
Data JAVASCRIPT PART 1
K I R E L L B E N Z I , P H . D

@KirellBenzi www.kirellbenzi.com

https://www.kirellbenzi.com

What is Javascript?

Dynamically weakly-typed, multi paradigm
programming language for front-end and backend
programming

JS supports imperative/procedural, object-oriented,
and functional programming styles.

It is the world’s most misunderstood programming
language (and the most popular)!

Dynamic / staMc vs weak / strong typing

Dynamic typing: No need to declare types (int, float) for variables. The type
is known when the code is run.

Static typing: Need to declare variable types (int a = 2) otherwise you’ll
have a compile error.

Strong typing: Once a variable is declared as a specific data type, it will be
bound to that particular data type (int a is always an integer) but you can
explicitely cast the type to something else.

Weak typing: Variables are not of a specific data type. You can choose to
reassign it to something else completely.

Javascript is not Java
Java is to JavaScript as ham is to hamster. Jeremy Keith

The name Javascript was used a marketing ploy by
Netscape in 1995 to give JavaScript the cachet of what
was then the hot new Web programming language
[Wikipedia]

JavaScript and Java differ greatly in design; JavaScript
was influenced by programming languages such as Self
and Scheme whereas Java was designed to be a simpler
C++.

JavaScript core language features are defined in a
standard called ECMA-262. The language defined in this
standard is called ECMAScript.

[Segue Technologies]

Why use JS?

It is the franca lingua of web development and the only
(serious) way of scripting the browser (excluding
compile-to-js langs)

As soon as you want to add interactions, actions,
events, or anything that is not static on the page, you
need JS (excluding CSS or SVG animations)

The good and bad parts

@trufae

JS renaissance
Google use of AJAX for webapps

Creation of Node.js (2009): open-source, cross-
platform JavaScript run-time environment for
executing JavaScript code server-side

ECMAScript 6 or Javascript 2015: cleaner, saner,
easier version of the language

Many JS frameworks : React, Angular, Express, etc.

Backed up by leading companies: Google,
Facebook, LinkedIn, Netflix, Mozilla, etc.

https://threejs.org/examples/#webgl_custom_attributes_points3

https://threejs.org/examples/#webgl_custom_attributes_points3
https://threejs.org/examples/#webgl_custom_attributes_points3

http://www.nytimes.com/newsgraphics/2013/09/07/director-star-chart/

http://www.nytimes.com/newsgraphics/2013/09/07/director-star-chart/
http://www.nytimes.com/newsgraphics/2013/09/07/director-star-chart/

Using ECMA2015

As always when doing development, supporting
old plateforms is difficult

The implementation of ES6 is not necessarily
complete in all browsers

We need a tool that allows to deploy code
anywhere and support new functions included in
ECMA 2015 (also known as ECMA 6)

JS compaMbility

http://kangax.github.io/compat-table/es6/

Introducing Babel

[GRC conseil]

Javascript console
Easy to get started, just open the DevTools on Chrome (Safari, etc.)

All modern browsers support ES6 out of the box

Comments
JavaScript borrows most of its syntax from Java, but is also influenced by
Awk, Perl and Python.

JavaScript is case-sensitive and uses the Unicode character set. 

/* this is a longer,
 multi-line comment
 */

// Inline comment

/* You can't, however, /* nest comments */ SyntaxError */

JS Types

Object TypesPrimitive Types

Number

String

Boolean

null

undefined

Symbol

Object keys are coerced to strings

Key Value

Key Value

Key Value

unique and immutable

…

Function

Array

Date

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Double-precision 64bit float (no integer type)

Standard arithmetic operators (+, -, *, /, %)

Math.round(), Math.floor(), Math.cos(), etc.

parseInt(), parseFloat() to parse strings

Special numbers: NaN, Infinity

Primitive Types

Number

String

Boolean

null

undefined

Symbol

null denotes the absence of value

undefined denotes the absence of variable

Primitive Types

Number

String

Boolean

null

undefined

Symbol

Objects
Most important type in JS

Everything is an Object (except primitives types)

Objects can be seen as a collection of properties
(dictionaries/hash maps/associative arrays)

Functions are regular objects with the additional
capability of being callable.

Object Types

Key Value

Key Value

Key Value

Function

Array

Dateconst myObject = {
 a: 12,
 b: 'I am a string'
};

myObject['a'] = 42; // reassign value
myObject.c = 'dynamically added value';

Map

Set

…

Array

Similar to other languages

Declared using square brackets and addressed with square
brackets and a reference to the index starting with 0.

const myArray = [1, 15, 42];
let empty = []; // empty array declaration
console.log(myArray.length);
>> 3

Variables
var x; Declares a variable, optionally initializing it to a value. (old deprecated)

let x; Declares a block-scoped, local variable, optionally initializing it to a
value.

const x = 1; Declares a block-scoped, read-only named constant.

Never use var, always start with const, optionally change to let if you need to
modify the value!

A JavaScript identifier must start with a letter, underscore (_), or dollar sign ($)

Variable scope

JavaScript before ES6 does not have block statement scope; rather, a
variable declared within a block is local to the function (or global scope)
that the block resides within. if (true) {

 var x = 5;
}
console.log(x); // x is 5With let or const (works like C)

if (true) {
 let y = 5;
}
console.log(y); // ReferenceError: y is not defined

Global object: window
Global variables are properties of the global window object

https://developer.mozilla.org/en-US/docs/Web/API/Window

Operators

http://apprize.info/

CondiMons

if (expression) {
 // Statement(s) to be executed if expression 1 is true
}
else if (expression2) {
 // Statement(s) to be executed if expression 2 is true
}
else {
 // Statement(s) to be executed if no expression is true
}

For loops
for (let index = 0; index < myArray.length; index++) {
 console.log(myArray[index]);
}

// Iterate over values of an Iterable (Arrays, list, etc.), not Object
for (const value of myArray) {
 console.log(value);
}

// Iterate over keys of an Object
for (const key in myObj) {
 console.log(key);
}

For loops

let oldCar = {
 make: 'Toyota',
 model: 'Tercel',
 year: '1996'
};

for (let key in oldCar) {
 console.log(`${key} --> ${oldCar[key]}`);
}

// make --> Toyota
// model --> Tercel

let animals = ['🐔', '🐷', '🐑', '🐇'];
let names = ['Gertrude', 'Henry', 'Melvin', 'Billy Bob'];

for (let animal of animals) {
 // Random name for our animal
 let nameIdx = Math.floor(Math.random() * names.length);

 console.log(`${names[nameIdx]} the ${animal}`);
}

// Henry the 🐔
// Melvin the 🐷
// Henry the 🐑
// Billy Bob the 🐇

// Iterate throught objects key/val
for (const key of Object.keys(someObject)) {…}

https://alligator.io/js/for-of-for-in-loops/

Destructuring objects

The destructuring assignment
syntax is a JavaScript expression
that makes it possible to unpack
values from arrays, or properties
from objects, into distinct
variables.

let a, b, rest;
[a, b] = [10, 20];
console.log(a); // 10
console.log(b); // 20

[a, b, ...rest] = [10, 20, 30, 40, 50];
console.log(a); // 10
console.log(b); // 20
console.log(rest); // [30, 40, 50]

({a, b} = {a: 10, b: 20});
console.log(a); // 10
console.log(b); // 20

[MDN]

FuncMons

https://stackoverflow.com/questions/336859/var-functionname-function-vs-function-functionname

FuncMon declaraMon
Simplest form, it is a declaration not a statement, no semi-colon needed.

A function declaration is processed when execution enters the context in which it appears,
before any step-by-step code is executed.

If you call a function with too many parameters, JS will simply ignore the extra ones. Too few:
JS gives the local parameters the special value undefined.

function foo([param,[, param,[..., param]]]) {
 [statements]
}

function foo(a, b) {
 return a + b;
}

const result = foo(1, 2, 3);
console.log(result); // 3

“Anonymous” funcMon expression
A function is a just a regular object that you can call. You can assign it to a variable!

Evaluated when it's reached in the step-by-step execution of the code.

ES2015, the function is assigned a name if possible by inferring it from context.

let y = function () {
 // whatever
};
y.name; // “y"
y(); // run func

Named funcMon expression
The function has a proper name (fname in this case).

The name of the function is not added to the scope in which the expression
appears; the name is in scope within the function itself

let z = function fname() {
 console.log(typeof fname); // "function"
};
console.log(typeof fname); // "undefined"

Default funcMon parameters
By default, parameters of functions are undefined.

With ES6 we can have default value for function parameters.

Parameters already encountered are available to later default parameters

function multiplyAdd(a, b = 1, c = b + 1) {
 return (a * b) + c;
}

multiplyAdd(5, 2); // 13
multiplyAdd(0); // 2

JavaScript is a “funcMonal”
language

FuncMonal programming?

Functional programming is a programming paradigm

Functional programming (often abbreviated FP) is the process of building
software by composing pure functions, avoiding shared state, mutable data,
and side-effects.

https://blog.codeminer42.com/introduction-to-functional-programming-with-javascript-c06a2540a7c3

FP focuses on the task, not the implementation

https://blog.codeminer42.com/introduction-to-functional-programming-with-javascript-c06a2540a7c3

Concrete example: forEach

http://eloquentjavascript.net/05_higher_order.html

function printArray(array) {
 for (const v = 0; i < array.length; i++)
 console.log(array[i]);
}

Print the content of an array in an imperative fashion.

What if we want to do somthing other than print, can we abstract the action
we want to apply on the array?

http://eloquentjavascript.net/05_higher_order.html

forEach (cont’)
Functions are first-class citizens in JS, as regular objects

The action is abstracted as forEach argument.

We name this action a callback.

function forEach(array, action) {
 for (const v of array)
 action(v);
}

forEach(["Luke", "Yoda", "Vader"], console.log);
forEach(["Luke", "Yoda", "Vader"], writeToFile);
forEach(["Luke", "Yoda", "Vader"], function(name) {
 console.log(name.toLowerCase());
});

forEach (cont’)
Functions can be declared inside other functions

Very handy to encapsulate local computations

const numbers = [1, 2, 3, 4, 5];
function sum(numbers) {
 let total = 0;
 forEach(numbers, function(number) {
 total += number;
 });
 return total;
}
console.log(sum(numbers)); // 15

total is in the lexical scope of the anonymous function.

Higher-order funcMons
Functions that operate on other functions, either by taking them as arguments
or by returning them, are called higher-order functions.

function myFunc() {
 const anotherFunc = function() { console.log("inner"); }
 return anotherFunc;
}

const innerFunc = myFunc();
innerFunc(); // "inner"
myFunc()(); // "inner"

function forEach(array, callback) {
 …
}

Closures
A closure is the combination of a function and the lexical environment within
which that function was declared.

The function defined in the closure ‘remembers’ the environment in which it
was created.

function greaterThan(n) {
 return function(m) { return m > n; };
}

const greaterThan10 = greaterThan(10);
greaterThan10(11); // true

let counter = (function() {
 let privateCounter = 0;
 function changeBy(val) {
 privateCounter += val;
 }
 return {
 increment: function() {
 changeBy(1);
 },
 decrement: function() {
 changeBy(-1);
 },
 value: function() {
 return privateCounter;
 }
 };
})();

console.log(counter.value()); // logs 0
counter.increment();
counter.increment();
console.log(counter.value()); // logs 2
counter.decrement();
console.log(counter.value()); // logs 1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

[ViralPatel.net]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
http://ViralPatel.net

Arrow funcMons

An arrow function expression has a shorter syntax than a function
expression

let counter = (function() {
 let privateCounter = 0;
 changeBy = (val) => { return privateCounter += val; }
 return {
 increment: () => changeBy(1), // one liner can remove return and {}
 decrement: () => changeBy(-1),
 value: () => privateCounter,

 reset: (val=0) => { privateCounter = val; },
 };
})();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Much simpler in ES6!!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

EssenMals higher-order funcMons for arrays
Map

Applies a function to all the array's elements
and returns a new array with the returned
values.

Filter

Creates a new array with all elements that
pass the test implemented by the provided
function.

Reduce

Applies a function against an accumulator and
each element in the array (from left to right) to
reduce it to a single value.

Map
The map() method creates a new array with the results of calling a provided
function on every element in the calling array.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

let numbers = [1, 5, 10, 15];
const doubles = numbers.map(x => x * 2);
// doubles is now [2, 10, 20, 30]
// numbers is still [1, 5, 10, 15]

numbers = [1, 4, 9];
const roots = numbers.map(Math.sqrt);
// roots is now [1, 2, 3]
// numbers is still [1, 4, 9]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Filter
The filter() method creates a new array with all elements that pass the test
implemented by the provided function

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

const words = ["spray", "limit", "elite", "exuberant", "destruction",
“present"];

const longWords = words.filter(word => word.length > 6);

console.log(longWords); // ["exuberant", "destruction", "present"]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Reduce

The reduce() method applies a function against an accumulator and each
element in the array (from left to right) to reduce it to a single value.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

arr.reduce(callback[, initialValue]);

const total = [0, 1, 2, 3].reduce((sum, value) => {
 return sum + value;
}, 0);
// total is 6, initial value was 0

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

All combined
const animals = [
 { name: 'Waffles', type: 'dog', age: 12 },
 { name: 'Fluffy', type: 'cat', age: 14 },
 { name: 'Spelunky', type: 'dog', age: 4 },
 { name: 'Hank', type: 'dog', age: 11 },
];

const totalDogYears = animals
 .filter((x) => x.type === 'dog')
 .map((x) => x.age)
 .reduce((prev, cur) => prev + cur, 0)
// totalDogYears will be the integer 27 (Waffles 12 +
// Spelunky 4 + Hank 11)

@mpjme

Going further (free resources)

You don’t know Javascript series

https://github.com/getify/You-Dont-Know-JS

https://github.com/getify/You-Dont-Know-JS

Going further (free resources)

Exploring JS series
http://exploringjs.com/

http://exploringjs.com/

Going further (free resources)

Javascript Allongé

https://leanpub.com/javascriptallongesix/read

https://leanpub.com/javascriptallongesix/read

Homework

Read YDKJS up & going chapter 2

https://patrickfatrick.gitbooks.io/you-don-t-know-js-
up-going/content/ch2.html

Read Functional Light JS chapter 2

https://github.com/getify/Functional-Light-JS/blob/
master/ch2.md

https://patrickfatrick.gitbooks.io/you-don-t-know-js-up-going/content/ch2.html
https://patrickfatrick.gitbooks.io/you-don-t-know-js-up-going/content/ch2.html
https://github.com/getify/Functional-Light-JS/blob/master/ch2.md
https://github.com/getify/Functional-Light-JS/blob/master/ch2.md
Laurent Vuillon
manuscript/ch2.md

