
Data JAVASCRIPT PART 2
K I R E L L B E N Z I , P H . D

@KirellBenzi www.kirellbenzi.com

https://www.kirellbenzi.com

QuesHons?

https://medium.muz.li/the-anatomy-of-a-hashtag-a-visual-analysis-of-the-metoo-movement-ba4ecf9b130b

Let’s get back to the DOM
The Document Object Model
(DOM) is a programming
interface for HTML and XML
documents.

It represents the page so that
programs can change the
document structure, style and
content.

The DOM represents the
document as nodes and objects.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

[Gerd Wagner]

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://stackoverflow.com/users/2795909/gerd-wagner

DOM API

DOM was designed to be independent of any
particular programming language.

The preferred language to access it is Javascript

Easy interface, just use the document or window
global objects to manipulate the document itself or to
get at the children of that document, which are the
various elements in the web page.

GePng elements
getElementById / getElementsByTagName / getElementsByClassName

<!DOCTYPE html>
<html>
 <body>
 <p id="myText">Nice text</p>
 <p id="jsText"></p>

 <script type="text/javascript">
 const myElement = document.getElementById("myText");
 document.getElementById("jsText").innerHTML =
 "Filled from code: " + myElement.innerHTML;
 </script>
 </body>
</html>

querySelector()

Returns the first Element within the document that matches
the specified selector, or group of selectors.

Works also to the list of children of an
element.querySelector().

Use querySelectorAll() to get all matching elements

const el = document.querySelector(“div”); // Select by tag
const el2 = document.querySelector(“#myid”); // Select by ID
const el3 = document.querySelector(“.myclass”); // Select by class
const el4 = document.querySelector("div.user-panel.main input[name=‘login']");

CreaHng elements

createElement / createTextNode

 // create a couple of elements in an otherwise empty HTML page
 let heading = document.createElement("h1");
 const headingText = document.createTextNode("Hello from JS!”);
 heading.appendChild(headingText);
 document.body.appendChild(heading); Hello from JS!

Elements aUributes
There are three ways of accessing the attributes of a DOM Element in
JavaScript.

For simplicity we will just mention element.attributes which contains the list
of all standard attributes

Hopefully, we will soon rely on D3.js selection mechanism, to perform all the
operations we need to CRUD (Create, Read, Update, Delete) elements from
the DOM

<p id="paragraph" style="color: green;">Sample Paragraph</p>

https://developer.mozilla.org/en-US/docs/Web/API/Element

Asynchronous JS

Synchronous code is easier to follow and debug but async is generally
better for performance and flexibility.

Modern web came with AJAX (Asynchronous JavaScript And XML).
Asynchronous post or pull data in a web page without reloading it.

A common use case involves loading resources and do something when
ready using a callback.

Dealing with async (old)

// Old way
function successCallback(result) {
 console.log("It succeeded with " + result);
}

function failureCallback(error) {
 console.log("It failed with " + error);
}

doSomethingAsync(successCallback, failureCallback);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

Callback pyramid of doom

doSomething(function(result) {
 doSomethingElse(result, function(newResult) {
 doThirdThing(newResult, function(finalResult) {
 console.log('Got the final result: ' + finalResult);
 }, failureCallback);
 }, failureCallback);
}, failureCallback);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

Promises
A Promise is an object representing the eventual completion or failure of an
asynchronous operation to which we attach callbacks

Promises can be chained because the then function returns a new promise,
different from the original

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

const promise = doSomething();
const promise2 = promise.then(successCallback, failureCallback);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

No callback hell!

doSomething()
.then(result => doSomethingElse(result))
.then(newResult => doThirdThing(newResult))
.then(finalResult => {
 console.log(`Got the final result: ${finalResult}`);
})
.catch(failureCallback);

Object-oriented JS

Object-oriented JS?
When creating complex code, it is natural to organize it into groups of functions
and modules.

If we create an object that contains functions, it seems like we are creating
methods

If we create a function that returns these objects, it looks like class contructors

function createDumbObject(name) {
 return {
 fakeMethod: () => console.log(name)
 };
};

createDumbObject('Yoda').fakeMethod(); // "Yoda"

Javascript does not have classes!

Javascript is NOT like other class-
based language: C++, Java, Python..

It is the biggest source of confusion for
developers discovering the language

Call site
function baz() {
 // call-stack is: `baz`
 // so, our call-site is in the global scope
 console.log("baz");
 bar(); // <-- call-site for `bar`
}

function bar() {
 // call-stack is: `baz` -> `bar`
 // so, our call-site is in `baz`
 console.log("bar");
 foo(); // <-- call-site for `foo`
}

function foo() {
 // call-stack is: `baz` -> `bar` -> `foo`
 // so, our call-site is in `bar`
 console.log("foo");
}

baz(); // <-- call-site for `baz`

call-site
the location in code where a function is called (not where it's declared)

“This” (is not what you think)
The keyword this is a common source of confusion for developers because it
is different from traditional languagues.

You can think of this as the context that is passed to when you call a function

You Don't Know JS: this & Object Prototypes Ch.1

function identify(context) {
return context.name.toUpperCase();

}

function speak(context) {
const greeting = "Hello, I'm " + identify(context);
console.log(greeting);

}

identify(you); // READER
speak(me); // Hello, I'm Kirell

const me = {
name: "Kirell"

};

const you = {
name: "Reader"

};

“This” (is not what you think)
this mechanism provides a more elegant way of implicitly "passing along" an object
reference.

Cleaner API design and easier re-use.

function identify() {
return this.name.toUpperCase();

}

function speak() {
const greeting = "Hello, I'm " + identify.call(this);
console.log(greeting);

}
identify.call(me); // Kirell
identify.call(you); // READER

speak.call(me); // Hello, I'm Kirell
speak.call(you); // Hello, I'm READER

You Don't Know JS: this & Object Prototypes Ch.1

Works as
expected !?

function createObject(value) {
 return {
 x: value,
 get: function () {
 return this.x;
 },
 set: function (newValue) {
 this.x = newValue;
 }
 };
}

let myObj = createObject(15);
myObj.x; // 15
myObj.get(); // 15
myObj.set(42);

myObj.get(); // 42
myObj.x; // 42

Gives context (“owns the function”)

Alias of get()

function createObject(value) {
 return {
 x: value,
 get: function () {
 return this.x;
 },
 set: function (newValue) {
 this.x = newValue;
 }
 };
}

let myObj = createObject(15);

const objGetter = myObj.get;
objGetter(); // undefined

Not the same context, fallback to global object, not defined

new keyword

A brand new object is created (aka, constructed) out of thin air

The newly constructed object is [[Prototype]] -linked (following slides)

The newly constructed object is set as the this binding for that function call
unless the function returns its own alternate object

The new -invoked function call will automatically return the newly
constructed object.

Real-life example

function Counter() {
 this.num = 0;
 // no return statement
}
const a = new Counter();
console.log(a.num); // 0

Real-life example
function Counter() {
 this.num = 0;
 this.timer = setInterval(function add() {
 this.num++;
 console.log(this.num);
 }, 1000);
 // no return statement
}
const b = new Counter();
// NaN
// NaN
// NaN
// ...
clearInterval(b.timer); // stop timer

How to fix this? (old)
function Counter() {
 var that = this; // old ES5 way
 that.num = 0;
 that.timer = setInterval(function add() {
 that.num++;
 console.log(that.num);
 }, 1000);
}
const c = new Counter();
// 1
// 2
// 3
// ...

How to fix this? (new)
function Counter() {
 this.num = 0;
 this.timer = setInterval(() => {
 this.num++;
 console.log(this.num);
 }, 1000);
}
const d = new Counter();
// 1
// 2
// 3
// ...

Arrow function => lexical this binding

More on this (pun intended)

Inheritance?
In traditional languages

Classes are blueprints

Objects (instances) are copies of all the characteristics
described by classes

In JS

There are just objects, linked together via their
prototypes

Prototypes are the mechanism by which JavaScript
objects inherit features from one another

Example: create a person

A Person “pseudo-factory” function

function createNewPerson(name) {
 let obj = {
 name: name,
 greeting: function() { console.log(`My name is ${this.name}!`); }
 };
 return obj;
}
const me = createNewPerson('Kirell');
me.greeting(); // My name is Kirell!
const you = createNewPerson('You');

Person ctor funcHon?
Let’s create a Person “class”. Capital case on the first letter to indicate a
constructor function.

How can we share the greeting function between all Person objects?

function Person(name) {
 this.name = name;
 this.greeting = function() {
 console.log(`My name is ${this.name}!`);
 };
 // no return statement
}
const me = new Person('Kirell'); // use new keyword
me.greeting();

Enters the prototype object

Each object has a prototype object, which
acts as a template object that it inherits
methods and properties from. (Roughly)

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

Prototype chain

These methods are available to the “me” object

by walking the prototype chain upwards

They are defined in the Object prototype

Looking up the chain
function Person(name) {
 this.name = name;
}

const me = new Person('Kirell');

Person.prototype.greeting = function() {
 console.log(`My name is ${this.name}!`);
};

me.greeting(); // works: My name is Kirell!

Browser looks up the prototype chain

Classical inheritance in JS

Before ES6 there were basically two ways

Constructor functions

Objects Linked to Other Objects (OLOO)

Object.create

Object.create() method
creates a new object with the

specified prototype object
and properties.

const a = {a: 1};
// a ---> Object.prototype ---> null

const b = Object.create(a);
// b ---> a ---> Object.prototype ---> null
console.log(b.a); // 1 (inherited)

const c = Object.create(b);
// c ---> b ---> a ---> Object.prototype ---> null

const d = Object.create(null);
// d ---> null
console.log(d.hasOwnProperty);
// undefined, because d doesn't inherit from Object.prototype

Constructor inheritance

function Foo() {}
Foo.prototype.y = 11;

function Bar() {}
Bar.prototype = Object.create(Foo.prototype);
Bar.prototype.z = 31;

const x = new Bar();
x.y + x.z; // 42

OLOO inheritance

const FooObj = { y: 11 };

let BarObj = Object.create(FooObj);
BarObj.z = 31;

const x = Object.create(BarObj);
x.y + x.z; // 42

Prototypes are complex

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

More on prototypes

ES2015 to the rescue

The traditional version of a “class” is useful and many people tried to
emulate this features in Javascript

Since ES2015, new syntaxic sugar has been added to the language with
new keyword: class to make our life easier.

The class syntax is not introducing a new object-oriented inheritance model
to JavaScript!

Back to something familiar!
class Rectangle {
 constructor(height, width) {
 this.height = height;
 this.width = width;
 }
 get area() {
 return this.calcArea();
 }
 calcArea() {
 return this.height * this.width;
 }
}

const square = new Rectangle(10, 10);
console.log(square.area);

class Point {
 constructor(x, y) {
 this.x = x;
 this.y = y;
 }

 static distance(a, b) {
 const dx = a.x - b.x;
 const dy = a.y - b.y;
 return Math.hypot(dx, dy);
 }
}

const p1 = new Point(5, 5);
const p2 = new Point(10, 10);
console.log(Point.distance(p1, p2));

Inheritance is simpler (don’t abuse it)
class Cat {
 constructor(name) {
 this.name = name;
 }
 speak() {
 console.log(this.name + ' makes a noise.');
 }
}

class Lion extends Cat {
 speak() {
 super.speak();
 console.log(this.name + ' roars.');
 }
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

const l = new Lion('Fuzzy');
l.speak();
// Fuzzy makes a noise.
// Fuzzy roars.

Favor composition over inheritance

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

http://imgur.com/gallery/Q0vFcHd
http://imgur.com/gallery/Q0vFcHd

No Silver Bullet
No Silver Bullet – Essence and Accident in
Software Engineering by Fred Brooks in
1986

“there is no single development, in either
technology or management technique,
which by itself promises even one order of
magnitude [tenfold] improvement within a
decade in productivity, in reliability, in
simplicity.”

Use classes and functions altogether

Javascript ecosystem

The ecosystem is extremely rich in
terms of tools, libraries or frameworks

It is so rich that a new term has been
coined out: The javascript fatigue

There are so many things to know
every year around JS => people are
tired

open-source, cross-platform run-time environment for executing JavaScript
code server-side.

event-driven architecture, asynchronous I/O

optimize throughput and scalability in Web applications with many input/
output operations

Node is used in many tools to create and deploy JS apps

npm is the default and most popular package manager for Node.js

Command line client, npm, searches from public database of Javascript
modules

Much easier to share and reuse code

Takes care of updating the libraries you’re using to the latest version (or not)

npm has a lot of modules

Most of them are low-quality

The number of modules is not a sign of
greatest programming

However, it shows that the community
is very active!

http://www.modulecounts.com/

http://www.modulecounts.com/

JS for desktop apps
The most popular framework to build cross-plateform apps with JS is Electron

Created by Github, it was initially developed for Github’s Atom editor

https://atom.io/

https://atom.io/

Babel

Webpack
Webpack is a module bundler for JavaScript applications.

Recursively builds a dependency graph that includes every module your
application needs.

Packages all of those modules into a small number of bundles to be loaded by the
browser.

Including JS code in a HTML page
<script type="text/javascript" src=“myscript.js"></script>

<script type="text/javascript">
// run this function when the document is loaded
window.onload = () => {
…
}

</script>

Include JS code in <head> or just before </body> not to slow the display of
HTML elements

Organizing complex code
As our codebase grows, we need a simple way to organize code

ES2015 introduces standard modules to separate and isolate blocks of relevant code

// lib.js
// Can only have one default export
export default function myfunc() {
 return 'whatever';
};
export function anotherOne() {
 return 'anotherOne';
};

// main.js
import myfoo from 'lib'; // name is irrelevant since it is a default export
import {anotherOne} from 'lib'; // named import

What is not exported is “private “ to lib.js

Organizing complex code

Browsers are only accepting modules natively

Only works with the latest versions

Current practices rely on the combination of a transpiler and bundle
manager to create a single app.js / bundle.js file

Anatomy of a JS app

Homework
Read Mozilla tutorial

https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Objects/Basics

https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Objects/Object-oriented_JS

https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Objects/Object_prototypes

https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Objects/Inheritance

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Basics
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Basics
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance

