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Motivation

We have seen that OFDM ‘forges’ parallel channels of the kind
Y=DA+7Z

where we assume that

e D is the N x N diagonal matrix of channel coefficients,
e A € CV is the vector of data symbols, and
o / ~ CN(O, N()]N).

The diagonal of D is a realization of a Gaussian random vector.



If we assume that the channel coefficients stay constant over several OFDM
blocks, then the input/output relationship of the nth parallel channel is

Yin] = AM[n] + Z[n),

where \ is a sample from ~ CN/(0, 0?).

What follows can be applied to situations other than OFDM, and the
channel strength will be denoted by A instead of .

Since we have learned how to estimate the channel coefficients, we assume
that A is known to the receiver (but unknown to the transmitter).

Our first objective is to derive the error probability P.(h), and then the
average error probability F|P.(H)] in the absence of coding.



Without coding (the case assumed here), and since the channel is
memoryless, the distribution of A[n] given Y[1],...,Y[N] depends only on
Y n)].

We can simplify notation by dropping the index n, i.e., write

Y =hA+ Z.

We are in the PDC setting, where A is the symbol, h A is transmitted across
an AWGN channel, and Y is the channel output.

A sufficient statistic is obtained by projecting the channel output onto the
signal space, which in this case is the space spanned by h € C. This gives us

N hAtz

W — <Y
Al A

(};Z has the same distribution as Z. (Z is circularly symmetric.) Hence, by
letting » = |h| and with a slight abuse of notation, we write

W =rA-+Z.
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The error probability depends on the signal constellation.

To make our point, we can choose the simplest constellation, namely +£v/&
(BPSK, BPAM, antipodal signaling).

Conditioned on R = r, the error probability is

po=a{12)

where d(r)/2 is half the distance between £rv/&, i.e., d(r)/2 = rVE, and
Ny/2 is the variance of the real component of Z.

Thus,

where v = r=.



Notice that v€ is the signal strength at the decoder, so that v = N?i)% is the

: : . : Ny -
signal-energy to noise-power ratio. We are using Ny rather than 5 since the
signal constellation in in one dimension, hence what matters is the noise

variance along that dimension.

Hence, with a slight abuse of notation, we can rewrite

Pe(W) — Q(\/Ty)v <1)

which is the error probability of BPSK when the signal-energy to noise-power
ratio is 7y, but remember that here  varies every time that we use the

channel.



Next we compute the average error probability, averaged over all fading
states V. As computed in Appendix A,

{Ugexp(;g), if v >0,

0, otherwise.

Hence

e o ams)arer (- 2o

Perhaps surprisingly, the above integral can be solved. To do so, we make

the change of variable o = | /+ / to obtain
a® Ny /2
/ o —eXp( 5002/ )da.

Integration by parts yields

5L, 1
S22 1+ 2%




If we define the instantaneous signal-energy to noise-power-density v = ]\}8‘5/’2

o2&
Ny/2!

po=t(1- -1,
2 2+

The above should be compared to the — P, (No Fading

: : : : 107 F — P( (Fading) |
non-fading situation with average ‘
signal-energy to noise-power-density 1073 | ]
~. In this case

P.=Q(V7).

then we can rewrite

and compute its average 7 =

20 25 30
7 (dB)

We see that the error probability in the presence of Rayleigh! fading is quite
disappointing.

1Called this way because the channel strength r = |h| follows a Rayleigh pdf.
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Additional insight, for 7 large, is gained by comparing the two approximations

| _
P = iexp ( — %),
22
obtained via Q(z) = 5exp~Z and
_ 1
P@ ~ .
27

The latter is obtained as follows:

_ 1 Y
Pl [
2 2+
1 2
2 2+
1 1
T 2\24 7
1
~ 5
where we used the approximation /1 — e ~ 1 — 5, which holds for small e,

and the fact that 2 4+ 74 = 7 when 7 is large.



We see that the error probability associated to a non-fading channel is
drastically different from the error probability of a fading channel, even when
the average signal-to-noise ratio is the same: in the former case P. decreases

exponentially as a function of 7, whereas in the latter case P. is inversely
proportional to 7.

In Appendix B we argue that the disappointing behavior of P, is essentially
due to the probability that I' is less than 1.
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Diversity

Diversity mitigates the unfavorable effect of Rayleigh fading.

The main idea is to create the conditions to make many, say L, independent
observations of the transmitted symbols. Even if each observation is the
output of a Rayleigh faded channel, the probability that all L channels are in
a deep fade at the same instant becomes small when L is sufficiently large.

There are many ways to create diversity:

e time diversity exploits the time-varying nature of the fading channel.

e frequency diversity exploits the frequency-selective nature of multipath

channels.

e spatial diversity exploits the position-dependent selectivity of multipath

channels.
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All forms of diversity have the same effect on the probability of error, and
can be studied in a similar manner.

For example, with OFDM we could do frequency diversity by transmitting
each symbol over L of the N parallel channels. If the L channels are
sufficiently separated in frequency, they experience independent fading. The

price for diversity in this case is a reduction of the data rate to % symbols
per OFDM block.

If Y is the vector that consists of the L channel outputs that carry the same
symbol a, then we have

Y =ha+ Z,

where h, the vector of coefficients, is assumed to be a realization of

H ~ CN(0,0%I1), a is the transmitted symbol which, for comparison with
the previously studied case, we assume to be in {v/€}, and

Z ~ CN(0, Nylp).

As before, we assume that h is known to the receiver.
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We are in a typical PDC situation: To minimize the error probability, we

project the observed Y onto h to form the sufficient statistic

Y ={¥ )

h
= (ha+ Z, —>: a|lh|| + Z,
< 1R ]

where Z ~ CN (0, Ny).

Let Y =y. A maximum likelihood receiver decides

R +VE ify>0
a o
—\/g otherwise.
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When a = —V/&, a decision error occurs if R{Z} > /&||h||. The probability

that this occurs is Q(\/ET“’/'Q) = Q( %@”j) = Q(\/7), with v = 5]\\%1/\&
0

By symmetry, we obtain the same result when a = +v/E.

Hence

P.(v) = Q(V7) (3)

EIlH|>

is the error probability, conditioned on the event I' = v, where [' = No2

Notice that (1) and (3) are the same function of 7; what changes is the
distribution of I".
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2
[ _ ELH]

= N2 has a chi-square distribution with 2L degrees of freedom, namely

1 o (No/2
fr(r) = e (G for gy > 0

(L - 1) (£7)

(see Appendix C ).
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To compute the average error probability P., we integrate Q(\ﬁ) against
fr(7) as we did earlier for the special case of L = 1.

After repeated integrations by part, we obtain

_ 1 T \\ = (L—1+1\/1 T\
PA)=(=(1- /- (14, /) ).
2 2+7 z [ 2 2+
For large 7, the above approximates to

B (7) ~ (;)(QL Ch) (4

Observe that for L = 1 we get back our earlier approximation.

h

I
o

Observe also that, in essence, the effect of order-L diversity is to raise to the
power L the original error probability.
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The action of combining two or more observables like Y; and Y into

Y =Y,h; + Y;h; as we have done above (see (2)), is commonly referred to as
maximal-ratio combining.

The name stems from the fact that this way of combining does indeed
maximize the signal-energy to noise-variance ratio.
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The following plots of fr(7) (the x?* distribution with & degrees of freedom)
help to understand why diversity makes a difference: it drastically changes
the probability that I' is below 1.

fr(y) x? distribution with k degrees of freedom
0.5 1  h—>9
k=4
k=6
0.4 —k=8
— k=12
—k=20
0.3
0.2
0.1 +
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Appendix A: the PDF of R and that of VV

H = X + jY is zero-mean, circularly symmetric, of variance 2.

Equivalently, X and Y are zero-mean, independent Gaussian random
variables of variance 02/2 each.
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Next, let r, ¢ be the polar coordinates of the Cartesian point z, .

Recall that
fra(r,¢) = |det J| fxy (r cos(d), rsin(e)),

where J is the Jacobian of the coordinate transformation

(r,6) = (2,) = (rcos(9), rsin(@)).

cos(¢) —rsin(¢)

det J = sin(¢) 7 cos(¢)

|r.

Plugging in,

#exp(—%), ifTZOaDd0§¢<27T>

0, otherwise.

fra(r, @) = {
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Integrating over ¢ yields
%exp(—g—i), it r >0,
0, otherwise,

which is a Rayleigh distribution.

Finally, we determine the distribution of V' = R?, namely the exponential

distribution
{Ugexp ( — %), if v >0,

0, otherwise.
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Appendix B: The Disappointing Behavior of P. Explained

To gain insight about the disappointing behavior of P,, let us break down the
computation of P, as follows:

_ / QA )y

This shows that the probablllty of theevent I' < 1is essentlally = and this
alone explains why P. cannot decay faster than 2 =
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Appendix C: The Chi-Square Distribution

The chi-square distribution with 2L degrees of freedom, also denoted x3;
distribution, is

1 17
X%L(fy): <L_1>|2L/7L 16 2, fOl"”yZO

. .o . 927, ..
It is the distribution of > -, X7 where X;,..., Xy are zero-mean iid
Gaussian random variables, each of unit variance.

If Y; = aX;, so that Y; has variance o2, then S22 Y2 = o? 375 X2, and its
density is
L

y
@X%(@): LV e n , fory > 0.




Now suppose that
2L
P-yy
i=1

]/’2_ & C2>(2_662>(2
5||H||2

If X; ~N(0,1), then T has the same statistic as I' = VR

where

Hence 1 y
£20) = fr(0) = —dul()
with
, &Eo*
o = —.
Ny
Therefore
Ny/2
fr(y) = 1 £y 6_7(5??)7 for v > 0.
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