® [
| o

U x

JAVASCRI PT PART 1

IIIIIIIIIIIII

https://www.kirellbenzi.com

What iIs Javascript?

Dynamically weakly-typed, multi paradigm
programming language for front-end and backend
programming

JS supports imperative/procedural, object-oriented,
and functional programming styles.

It Is the world’s most misunderstood programming
language (and the most popular)!

Dynamic / static vs weak / strong typing

Dynamic typing: No need to declare types (int, float) for variables. The type
IS known when the code is run.

Static typing: Need to declare variable types (int a = 2) otherwise you’ll
have a compille error.

Strong typing: Once a variable is declared as a specific data type, it will be
bound to that particular data type (int a is always an integer) but you can
explicitely cast the type to something else.

Weak typing: Variables are not of a specific data type. You can choose to
reassign it to something else completely.

Javascript Is not Java

Java is to JavaScript as ham is to hamster. Jeremy Keith

The name Javascript was used a marketing ploy by
Netscape in 1995 to give JavaScript the cachet of what

was then the hot new Web programming language
[Wikipedia]

JavaScript and Java differ greatly in design; JavaScript
was influenced by programming languages such as Self
and Scheme whereas Java was designed to be a simpler
C++.

JavaScript core language features are defined in a
standard called ECMA-262. The language defined in this
standard is called ECMAScript.

JAvAscrIPT = HAMSTER

«

1 &

[Segue Technologies]

Why use JS?

It is the franca lingua of web development and the only
(serious) way of scripting the browser (excluding
compile-to-js langs)

As soon as you want to add interactions, actions,
events, or anything that is not static on the page, you
need JS (excluding CSS or SVG animations)

The good and bad parts

TIr LA TSI CrrIIe”

oI Sl e

. =t
O'REILLY " | YAFOOL PRUSS :
Aowaglaas Crockford

Google

javascript hate § Q

Tous Images Videéos Actualités Shopping Plus Parametres Outils

Environ 25 600 000 résultats (0,37 secondes)

Conseil : Recherchez des résultats uniquement en frangais. Vous pouvez indiquer votre langue de
recherche sur la page Préférences.

Why do so many people seem to hate JavaScript? - Quora
https://www.quora.com/Why-do-so-many-people-seem-to-hate-Ja... ¥ Traduire cette page
In December of 2009/January of 2010, | decided to give this whole SSJS thing a go. | spent some
relearning JavaScript and tried to write some code (an Avro ...

10 things we hate about JavaScript | InfoWorld
www.infoworld.com/.../javascript/146732-10-things-we-hate-abou... ¥ Traduire cette page

10 things we hate about JavaScript. Endless library reloading, cool tools that piggyback on JavaScript
success, spaghetti code -- alert('Over it!') By Peter Wayner ...

Seems that now | hate javascript : javascript - Reddit
https://www.reddit.com/.../javascript/.../seems_that now i hate ja... v Traduire cette page

12 aout 2016 - 20 messages - 18 auteurs

Hey guys, For 3 years I've done front-end development but now | realized that how much | hate it day
by day. You know it feels like | don't...

Do you hate JavaScript? - The Practical Dev
https://dev.to/reverentgeek/do-you-hate-javascript v Traduire cette page

15 févr. 2017 - Every programming language | know has its own challenges and peculiarities.
JavaScript has a reputation for being exceptionally quirky. And ...

"| Hate JavaScript" - Redo The Web

www.redotheweb.com/2015/12/04/i-hate-havascript.ntml v Traduire cette page
4 déc. 2015 - I've heard that sentence a lot during the latest PHP conference | attended. | also heard ‘I
hate PHP” many times during JavaScript conferences.

'5' - 3

2 // weak typing + 1mplicit conversions * headaches
> '5" + 3

‘53" // Because we all love consistency

> '5" - "4°

1 // string - string * integer. What?

> '§5'" + + '§5°

55 !

e

'foo' + + '"foo'
"fooNaN' // Marvelous.

5" + - "2
5-2"
- Y T e I I I I Y.
‘52" // Apparently 1t's ok

@trufae

JS renaissance

Google use of AJAX for webapps

Creation of Node.|s (2009): open-source, Cross-
platform JavaScript run-time environment for
executing JavaScript code server-side

ECMAScript 6 or Javascript 2015: cleaner, saner,
easier version of the language

Many JS frameworks : React, Angular, Express, etc.

Backed up by leading companies: Google, n ‘ d e
Facebook, Linkedln, Netflix, Mozilla, etc. @
S

60 FPS (53-60)

S

5 - 3% S’
SR z

FF 8 aie

AXF)

' 979 &,

(RN

R 008

.

e

-

19181
"?dfl,:!
Ty

stom attributes points3

https://threejs.org/examples/#webgl_custom_attributes_points3
https://threejs.org/examples/#webgl_custom_attributes_points3

played out stories that were like experiments
in life, in the homes and streets of an
unglamorized America.

Alfred Hitchcock

As canny a promoter as he was an architect
of suspense and imagery, Hitchcock was fully
cognizant of the value of stars to his
Hollywood films. Yet the draw of a beautiful
face or well-known persona also had a crucial
formal function: wrapping the audience in
the psychological intrigue of his films.
Watching Cary Grant in “North by
Northwest,” we almost feel as if we’re in on a
grand cosmic joke as he is put through
multiple baffling adventures. Another
recurring face, Jimmy Stewart, had a way of
making Hitchcock’s intrigues hit close to
home, as the actor found amid extraordinary
circumstances (as in “Vertigo” or “The Man
Who Knew Too Much”) a relatable, shifting
emotional core.

Anne-Marie Miéville

André S. L2

SAVETES iemyRoussel

Jean-Paul - Belmondo

ORSON WELLES

Fedora (1978) Jean-Pielre Léaud

Akim Tamiroff QOja Billy Wilder Director
William Holden Barry 'Dutch' Detweiler

BILLY WILDER FRANCOIS'TRUFFAUT

Joan Shawlee

Jack Lemmon
Kyoke-Kagawa
‘osk ushi/ ToshirgMifune)
Hisashidgawa—Masayuki Yoi Bokuz$f fiidari Kichijro Ueda |
S ISoSN A NN A
Yoshio TsuchiyaZEljiro~kono\M a,rg"d.ilr iNoriko-Sengoku
e NSRS
SAM PECKINPAH Tatsuya Nakadai KIRAKURC SAWA:==Eiko*Miyoshi
. e =~ e . WK ’ . \\\,»
Isao Kimura—Kz {\ We oktiten K6do
> ~ > .
Atsushi Watanabe—Taka : gj' Mori
Hiroshi Tachikawa | :':' u Fujita
Ichird Sugar Akitake’Kdno Soji Kiyokawa
kochi

R.G. Armstrong Warren Oates

Hannah Jones

HF ST ~ i~ _m

L.Q.

http://www.nytimes.com/newsgraphics/2013/09/07/director-star-chart/

http://www.nytimes.com/newsgraphics/2013/09/07/director-star-chart/
http://www.nytimes.com/newsgraphics/2013/09/07/director-star-chart/

Using ECMA2015

As always when doing development, supporting
old plateforms is difficult

The implementation of ES6 is not necessarily ECMAScript 6
complete in all browsers

We need a tool that allows to deploy code J
anywhere and support new functions included In

ECMA 2015 (also known as ECMA 6)

JS compatibility

' v8 [SpiderMonkey JavaScriptCore M Chakra M Carakan KIS Other

Sort by Engine types Show obsolete platforms © 1 Show unstable platforms
Minor difference (1 point) Small feature (2 points) Medium feature (4 points)

Large feature (8 points)

Compilers/polyfills Desktop browsers
97% 56% 70% 96% 94% 97% 97

X
0]
O
=
©
O
=S
IS
=S
©
n
=S
0]
O
X

CH.60. SF

| 2
Feature name J‘raceur “Q.E.A“Z[1] Setesaters. ‘1".0".“1-

Optimisation
proper tail calls (tail call optimisation)

Syntax

default function parameters k4

b R R I i I e e e K e
--- 6/6 0/6 6/6 | 6/6 | 6/6 66 | 6/6 | os | 66 | 56
oo | e
.
2

rest parameters K4

spread (...) operator K3

(a1 O I S Vo)
~N 1 N1 1
Lo | O
(Gal BN N - IV
S~ ~N] s
(G2l IO, I N (Vo)

object literal extensions KA

9/9
4/4
5/5
5/5

for..of loops KA

octal and binary literals

template literals K3

RegExp "y" and "u" flags K

S~
~

QI 12 L
Gla|R]|®
v|la]o

Yl R N
o] pdh]O

~

(G200 IO I I - Vo]
~N 1 N1 =1
(G200 BN N - Vo)

O 10|00 | O

~ 1 ~ =1 =

NU1U1-I>kO
N -

Slelele]e|e

N INJTO O]~ O
AN

vV V. ¥V ¥V ¥V ¥V VvV vV VvV VY v Vv Y

destructuring, declarations K3 19/22 022 | 2122 | 2222 | 2122 | 2222 | 22122 | 22122 | 22122 | 0122 | 21122
destructuring, assignment k3 24124 | 24124 | 24124 | 024 | 24124
destructuring, parameters K3 23123 | 2323 [2323 | 023 18/23
Unicode code point escapes -- 2/2 2/2 0/2 2/2
— o | oo | on | e [0z [o oo NSRRI . [N .
Bindings
ara »
et 2 A 1212

http://kangax.github.io/compat-table/es6/

Introducing Babel

Babel is a JavaScript compiler.

Use next generation JavaScript, today.

Put in next-gen JavaScript Get browser-compatible JavaScript out

[1, 2, 3].map(n => n ** 2); [1, 2, 3].map(function (n) {
return .pow(n, 2);

b))

Check out our REPL to experiment more with Babel!

[GRC conseil]

Javascript console

Easy to get started, just open the DevTools on Chrome (Safari, etc.)

All modern browsers support ES6 out of the box

v 0O Elements Console Sources

Q topVv Filter

let a = 2;
undetined

a
2

> |

Comments

JavaScript borrows most of its syntax from Java, but is also influenced by
Awk, Perl and Python.

JavaScript is case-sensitive and uses the Unicode character set.

SyntaxError

Primitive Types

Number

String Object keys are coerced to strings

Function

Boolean

Array

Date

undefined

Symbol

unique and immutable https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Primitive Types

Number
String
Boolean

undefined

Symbol

Double-precision 64bit float (no integer type)

Standard arithmetic operators (+, -, *, /, %)
Math.round(), Math.floor(), Math.cos(), etc.
parselnt(), parseFloat() to parse strings

Special numbers: NaN, Infinity

Primitive Types

Number
String

Boolean

null denotes the absence of value

HRGEHNES undefined denotes the absence of variable

Symbol

Objects

Most important type in JS
Everything is an Object (except primitives types)

Objects can be seen as a collection of properties
(dictionaries/hash maps/associative arrays)

Function

Functions are regular objects with the additional

capability of being callable. Array
const myObject = { Date
a: 12,
b: 'I am a string’ Map
¥

myObject['a'] = 42; // reassign value
myObject.c = 'dynamically added value';

Array

Similar to other languages

Declared using square brackets and addressed with square
brackets and a reference to the index starting with 0.

const myArray = [1, 15, 42];

let empty = []; // empty array declaration
console.log(myArray.length);

>> 3

Variables

var x; Declares a variable, optionally initializing it to a value.

let x; Declares a block-scoped, local variable, optionally initializing it to a
value.

const x = 1; Declares a block-scoped, read-only named constant.

Never use var, always start with const, optionally change to let if you need to
modify the value!

A JavaScript identifier must start with a letter, underscore (_), or dollar sign ($)

Variable scope

JavaScript before ES6 does not have block statement scope; rather, a
variable declared within a block is local to the function (or global scope)
that the block resides within. .

1f (true) {

var X = 5;

¥

With let or const (works like C) console.log(x); // x 1s 5

console.log(y); // ReferenceError: y 1s not defined

Global object: window

Global variables are properties of the global window object

> window

v Window {stop: function, open: function, alert: function, confirm: function, prompt: function..}
» $: function (selector,context)

1 CKEDITOR_BASEPATH: "/static/js/libs/ckeditor/build/ckeditor/"

» FontFaceObserver: function A(a,b)
GoogleAnalyticsObject: "ga"

» Prism; Nhiact

» alert: -GoogleAnalyticsObject

» applicationCache: ApplicationCache

» atob: function atob()

» blur: function ()

» btoa: function btoa()

» caches: CacheStorage

» cancelAnimationFrame: function cancelAnimationFrame()

» cancelldleCallback: function cancelIdleCallback()

» captureEvents: function captureEvents()

» chrome: Object

» clearInterval: function clearInterval()

» clearTimeout: function clearTimeout()

» clientInformation: Navigator

» close: function ()

rlnced* falce

https://developer.mozilla.org/en-US/docs/Web/API/Window

Operators

Operator

Description Example
Equal to 1 == 1
Equal 1n value and type 1l === 11
Not equal to 1 1= 2
Not equal in value and type 1L = TR
Greater than 1 5 2

Less than 1 & 2
Greater than or equal to 1 >= 1
Less than or equal to 2 <=1

Result

true
false
true
Crue
false
true
true

false

http://apprize.info/

Conditions

1t (expression) {
// Statement(s) to be executed 1f expression 1 1s true

¥

else 1f (expressionZ2) {
// Statement(s) to be executed 1f expression 2 1s true

¥

else {
// Statement(s) to be executed 1f no expression 1s true

¥

For loops

for (let 1ndex = 0@; 1ndex < myArray.length; index++) {
console.log(myArray[index]);

¥

// Iterate over values of an Iterable (Arrays, list, etc.), not Object
for (const value of myArray) {
console.log(value);

¥

// Iterate over keys of an Object
for (const key 1n myObj) {
console.log(key);

¥

For loops

let animals = ['©"', '&', 'T', 'u']l;
let names = ['Gertrude', 'Henry', 'Melvin', 'Billy Bob'];

for (let animal of animals) {
// Random name for our animal
let nameIdx = Math.floor(Math.random() * names.length);

console. Log(${names[nameldx]} the ${animal});

I3 let oldCar = {
make: 'Toyota',

// Henry the & model: 'Tercel’,

// Melvin the & }.year: 1996

// Henry the = .

// Billy Bob the ’'u for (let key in oldCar) {
console. log (" ${key} ——> ${oldCarl[keyl});

}

// make ——> Toyota

// Iterate throught objects key/val 7/ model ——> Tercel

for (const key of Object.keys(someObject)) {..}

https://alligator.io/js/for-of-for-in-loops/

Destructuring objects

let a, b, rest;

[Cl, b:l = [1®a ZQJ,
console.log(Ca); // 10
console.log(b); // 20

The destructuring assignment

syntax is a JavaScript expression [a, b, ...rest] = [10, 20, 30, 40, 50];
that makes it possible to unpack console.logCa); // 10

values from arrays, or properties console.log(b),; // 20

from objects, into distinct console.log(rest); // [30, 40, 50]
variables.

[MDN] ({Cl, b} = {a: 1®, b: ZQ}))

console.log(a); // 10
console.log(b); // 20

Functions

https://stackoverflow.com/questions/336859/var-functionname-function-vs-function-functionname

Function declaration

Simplest form, it is a declaration not a statement, no semi-colon needed.

A function declaration is processed when execution enters the context in which it appears,
before any step-by-step code is executed.

If you call a function with too many parameters, JS will simply ignore the extra ones. Too few:
JS gives the local parameters the special value undefined.

function foo([param,[, param,[..., param]]]) {
[statements]

¥

function foo(a, b) {
return a + b;

const result = foo(l, 2, 3);
console.log(result); // 3

¥

"Anonymous’” function expression

A function is a just a regular object that you can call. You can assign it to a variable!
Evaluated when it's reached in the step-by-step execution of the code.

ES2015, the function is assigned a name if possible by inferring it from context.

let y = function () {
// whatever

s
y.name; // “y"

y(); // run func

Named function expression

The function has a proper name (fname in this case).

The name of the function is not added to the scope in which the expression
appears; the name is in scope within the function itself

let z = function fname() {
console.log(typeof fname); // "function”

s
console.log(typeof fname); // "undefined"”

Default function parameters

By default, parameters of functions are undefined.
With ES6 we can have default value for function parameters.

Parameters already encountered are available to later default parameters

function multiplyAdd(a, b =1, c=b + 1) {
return (a * b) + c;

¥

multiplyAdd(5, 2); // 13
multiplyAdd(0); // 2

JavaScript is a “functional”
language

Functional programming?

Functional programming is a programming paradigm

Functional programming (often abbreviated FP) is the process of building
software by composing pure functions, avoiding shared state, mutable data,

and side-effects.

FP focuses on the task, not the implementation

https://blog.codeminer42.com/introduction-to-functional-programming-with-javascript-c06a2540a7c3

https://blog.codeminer42.com/introduction-to-functional-programming-with-javascript-c06a2540a7c3

Functional programming

From Wikipedia, the free encyclopedia

For subroutine-oriented programming, see Procedural programming.

In computer science, functional programming is a programming paradigm—a style of building the structure and
elements of computer programs—that treats computation as the evaluation of mathematical functions and avoids
changing-state and mutable data. It is a declarative programming paradigm, which means programming is done with
expressions!!! or declarations!?! instead of statements. In functional code, the output value of a function depends only
on the arguments that are passed to the function, so calling a function ftwice with the same value for an argument x
will produce the same result f(x) each time; this is in contrast to procedures depending on a local or global state,
which may produce different results at different times when called with the same arguments but a different program
state. Eliminating side effects, i.e. changes in state that do not depend on the function inputs, can make it much easier
to understand and predict the behavior of a program, which is one of the key motivations for the development of
functional programming.

Functional programming has its origins in lambda calculus, a formal system developed in the 1930s to investigate
computability, the Entscheidungsproblem, function definition, function application, and recursion. Many functional
programming languages can be viewed as elaborations on the lambda calculus. Another well-known declarative
programming paradigm, logic programming, is based on relations.®!

In contrast, imperative programming changes state with commands in the source code, the simplest example being
assignment. Imperative programming does have functions—not in the mathematical sense—but in the sense of
subroutines. They can have side effects that may change the value of program state. Functions without return values
therefore make sense. Because of this, they lack referential transparency, i.e. the same language expression can
result in different values at different times depending on the state of the executing program.!S]

Functional programming languages have largely been emphasized in academia rather than in commercial software
development. However, prominent programming languages which support functional programming such as Common
Lisp, Scheme,[4IBl8II7] Clojure, 818 Wolfram Languagel'? (also known as Mathematica), Racket,!'] Erlang,[121[13][14]
OCaml,[151116] Haskell,[171118] and F#191[20] have been used in industrial and commercial applications by a wide variety
of organizations. JavaScript, one of the world's most widely-distributed languages!?'122] has the properties of an
untyped functional languagel?3], as well as imperative and object-oriented paradigms. Functional programming is also

Programming paradigms

e Action

e Agent-oriented

e Array-oriented

e Automata-based

e Concept

e Concurrent computing

e Relativistic programming
e Data-driven
e Declarative (contrast: Imperative)
e Constraint
e Constraint logic

e Concurrent constraint logic
e Dataflow

e Flow-based
e Cell-oriented (spreadsheets)
e Reactive

e Functional

e Functional logic
e Purely functional
e Logic
e Abductive logic
e Answer set
e Concurrent logic
e Functional logic
¢ Inductive logic
e Dynamic
e End-user programming

Concrete example: forEach

Print the content of an array in an imperative fashion.

What if we want to do somthing other than print, can we abstract the action
we want to apply on the array?

function printArray(array) {
for (const v = @; 1 < array.length; i++)
console.log(array[1]);

http://eloquentjavascript.net/05 higher order.html

http://eloquentjavascript.net/05_higher_order.html

forEach (cont’)

Functions are first-class citizens in JS, as regular objects
The action is abstracted as forEach argument.

We name this action a callback.

function forkach(array, action) {
for (const v of array)
action(v);

¥

forkEach(["Luke", "Yoda", "Vader"], console.log);

forEach(["Luke™, "Yoda", "Vader"], writeToFile);

forEach(["Luke", "Yoda", "Vader"], function(name) {
console.log(name.tolLowerCase());

1)

forEach (cont’)

Functions can be declared inside other functions

Very handy to encapsulate local computations

const numbers = [1, 2, 3, 4, 5];
function sum(Cnumbers) {
let total = 0;
forkEach(numbers, function(Cnhumber) {
total += number;

D;

return total; total is in the lexical scope of the anonymous function.

$
console.log(sumChumbers)); // 15

Higher-order functions

Functions that operate on other functions, either by taking them as arguments
or by returning them, are called higher-order functions.

function forkach(array, callback) {

}

function myFunc() {
const anotherFunc = function() { console.log("inner"); %
return anotherkFunc;

¥

const innerFunc = myFunc();
thnerFunc(); // "inner”

myFunc(O)(); // "inner”

Closures

A closure Is the combination of a function and the lexical environment within
which that function was declared.

The function defined Iin the closure ‘remembers’ the environment in which it
was created.

function greaterThan(n) {

return function(m) { return m > n; };
| |
const greaterThanl® = greaterThan(10);
greaterThanl@(11); // true

let counter = (function() {
let privateCounter = 0;
function changeBy(val) {
privateCounter += val;

Iy
return {
increment: function() {
changeBy(1);
5,

decrement: function() {
changeBy(-1);

¥

value: function() {
return privateCounter;

}
s
PO,

console

console
counter

.log(counter.value()); // logs 0
counter.
counter.
.Llog(counter.value()); // logs 2
.decrement();

console.

increment();
increment();

log(counter.value()); // logs 1

Javascript Module Design Pattern

[ViralPatel.net]
HOW DOESTHIS. , B

rator.net

https://developer.momIIa.org/en-US/docs/Web/JavaScript/CIosures

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
http://ViralPatel.net

Arrow functions

An arrow function expression has a shorter syntax than a function

expression
; ' L
let counter = (function() { Much simpler in ES6!
let privateCounter = 0;
changeBy = (val) => { return privateCounter += val; }
return {
increment: () => changeBy(1l), // one liner can remove return and 1}
decrement: () => changeBy(-1),
value: () => privateCounter,
reset: (val=0) => { privateCounter = val; },
¥
)O3

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Essentials higher-order functions for arrays

Map

Applies a function to all the array's elements
and returns a new array with the returned
values.

Filter

Creates a new array with all elements that
pass the test implemented by the provided
function.

Reduce

Applies a function against an accumulator and
each element in the array (from left to right) to
reduce it to a single value.

Map

The map() method creates a new array with the results of calling a provided
function on every element in the calling array.

let numbers = [1, 5, 10, 15];

const doubles = numbers.map(x => x * 2);
// doubles 1s now [2, 10, 20, 30]

// numbers 1s still [1, 5, 10, 15]

numbers = [1, 4, 9];

const roots = numbers.map(Math.sqgrt);
// roots i1s now [1, 2, 3]

// numbers 1s still [1, 4, 9]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/Array/map

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Filter

The filter() method creates a new array with all elements that pass the test
iImplemented by the provided function

const words = ["spray", "limit", "elite", "exuberant”, "destruction’,
“present”];

const longWords = words.filter(word => word.length > 6);

console.log(longWords); // |["exuberant”™, "destruction", "present"]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/Array/filter

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Reduce

The reduce() method applies a function against an accumulator and each
element in the array (from left to right) to reduce it to a single value.

arr.reduce(callback[, 1nitialValue]);

const total = [0, 1, 2, 3].reduce((sum, value) => {
return sum + value;

b, 0);

// total 1s 6, initial value was O

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/Array/Reduce

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

All combined

const animals = [
{ name: "Waffles',
name: 'Fluffy',

name: 'Hank',

1;

type: 'dog', age: 12 },
{ type: 'cat', age: 14 },
{ name: 'Spelunky', type: 'dog', age: 4 },
1 type: 'dog', age: 11 },

const totalDogYears = animals

gJilter((x) => Xx.type

.map((x) => x.age)

.reduce((prev, cur) =>
// totalDogYears will be
// Spelunky 4 + Hank 11)

=== 'dog")

prev + cur, 0)
the 1nteger 27 (Waffles 12

@mpjme

Going further (free resources)

e o e et 4 AET g T e e R~ irere A e e S <R

KYLE SIMPSON KYLE SIMPSON KYLE SIMPSON KYLE SIMPSON KYLE SIMPSON KYLE SIMPSON

UP & SCOPE& this & OBJECT TYPES & ASYNC & ES6 &
GOING CLOSURES PROTOTYPES GRAMMAR PERFORMANCE BEYOND

o o o o o o
Z Z Z Z Z Z
X x = x X x
- = - - - -
4 Z 4 pra Z Z
o o o o o o
o o o (& (@ (@]
- 2 2 - - -
o o o o o)

You don’t know Javascript series

https://github.com/getify/You-Dont-Know-J$S

https://github.com/getify/You-Dont-Know-JS

Going further (free resources

Speaking |
JavasScripth

AN IN-DEPTH GUIDE FOR PROGRAMMERS

{

¥
K” [

I
]
) \\

/
/

Dr. Axel Rauschmayer

{
I
\

Exploring JS series

Exploring

ES2016 and ES2017

Dr. Axel Rauschmayer

http://exploringjs.com/

http://exploringjs.com/

Going further (free resources)

Javascript Allongé

https://leanpub.com/javascriptallongesix/read

https://leanpub.com/javascriptallongesix/read

Homework

ot ndbcume bttt you .o o 1
Read YDKJS up & going chapter 2 KGSI;PSS
https.//patrickfatrick.gitbooks.io/you-don-t-know-js- GOI NG

up-going/content/ch2.html

Read Functional Light JS chapter 2

https://qgithub.com/getify/Functional-Light-JS/blob/
master/ manuscript/ch2.md

https://patrickfatrick.gitbooks.io/you-don-t-know-js-up-going/content/ch2.html
https://patrickfatrick.gitbooks.io/you-don-t-know-js-up-going/content/ch2.html
https://github.com/getify/Functional-Light-JS/blob/master/ch2.md
https://github.com/getify/Functional-Light-JS/blob/master/ch2.md
Laurent Vuillon
manuscript/ch2.md

