
Data DATA-DRIVEN DOCUMENTS
K I R E L L B E N Z I , P H . D

@KirellBenzi www.kirellbenzi.com

https://www.kirellbenzi.com

D3.js is a Javascript library for creating
data visualizations

Offers a data-driven approach to
manipulate the DOM

Modular design with a lot of different
modules

https://d3js.org/

Why learn D3?

Manipulating an HTML document is
tedious

SVG, Canvas are error-prone and difficult
on your own

D3 is the standard for data-viz => hirable
skills

Vibrant open-source community

http://wallpapercave.com/cool-cat-backgrounds

https://bl.ocks.org/mbostock

Example

Live example

https://bl.ocks.org/mbostock/b07f8ae91c5e9e45719c

Module overview

• Arrays (Statistics, Search, Transformations, Histograms)
• Axes
• Brushes
• Chords
• Collections (Objects, Maps, Sets, Nests)
• Colors
• Dispatches
• Dragging
• Delimiter-Separated Values
• Easings
• Forces
• Number Formats
• Geographies (Paths, Projections, Spherical Math, Spherical Shapes, Streams, Transforms)
• Hierarchies
• Interpolators
• Paths
• Polygons
• Quadtrees
• Queues
• Random Numbers
• Requests
• Scales (Continuous, Sequential, Quantize, Ordinal)
• Selections (Selecting, Modifying, Data, Events, Control, Local Variables, Namespaces)
• Shapes (Arcs, Pies, Lines, Areas, Curves, Links, Symbols, Stacks)
• Time Formats
• Time Intervals
• Timers
• Transitions
• Voronoi Diagrams
• Zooming

https://github.com/d3/d3/blob/master/API.md#arrays-d3-array
https://github.com/d3/d3/blob/master/API.md#statistics
https://github.com/d3/d3/blob/master/API.md#search
https://github.com/d3/d3/blob/master/API.md#transformations
https://github.com/d3/d3/blob/master/API.md#histograms
https://github.com/d3/d3/blob/master/API.md#axes-d3-axis
https://github.com/d3/d3/blob/master/API.md#brushes-d3-brush
https://github.com/d3/d3/blob/master/API.md#chords-d3-chord
https://github.com/d3/d3/blob/master/API.md#collections-d3-collection
https://github.com/d3/d3/blob/master/API.md#objects
https://github.com/d3/d3/blob/master/API.md#maps
https://github.com/d3/d3/blob/master/API.md#sets
https://github.com/d3/d3/blob/master/API.md#nests
https://github.com/d3/d3/blob/master/API.md#colors-d3-color
https://github.com/d3/d3/blob/master/API.md#dispatches-d3-dispatch
https://github.com/d3/d3/blob/master/API.md#dragging-d3-drag
https://github.com/d3/d3/blob/master/API.md#delimiter-separated-values-d3-dsv
https://github.com/d3/d3/blob/master/API.md#easings-d3-ease
https://github.com/d3/d3/blob/master/API.md#forces-d3-force
https://github.com/d3/d3/blob/master/API.md#number-formats-d3-format
https://github.com/d3/d3/blob/master/API.md#geographies-d3-geo
https://github.com/d3/d3/blob/master/API.md#paths
https://github.com/d3/d3/blob/master/API.md#projections
https://github.com/d3/d3/blob/master/API.md#spherical-math
https://github.com/d3/d3/blob/master/API.md#spherical-shapes
https://github.com/d3/d3/blob/master/API.md#streams
https://github.com/d3/d3/blob/master/API.md#transforms
https://github.com/d3/d3/blob/master/API.md#hierarchies-d3-hierarchy
https://github.com/d3/d3/blob/master/API.md#interpolators-d3-interpolate
https://github.com/d3/d3/blob/master/API.md#paths-d3-path
https://github.com/d3/d3/blob/master/API.md#polygons-d3-polygon
https://github.com/d3/d3/blob/master/API.md#quadtrees-d3-quadtree
https://github.com/d3/d3/blob/master/API.md#queues-d3-queue
https://github.com/d3/d3/blob/master/API.md#random-numbers-d3-random
https://github.com/d3/d3/blob/master/API.md#requests-d3-request
https://github.com/d3/d3/blob/master/API.md#scales-d3-scale
https://github.com/d3/d3/blob/master/API.md#continuous-scales
https://github.com/d3/d3/blob/master/API.md#sequential-scales
https://github.com/d3/d3/blob/master/API.md#quantize-scales
https://github.com/d3/d3/blob/master/API.md#ordinal-scales
https://github.com/d3/d3/blob/master/API.md#selections-d3-selection
https://github.com/d3/d3/blob/master/API.md#selecting-elements
https://github.com/d3/d3/blob/master/API.md#modifying-elements
https://github.com/d3/d3/blob/master/API.md#joining-data
https://github.com/d3/d3/blob/master/API.md#handling-events
https://github.com/d3/d3/blob/master/API.md#control-flow
https://github.com/d3/d3/blob/master/API.md#local-variables
https://github.com/d3/d3/blob/master/API.md#namespaces
https://github.com/d3/d3/blob/master/API.md#shapes-d3-shape
https://github.com/d3/d3/blob/master/API.md#arcs
https://github.com/d3/d3/blob/master/API.md#pies
https://github.com/d3/d3/blob/master/API.md#lines
https://github.com/d3/d3/blob/master/API.md#areas
https://github.com/d3/d3/blob/master/API.md#curves
https://github.com/d3/d3/blob/master/API.md#links
https://github.com/d3/d3/blob/master/API.md#symbols
https://github.com/d3/d3/blob/master/API.md#stacks
https://github.com/d3/d3/blob/master/API.md#time-formats-d3-time-format
https://github.com/d3/d3/blob/master/API.md#time-intervals-d3-time
https://github.com/d3/d3/blob/master/API.md#timers-d3-timer
https://github.com/d3/d3/blob/master/API.md#transitions-d3-transition
https://github.com/d3/d3/blob/master/API.md#voronoi-diagrams-d3-voronoi
https://github.com/d3/d3/blob/master/API.md#zooming-d3-zoom

D3 selecRon

D3 offers a unified declarative interface
that allows to describe the what and not
the how.

D3 selectors works like
document.querySelector

<p>Look at me</p>
<p id="par2">Yeah me!</p>
<p class="yo">Yo</p>
<p class="yo">Hello</p>
<script>
 // Select by tag
 let p = d3.select("p");
 p.style("color", "blue");

 // Select by ID
 p = d3.select("#par2");
 p.style("color", "green");

 // Select by class
 p = d3.selectAll(“.yo");
 p.style("color", "red");
</script>

D3 selecRon
Selection methods d3.select, d3.selectAll return the current selection or a new
selection

D3 allows to bulk-modify the content of a selection for arbitrary properties like
style, attr, etc. or the textual content of the elements

<p>Look at me</p>
<p id="par2">Yeah me!</p>
<p class="yo">Yo</p>
<p class="yo">Hello</p>
<script>
 // we don't have to iterate over each element
 let ps = d3.selectAll(“p")

 .style("color", "red");
</script>

selection.property(name[, value])
selection.text([value])

Append and modify elements

We can modify the DOM and append elements and modify their properties
altogether.

d3.select("body")
 .append("svg")
 .attr("width", 960)
 .attr("height", 500)
 .append("g")
 .attr("transform", "translate(20,20)")
 .append("rect")
 .attr("width", 920)
 .attr("height", 460);

Dynamical properRes
Properties can also be modfied dynamically with functions

let circles = d3.selectAll("circle")
 .style("fill", "blue");

circles.attr('cx', (d, i) => 110 * (i+1))
 .attr('cy', (d, i) => 50 * (i+1))
 .attr('r', 20);

<svg height="500" width="500">
 <circle cx="100" cy="100" r="50"></circle>
 <circle cx="200" cy="200" r="50"></circle>
 <circle cx="100" cy="400" r="30"></circle>
</svg>

Binding data (data-join)
The strength of D3 allows us to link or bind data to DOM elements

The most important concepts after a data-join are update, enter, exit

Here we update existing elements according to the data
<svg height="500" width="500">
 <circle cx="100" cy="100" r="50"></circle>
 <circle cx="200" cy="200" r="50"></circle>
 <circle cx="100" cy="400" r="30"></circle>
</svg>
const radii = [10, 20, 50]; // radius plurar form
let circles = d3.selectAll("circle")
 .data(radii)
 .attr('cx', (d, i) => 110 * (i+1))
 .attr('cy', (d, i) => 50 * (i+1))
 .attr('r', (d, i) => d) // 10, 20, 50
 .style("fill", "blue");

Enter enter()
enter() describes what to do when new data arrives.

New data means what is not currently bound to DOM elements

let svg = d3.select("svg");
let circles2 = svg.selectAll("circle")
 // only 3 circles in our SVG
 .data([10, 20, 50, 100])
 .enter()
 .append('circle')
 .attr('cx', (d, i) => 100 * (i+1))
 .attr('cy', (d, i) => 100 * (i+1))
 .attr('r', d => d) // 100
 .style("fill", "red");

SelecRng non exisRng elements
If we select elements that are not yet defined, all the dataset can be found after the
enter() section

let whatever = svg.selectAll('I_DONT_EXIST_YET')
 .data([10, 20, 30, 40])
 .enter()
 .append('circle')
 .attr('cx', (d, i) => 100 * (i+1))
 .attr('cy', (d, i) => 100 * (i+1))
 .attr('r', d => d)
 .style("fill", "blue");

Exit
exit() is the opposite of enter()

We enter the exit() section if previously
bound data is now removed from the
dataset

let svg = d3.select("svg");
let data = [10, 20, 50, 100];
let circles2 = svg.selectAll("circle")
 .data(data)
 .enter()
 .append('circle')
 .attr('cx', (d, i) => 100 * (i+1))
 .attr('cy', (d, i) => 100 * (i+1))
 .attr('r', d => d) // 100
 .style("fill", "red");

data = [10, 20, 50];
circles2.data(data)
 .exit()
 .style("fill", "green")
 // .remove() // if you want to remove the elem
 ;

1.
2.

General Update PaYern

Live example

https://bl.ocks.org/mbostock/3808218

More d3

Forma[ng numbers
for (const i = 0; i < 10; i++) {
 console.log(0.1 * i);
}

0
0.1
0.2
0.30000000000000004
0.4
0.5
0.6000000000000001
0.7000000000000001
0.8
0.9

const f = d3.format(".1f");
for (const i = 0; i < 10; i++) {
 console.log(f(0.1 * i));
}

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

More forma[ng
[[fill]align][sign][symbol][0][width][,][.precision][type]

https://github.com/d3/d3-format#format

https://github.com/d3/d3-format#format

Examples

d3.format(".0%")(0.123); // rounded percentage, "12%"
d3.format("($.2f")(-3.5); // localized fixed-point currency, "(£3.50)"
d3.format("+20")(42); // space-filled and signed, " +42"
d3.format(".^20")(42); // dot-filled and centered, ".........42........."
d3.format(".2s")(42e6); // SI-prefix with two significant digits, "42M"
d3.format("#x")(48879); // prefixed lowercase hexadecimal, "0xbeef"
d3.format(",.2r")(4223); // grouped thousands with two significant digits, "4,200"

d3.format(".2")(42); // "42"
d3.format(".2")(4.2); // "4.2"
d3.format(".1")(42); // "4e+1"
d3.format(".1")(4.2); // "4"

Paths
const data = [{ "x": 10, "y": 15}, { "x": 13, "y": 20},
 { "x": 30, "y": 30}, { "x": 35, "y": 40},
 { "x": 40, "y": 20}, { "x": 80, "y": 70}];

const lineGenerator = d3.line()
 .x(d => d.x)
 .y(d => d.y);

const svgContainer = d3.select("body")
 .append("svg")
 .attr("width", 200)
 .attr("height", 200);

const lineChart = svgContainer.append("path")
 .attr("d", lineGenerator(data))
 .attr("stroke", "blue")
 .attr("stroke-width", 2)
 .attr("fill", "none");

Curves

const lineGenerator = d3.line()
 .x(d => d.x)
 .y(d => d.y)
 .curve(d3.curveCatmullRom.alpha(0.5));

https://github.com/d3/d3-shape/blob/master/README.md#curves

https://github.com/d3/d3-shape/blob/master/README.md#curves

Spline transiRon

https://bl.ocks.org/mbostock/1642989

Reading data

Reading data in d3

d3 offers a nice API for HTTP requests

Main usage is to parse a dataset from a server

Reading JSON files

d3.json("data.json", function(error, data) {
 // ...
}

d3.json("data.json", function(data) {
 // ...
}

Reading CSV files

d3.csv(url, row, callback);

function row(d) {
 return {
 year: new Date(+d.Year, 0, 1), // convert "Year" column to Date
 make: d.Make,
 model: d.Model,
 length: +d.Length // convert "Length" column to number
 };
}

[
 {"Year": "1997", "Make": "Ford", "Model": "E350", "Length": "2.34"},
 {"Year": "2000", "Make": "Mercury", "Model": "Cougar", "Length": "2.38"}
]

Load mulRple datasets

If you wish to consolidate your dataset, you may want to fetch data from
several sources.

d3 offers a clean way to do wait for asynchronous operation (similar to
promises) using d3.queue

“A queue evaluates zero or more deferred (delayed) asynchronous tasks
with configurable concurrency: you control how many tasks run at the same
time.” [d3 doc]

Load mulRple datasets
d3.queue()
 .defer(d3.csv, "/data/cities.csv")
 .defer(d3.tsv, "/data/animals.tsv")
 .await(analyze);

function analyze(error, cities, animals) {
 if(error) { console.log(error); }

 console.log(cities[0]);
 console.log(animals[0]);
}

http://learnjsdata.com/read_data.html

http://learnjsdata.com/read_data.html

The most essential utility library: Lodash

Well-written list of utility functions to make JS easier and more batteries-
included.

Most functions are faster than the standard library!

Emphasis on the functional side of Javascript, promotes immutability and
composition

Some nice examples
_.flattenDeep([1, [2, [3, [4]], 5]]);
// => [1, 2, 3, 4, 5]

_.chunk(['a', 'b', 'c', 'd'], 2);
// => [['a', 'b'], ['c', 'd']]

_.zipObject(['a', 'b'], [1, 2]);
// => { 'a': 1, 'b': 2 }

const users = [
 { 'user': 'barney', 'age': 36, 'active': true },
 { 'user': 'fred', 'age': 40, 'active': false },
 { 'user': 'pebbles', 'age': 1, 'active': true }
];

_.find(users, function(o) { return o.age < 40; });
// => object for 'barney'

// The `_.matches` iteratee shorthand.
_.find(users, { 'age': 1, 'active': true });
// => object for 'pebbles'

_.forEach
_.map
_.filter
_.reduce

Some nice examples
// Fetch the name of the first pet from each owner
const ownerArr = [{
 "owner": "Colin",
 "pets": [{"name":"dog1"}, {"name": "dog2"}]
}, {
 "owner": "John",
 "pets": [{"name":"dog3"}, {"name": "dog4"}]
}];

// Array's map method.
ownerArr.map(function(owner){
 return owner.pets[0].name;
});

// Lodash, improved map
_.map(ownerArr, 'pets[0].name');

https://colintoh.com/blog/lodash-10-javascript-utility-functions-stop-rewriting

_.times(5, () => {
 // do something 5 times
});

https://colintoh.com/blog/lodash-10-javascript-utility-functions-stop-rewriting

Homework

Read Visualization Analysis and Design
chapter 2 
 
 

Read Interactive Data Visualization for
the Web chapter 4 to 7 included

http://www.crcnetbase.com/doi/pdfplus/10.1201/b17511-3
http://www.crcnetbase.com/doi/pdfplus/10.1201/b17511-3
http://www.crcnetbase.com/doi/pdfplus/10.1201/b17511-3
http://chimera.labs.oreilly.com/books/1230000000345/index.html
http://chimera.labs.oreilly.com/books/1230000000345/index.html
http://chimera.labs.oreilly.com/books/1230000000345/index.html

