - DOMString
URL[1] : DOMString {readonly} localName[1] : DOMString {readonly} length : unsigned long(idl) {readonly} DocumentType

documentElement]0..1] : Element {readonly}
implementation[1] : DOMImplementation {readonly)
characterSet[1] : DOMString {readonly}
contentType[1] : DOMString {readonly}

createElement()
createTextNode()
createComment()
createProcessinglnstruction()
createAttribute()
getElementByTagName()
importNode()
createElementNS()
createAttributeNS()
getElementsByTagNameNS()
getElementByld()
getElementsByClassName()

prefix]0..1] : DOMString {readonly}
namespaceURI[0..1] : DOMString {readonly}
id[0..1] : DOMString

className[0..1] : DOMString

classList[0..1] : HTMLCaollection {readonly}
attributes[*] : Attr {readonly}

children[*] : Element {readonly}
firstElementChild[0..1] : Element {readonly}
lastElementChild[0..1] : Element {readonly}

getAttribute()
getAttributeNS()

setAttribute()

setAttributeNS()
removeAttribute()
removeAttributeNS()
getElementsByTagName()
getElementsByTagNameNS()
hasAttribute()
hasAttributeNS()

substringData()
appendData()
insertData()
deleteData()

name : DOMString {readonly}
publicld : DOMString {readonly}
systemld : DOMString {readonly}

replaceData()

AN

Comment

Text

wholeText : DOMString {readonly}

Processinglinstruction

target : DOMString {readonly}

[Gerd Wagner]

https://developer.mozilla.org/en-US/docs/Web/API/Document Object Model/Introduction

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://stackoverflow.com/users/2795909/gerd-wagner

DOM API

DOM was designed to be independent of any
particular programming language.

The preferred language to access it is Javascript

Easy interface, just use the document or window
global objects to manipulate the document itself or to
get at the children of that document, which are the

various elements in the web page.

Getting elements

getElementByld / getElementsByTagName / getElementsByClassName

<IDOCTYPE html>

<html>
<body>
<p "myText">Nice text</p>
<p "JsText"></p>
<script "text/javascript">

const myElement = document.getElementById('myText");
document.getElementById("jsText").1nnerHTML =
"Filled from code: " + myElement.innerHTML;
</script>
</body>
</html>

querySelector()

Returns the first Element within the document that matches
the specified selector, or group of selectors.

Works also to the list of children of an
element.querySelector().

Use querySelectorAll() to get all matching elements

const
const
const
const

el = document.querySelector(“div”); // Select by tag

el’Z
el3
el4

docunm
docun

docum

ent.querySelector(“#my1d”); // Select by ID
ent.querySelector(“.myclass”); // Select by class
ent.querySelector("div.user-panel.main input[name=‘login’]");

Creating elements

createElement / createTextNode

// create a couple of elements 1n an otherwise empty HTML page
let heading = document.createkElement("hl");

const headingText = document.createTextNode("Hello from JS!7);
heading.appendChild(headingText);

document.body.appendChild(heading); Hel IO fFOm JS'

Elements attributes

There are three ways of accessing the attributes of a DOM Element In
JavaScript.

For simplicity we will just mention element.attributes which contains the list
of all standard attributes

Hopefully, we will soon rely on D3.|s selection mechanism, to perform all the

operations we need to CRUD (Create, Read, Update, Delete) elements from
the DOM

<p "paragraph” ‘color: green; '>Sample Paragraph</p>

https://developer.mozilla.org/en-US/docs/Web/API/Element

Asynchronous JS

Synchronous code is easier to follow and debug but async is generally
better for performance and flexibility.

Modern web came with AJAX (Asynchronous JavaScript And XML).
Asynchronous post or pull data in a web page without reloading it.

A common use case involves loading resources and do something when
ready using a callback.

Dealing with async (old)

// 0ld way
function successCallback(result) {
console.log("It succeeded with " + result);

¥

function failureCallback(error) {
console.log("It failed with " + error);

¥

doSomethingAsync(successCallback, failureCallback);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using promises

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

Callback pyramid of doom

doSomething(function(result) {
doSomethingElse(result, function(newResult) {
doThirdThing(newResult, function(finalResult) {
console.log(' Got the final result: ' + finalResult);
}, failureCallback);
}, failureCallback);
}, failureCallback);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using promises

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

Promises

A Promise is an object representing the eventual completion or failure of an
asynchronous operation to which we attach callbacks

Promises can be chained because the then function returns a new promise,
different from the original

const promise = doSomething();
const promisel = promise.then(successCallback, failureCallback);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using promises

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

No callback hell!

doSomething()
.then(result => doSomethingElse(result))
.then(nhewResult => doThirdThing(newResult))
.then(finalResult => {

console.log(Got the final result: ${finalResult});

)
.catch(failureCallback);

Object-oriented JS

Object-oriented JS?

When creating complex code, it is natural to organize it into groups of functions
and modules.

If we create an object that contains functions, it seems like we are creating
methods

If we create a function that returns these objects, it looks like class contructors

function createDumbObject(name) {
return {

fakeMethod: () => console.log(name)
s
s

createDumbObject(' Yoda').fakeMethod(); // "Yoda"

Javascript does not have classes!

Javascript is NOT like other class-
based language: C++, Java, Python..

It Is the biggest source of confusion for
developers discovering the language

function baz() {
// call-stack 1s: "baz’

// so, our call-site 1s 1n the global scope

console.log("baz");
bar(); // <-- call-site for “bar

¥

function bar() {
// call-stack 1s: "baz -> bar
// so, our call-site 1s 1n baz

console.log("bar™);
foo(); // <-- call-site for foo"

¥

function foo() {
// call-stack 1s: "baz™ -> "bar ->
// so, our call-site 1s i1n bar
console.log("foo");

¥

baz(); // <-- call-site for "baz

Call site

“foo

call-site

the location in code where a function is called (not where it's declared)

ORERLLY T At e e e = ace e
e i & M g o, O st
< U s ot 2 e

KYLE SIMPSON

this & OBJECT
PROTOTYPES

o
z
X
t
z
o
o
2
o

“This” (is not what you think)

The keyword this is a common source of confusion for developers because it
Is different from traditional languagues.

You can think of this as the context that is passed to when you call a function

function identify(context) {

const me =
return context.name.toUpperCase(); ¢

name: "Kirell"

¥
¥
function speak(context) {
const greeting = "Hello, I'm " + 1identify(context); const you = {
console.log(greeting); name: "Reader"
¥ ¥

1dentify(you); // READER
speak(me); // Hello, I'm Kirell You Don't Know JS: this & Object Prototypes Ch.1

“This” (is not what you think)

this mechanism provides a more elegant way of implicitly "passing along" an object
reference.

Cleaner API design and easier re-use.

function identify() {
return this.name.toUpperCase();

¥

function speak() {
const greeting = "Hello, I'm " + identify.call(C this);

console.log(greeting); identify.call(me); // Kirell
} identify.call(you); // READER

speak.call(me); // Hello, I'm Kirell
speak.call(you); // Hello, I'm READER

You Don't Know JS: this & Object Prototypes Ch.1

function createObject(value) {
return {

X: value,

get: function () {
return this.x;

5

set: function (newValue) {
this.x = newValue;

L Works as

: expected !?

Let myObj = createObject(15);
myObj.x; // 15 "

myOb3j.get(); // 15 TR
myObj.set(42); "oy 0 0 .’:Enz
myObj.get(); // 42 AT

myObj.x; // 47

Gives context (“owns the function”)

function createObject(value) {
return {

X: value,

get: function () {
return this.x;

’,

set: function (newValue) {
this.x = newValue;

}
|
}

Llet myObj = createObject(15);

const objGetter = myObj.get;
‘////)' objGetter(); // undefined

Alias of get() Not the same context, fallback to global object, not defined

hew keyword

A brand new object is created (aka, constructed) out of thin air
The newly constructed object is [[Prototype]] -linked (following slides)

The newly constructed object is set as the this binding for that function call
unless the function returns its own alternate object
The new -invoked function call will automatically return the newly e

constructed object. this & OBJECT
PROTOTYPES

:
2
3

Real-life example

function Counter() {
this.num = 0;
// no return statement
$
const a = new Counter();
console.logCa.num); // 0

Real-life example

function Counter() {
this.num = 0;
this.timer = setInterval(function add() {
this.num++;
console.log(this.num);
i, 1000);
// no return statement
$
const b = new Counter();
// NaN
// NaN
// NaN

// ...
clearInterval(b.timer); // stop timer

How to fix this? (old)

function Counter() {
var that = this; // old ES5 way
that.num = 0;
that.timer = setInterval(function add() {
that.num++;
console.log(that.num);
§, 1000);
}
const ¢ = new Counter();
// 1
// 2
// 3
// ...

How to fix this? (new)

function Counter() {
this.num = 0;
this.timer = setInterval(() => {
this.num++;
console.log(this.num);
}, 1000);
; Arrow function => lexical this binding
const d = new Counter();
// 1
// 2
// 3
// ...

More on this (pun intended)

e - 0
.

KYLE SIMPSON

this & OBJECT
PROTOTYPES

O
<
x
<
Z
O
o
-
O

Inheritance?

In traditional languages

I

Classes are blueprints -

1L

Objects (instances) are copies of all the characteristics
described by classes

SPACE-ENERGY FIELD ATTRACTION SENSORS

W REAR VIEW

In JS

There are just objects, linked together via their
prototypes

U 53.S.ENTERPRISE

NCC-1701-A

Prototypes are the mechanism by which JavaScript 4
objects inherit features from one another

Example: create a person

A Person “pseudo-factory” function

function createNewPerson(name) {
let oby = {
name: name,
greeting: function() { console.log(My name is ${this.name}!); }
s
return obj;
}
const me = createNewPerson('Kirell");
me.greeting(); // My name 1s Kirell!
const you = createNewPerson(' 'You');

Person ctor function?

Let’s create a Person “class”. Capital case on the first letter to indicate a
constructor function.

How can we share the greeting function between all Person objects?

function Person(name) {

this.name = name;

this.greeting = function() {

console.log("My name is ${this.name}!);

s

// no return statement
§
const me = new Person('Kirell"); // use new keyword
me.greeting();

Enters the prototype object

< greeting
, 1 hame
_constructor
" constructor

hasOwnProperty
isPrototypeOf
propertyIsEnumerable
toLocaleString

Each object has a prototype object, which
acts as a template object that it inherits

methods and properties from. (Roughly) toString

valueOf
__defineGetter__
__defineSetter__
~~ __lookupGetter__
Y __lookupSetter__
__proto___

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object prototypes

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

Prototype chain

Inherits from Inherits from
. EEESEp| Peson | EEEESHD

Person name
name = name
greeting =

console log My name is $4 namej!

ne = Person 'Kirell’ : T 3 :
me greeting These methods are available to the "me” object

My name is Kirell! by walking the prototype chain upwards

> me.valueOf() They are defined in the Object prototype

< name greeting

> me.toString()
¢ |object Object]

Looking up the chain

function Person(name) {
this.name = name;

¥

const me = new Person('Kirell");

Person.prototype.greeting = function() {
console.log(My name is ${this.name}!);

j

me.greeting(); // works: My name 1s Kirell!

Browser looks up the prototype chain

Array

See also In This Article

Standard built-in objects

Array

The JavaScript Array object is a global object that is use

Properties like objects.

Array.length

Array.prototype Create an Array

Array.prototype[@@unscopables
]

¥ Methods

var fruits = ['Apple’, 'Banana’];

console.log(fruits.length);
/] 2

W N

Array.from()

Array.isArray()
Access (index into) an Array item

Array.of()
var first = fruits[0];

Array.prototype.concat() // Apple

Array.prototype.copyWithin()

var last = fruits|fruits.length - 1}];

Array.prototype.entries() // Banana

vi & W N B

Array.prototype.every()

Classical inheritance in JS

Before ES6 there were basically two ways

Constructor functions

Objects Linked to Other Objects (OLOO)

Object.create

const a = {a: 1};
// a ---> 0Object.prototype ---> null

const b = Obiject.create(a) Object.create() method
= J . ’ . .
// b ---> a ---> Object.prototype ---> null creates a new object with the

console.log(b.a); // 1 (inherited) specified prototype Obj.eCt
and properties.

const ¢ = Object.create(b);

// ¢ ---> b ---> a ---> Object.prototype ---> null

const d = Object.create(null);
// d ---> null

console.log(d.hasOwnProperty);
// undefined, because d doesn't inherit from Object.prototype

Constructor inheritance

function Foo() {%
Foo.prototype.y = 11;

function Bar() {}
Bar.prototype = Object.create(Foo.prototype);
Bar.prototype.z = 31;

const x = new Bar();
X.y + x.z; // 42

OLOO inheritance

const FooObj = { y: 11 };

Llet BarObj = Object.create(FooObj);
BarObj.z = 31;

® N Ayt e) £F D ace P
PL = i
-

V10BR vvy ot ot @4 -

const x = Object.create(BarObj); LS

X.y + X.z; // 42 this & 0BJECT
PROTOTYPES

O
4
x
s
Zz
o)
o
-
e

Prototypes are complex
a7

Everything is simpler than you
think and at the same time more
complex than you imagine

~Johann Wolfgang von Goethe

AZ QUOTES

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object prototypes

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

More on prototypes

(ORERLLY"

16@® oy S ot 84 g

KYLE SIMPSON

this & OBJECT
PROTOTYPES

O
<
X
-
Z
O
o
~
O

ES2015 to the rescue

The traditional version of a “class” is useful and many people tried to
emulate this features in Javascript

Since ES2015, new syntaxic sugar has been added to the language with
new keyword: class to make our life easier.

The class syntax is not introducing a new object-oriented inheritance model
to JavaScript!

Back to something familiar!

class Rectangle { class Point {

constructor(height, width) { cons#ructor(%, y) 1
this.height = height; this.x = x;
this.width = width; } this.y =y;

¥

get area() {

return this.calcArea(); static distance(a, b) 1

1 const dx = a.x - b.Xx;
calcArea() { const dy = a.y - b.y;
return this.height * this.width; return Math.hypot(dx, dy);
1 h
1 ¥

const pl = new Point(5, 5);
const pZ2 = new Point(10, 10);
console.log(Point.distance(pl, p2));

const square = new Rectangle(10, 10);
console.log(square.area);

Inheritance is simpler (don’t abuse it)

class Cat {
constructor(name) {
this.name = name;

¥ | \ .
speak() { L
console.log(this.name + ' makes a noise.');)

¥
¥

class Lion extends Cat {

speak() { const 1 = new Lion('Fuzzy');
super.speak(); 1.speak();
console.log(this.name + " roars."); // Fuzzy makes a noise.
, ¥ // Fuzzy roars.

Favor composition over inheritance

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

What OOP users claim

oAnimal
brain = true;
legs = 0;

oHuman T o ' oPet
legs = 2; 2’ legs = 4;
fleas = 0;

What actually happens

Exceptioncatcher

Z? Sub\

fleas

public static

E e’ throw(.

il .
External Logging Framework

AbstractObjectPatternContainer

AbstractInterfaceFactory

Legdable

public §nt getlLegllount () :

b EAegable

fublic fint getFleaCount() ;

Vs
XN

‘J\;\ el public static
‘u f"#_'_':\ AbstractObjectPatternContain
AN ANSXsFactory

a5

http://imgur.com/gallery/Q0vFcHd
http://imgur.com/gallery/Q0vFcHd

No Silver Bullet

No Silver Bullet — Essence and Accident in
Software Engineering by Fred Brooks in
1986

“there Is no single development, in either
technology or management technique,
which by itself promises even one order of
magnitude [tenfold] improvement within a
decade in productivity, in reliability, Iin
simplicity.”

Use classes and functions altogether

THERE'S NO SILVER BULLET

@ bryaaMrlathers

Javascript ecosystem

GO g Ie javascript fatigue § Q

Tous Images Vidéos Actualités Shopping Plus Parametres Outils

Environ 785 000 résultats (0,34 secondes)

Javascript Fatigue — Eric Clemmons — Medium

The ecosystem Is extremely rich in o e, 15 - dmvuaci P A o eym 0| it it e & i prcofo. Bt
terms of tools, libraries or frameworks

“How's it going?” Me: “Fatigued.” Saul: “Family?” Me: “No ...

Why I'm Thankful for JS Fatigue. | know you're sick of those words, but ...

https://medium.com/javascript.../why-im-thankful-for-js-fatigue-i-... ¥ Traduire cette page
24 nov. 2016 - The cure for JavaScript fatigue is not to learn all the things. The cure is to stop trying to

keep up and just learn the bits that you're really excited ...

It IS so rich that a new term has been
coined out: The javascript fatigue olock oy Dictonary = Trocoto e

6 janv. 2016 - Tired yet? In short, that's what JavaScript fatigue is. ... JavaScript is now the only
language modern browsers speak. It has a clear monopoly as ...

How to Manage JavaScript Fatigue - AuthO

There are so many things to know lpsiauihd comiblog/now o manage-javascript atiguel » Traduire celle page oo
every year around JS => people are

JavaScript. Learn how to manage and mitigate JS fatigue.
. What is JavaScript fatigue? - Quora
t I red https://www.quora.com/What-is-JavaScript-fatigue - Traduire cette page

JavaScript fatigue is a rabbit hole. | say that because no single thing causes this problem, and all
variables compound on one another. We have the rise of JavaScript ...

How it feels to learn JavaScript in 2016 — Hacker Noon

https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d... ¥ Traduire cette page
3 oct. 2016 - No JavaScript frameworks were created during the writing of this article. The following is
inspired bv the article “It's the future” from Circle CI.

open-source, cross-platform run-time environment for executing JavaScript
code server-side.

event-driven architecture, asynchronous |I/0O

optimize throughput and scalability in Web applications with many input/
output operations

Node is used in many tools to create and deploy JS apps

npm is the default and most popular package manager for Node.js

Command line client, npm, searches from public database of Javascript
modules

Much easier to share and reuse code

Takes care of updating the libraries you’re using to the latest version (or not)

npm has a lot of modules
Most of them are low-quality

The number of modules is not a sign of
greatest programming

However, it shows that the community
IS very active!

600000

400000 | M PyPl

300000

200000

100000

Module Counts

CPAN

B nuget (NET)
Il Packagist (PHP)

Rubygems.org

Maven Central (Java)
500000 | HH npm (node.js)

20Mm 2012

time period © alltime

Clojars (Clojure)
CPAN

CPAN (search)

CRAN (R)
Crates.io (Rust)
Drupal (ph
DUB (dlang)

Gopm (go)
Hackage (Haskell)

Hex.pm (Elixir/Erlang)
Julia

LuaRocks (Lua
Maven Central (Java)

MELPA (Emacs)

npm (node.js)

nuget ((NET)

Packagqist (PHP)

Pear (PHP)

Perl 6 Ecosystem (perl 6)

PyPI
Rubygems.org

Vim Scripts

last year

2013 2014 2015 2016
last 90 days last 30 days
Aug1 Aug2 Aug3 Augi4
19500 19515
35515 35537
35515 35538
11161 11179
10588 10639
38190 38218
19318 19330
11614 11623
4603 4621
1478 1485
1501 1506
195714
3713 3713
493505 494137 494696 495339
85765 86021
149699 150144
602 602
859 862
113602 113857
134764 134888
5465 5465

2017

last 7 days

Aug 5

495729

Aug 6
19519
35546
35545
11191
10666
38232
1090
19338
11631
4631
1489
1508
195814
3713
496056
86147
150351
602
864
113973
134929
5465

Include
Clojars (Clojure)

CPAN

CPAN (search)
CRAN (R)

Crates.io (Rust)
Drupal (php)

DUB (dlang)

Gopm (go)

Hackage (Haskell)
Hex.pm (Elixir/Erlang)
Julia

LuaRocks (Lua)

Maven Central (Java)
MELPA (Emacs)
npm (node.|s)
nuget (.NET)
Packagist (PHP)
Pear (PHP)
Perl 6 Ecosystem (perl 6)
PyPI
Rubygems.org
Vim Scripts
Aug 7 Avg Growth
B 3519 3/day
35551 6/day
35551 6/day
11195 6/day
10680 15/day
38241 8/day
1091 1/day
19340 4/day
11636 4/day
4632 5/day
1494 3/day
1508 1/day
195879 55/day
3713 O/day
496511 508/day
86183 70/day
150489 132/day
602 O/day
863 1/day
114034 72/day
134951 31/day
5465 O/day

http://www.modulecounts.com/

http://www.modulecounts.com/

JS for desktop apps

The most popular framework to build cross-plateform apps with JS is Electron

Created by Github, it was initially developed for Github’s Atom editor

@2 ELECTRON Docs Blog Community Apps Userland Releases Contact (,

D

Build cross platform desktop apps with JavaScript, HTML,
and CSS

Electron: 1.6.11 Node: 7.4.0 Chromium: 56.0.2924.87 V8: 5.6.326.50

& ATOM

A hackable text editor

for the 21st Century
INt U
GitHub for ‘
vy

Atom

¥ Download For Mac

For macOS 10.8 or later

Release notes - Other platforms - Beta releases

text-editor-element.js

] atom
getComponent () {
Qr if (!this.component) {
8 .github this.component = new TextEditorComponent({
B apm element: this,

B benchmarks mini: this.hasAttribute('mini'),
B8 docs updatedSynchronously: this.updatedSynchronously

BB dot-atom b
this.updateModelFromAttributes()

}

Bl exports

Bl keymaps return this.component
B menus }

}

module.exports =
document.registerElement('atom-text-editor', {
prototype: TextEditorElement.prototypd

B resources

BB script

B spec -
})
B src

src/text-editor-element.js Babel VF master \ 2

Atom Is a text editor that's modem, approachable, yet hackable to the
core—a tool you can customize 1o do anything but also use productively

_ without ever touching a config file.
https://atom.io/

https://atom.io/

Babel

Babel is a JavaScript compiler.

Use next generation JavaScript, today.

Put in next-gen JavaScript Get browser-compatible JavaScript out

[1, 2, 3].map(n => n ** 2); [1, 2, 3].map(function (n) {
return .pow(n, 2);

b))

Check out our REPL to experiment more with Babel!

Webpack

Webpack is a module bundler for JavaScript applications.

Recursively builds a dependency graph that includes every module your
application needs.

Packages all of those modules into a small number of bundles to be loaded by the
browser.

Including JS code in a HTML page

<script "text/javascript” “myscript.js’></script>

<script "text/javascript"’>
// run this function when the document 1s loaded
window.onload = () => {

}...

</script>

Include JS code in <head> or just before </body> not to slow the display of
HTML elements

Organizing complex code

As our codebase grows, we need a simple way to organize code

ES2015 introduces standard modules to separate and isolate blocks of relevant code

// 11ib.Js
// Can only have one default export

export default function myfunc() {
return 'whatever';

¥

export function anotherOne() { What is not exported is “private “ to lib.js
return 'anotherOne’;

¥

// main.js
import myfoo from 'lLib'; // name 1s 1irrelevant since 1t 1s a default export
tmport {anotherOne} from 'Lib'; // named 1import

Organizing complex code

Browsers are only accepting modules natively
Only works with the latest versions

Current practices rely on the combination of a transpiler and bundle
manager to create a single app.js / bundle.js file

Anatomy of a JS app

.~ barchart > [app » €@ index.html Ly colors.scss
B CvV » [build > main.js
~ d3-boilerplate » i CHANGELOG.md L main.scss

| node_modules d Bl style >

Ly package.json

Liy README.md
webpack.config.js
webpack.pro...tion.config.js

| barchart > I app > bundle.js
™ cv > L bundie.js.map
~ d3-boilerplate » L CHANGELOG.md ¢ index.html
| node_modules » ki main.css
Ly package.json main.css.map

iy README.md
webpack.config.js
webpack.pro...tion.config.js

Homework

Read Mozilla tutorial

https://developer.mozilla.org/en-US/docs/lL earn/
JavaScript/Objects/Basics

https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Objects/Object-oriented JS

https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Objects/Object prototypes

https://developer.mozilla.org/en-US/docs/l earn/
JavaScript/Objects/Inheritance

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Basics
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Basics
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance

