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Motivation

We have seen that OFDM ‘forges’ parallel channels of the kind

Y = DA + Z

where we assume that

• D is the N ×N diagonal matrix of channel coefficients,

• A ∈ CN is the vector of data symbols, and

• Z ∼ CN (0, N0IN).

The diagonal of D is a realization of a Gaussian random vector.
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If we assume that the channel coefficients stay constant over several OFDM

blocks, then the input/output relationship of the nth parallel channel is

Y [n] = λA[n] + Z[n],

where λ is a sample from ∼ CN (0, σ2).

What follows can be applied to situations other than OFDM, and the

channel strength will be denoted by h instead of λ.

Since we have learned how to estimate the channel coefficients, we assume

that h is known to the receiver (but unknown to the transmitter).

Our first objective is to derive the error probability Pe(h), and then the

average error probability E[Pe(H)] in the absence of coding.
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Without coding (the case assumed here), and since the channel is

memoryless, the distribution of A[n] given Y [1], . . . , Y [N ] depends only on

Y [n].

We can simplify notation by dropping the index n, i.e., write

Y = hA + Z.

We are in the PDC setting, where A is the symbol, hA is transmitted across

an AWGN channel, and Y is the channel output.

A sufficient statistic is obtained by projecting the channel output onto the

signal space, which in this case is the space spanned by h ∈ C. This gives us

W =
〈
Y,

h

|h|

〉
= |h|A +

h∗

|h|
Z.

h∗

|h|Z has the same distribution as Z. (Z is circularly symmetric.) Hence, by

letting r = |h| and with a slight abuse of notation, we write

W = rA + Z.
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The error probability depends on the signal constellation.

To make our point, we can choose the simplest constellation, namely ±
√
E

(BPSK, BPAM, antipodal signaling).

Conditioned on R = r, the error probability is

Pe(r) = Q

(
d(r)/2√
N0/2

)
where d(r)/2 is half the distance between ±r

√
E , i.e., d(r)/2 = r

√
E , and

N0/2 is the variance of the real component of Z.

Thus,

Pe(r) = Q

(√
r2E
N0/2

)
= Q

(√
vE
N0/2

)
,

where v = r2.
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Notice that vE is the signal strength at the decoder, so that γ = vE
N0/2

is the

signal-energy to noise-power ratio. We are using N0 rather than N0
2 since the

signal constellation in in one dimension, hence what matters is the noise

variance along that dimension.

Hence, with a slight abuse of notation, we can rewrite

Pe(γ) = Q(
√
γ), (1)

which is the error probability of BPSK when the signal-energy to noise-power

ratio is γ, but remember that here γ varies every time that we use the

channel.
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Next we compute the average error probability, averaged over all fading

states V . As computed in Appendix A,

fV (v) =

{
1
σ2 exp

(
− v

σ2

)
, if v ≥ 0,

0, otherwise.

Hence

P̄e =

∫ ∞
0

Q

(√
vE
N0/2

)
1

σ2
exp
(
− v

σ2

)
dv.

Perhaps surprisingly, the above integral can be solved. To do so, we make

the change of variable α =
√

vE
N0/2

to obtain

P̄e =

∫ ∞
0

Q(α)
N0α

Eσ2
exp
(
−α

2N0/2

Eσ2

)
dα.

Integration by parts yields

P̄e =
1

2

(
1−

√
1

1 + N0
Eσ2

)
.
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If we define the instantaneous signal-energy to noise-power-density γ = vE
N0/2

and compute its average γ̄ = σ2E
N0/2

, then we can rewrite

P̄e =
1

2

(
1−

√
γ̄

2 + γ̄

)
.

The above should be compared to the

non-fading situation with average

signal-energy to noise-power-density

γ̄. In this case

Pe = Q
(√

γ̄
)
.
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We see that the error probability in the presence of Rayleigh1 fading is quite

disappointing.
1Called this way because the channel strength r = |h| follows a Rayleigh pdf.
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Additional insight, for γ̄ large, is gained by comparing the two approximations

Pe ≈
1

2
exp
(
− γ̄

2

)
,

obtained via Q(x) ≈ 1
2 exp−

x2

2 and

P̄e ≈
1

2γ̄
.

The latter is obtained as follows:

P̄e =
1

2

(
1−

√
γ̄

2 + γ̄

)
=

1

2

(
1−

√
1− 2

2 + γ̄

)
≈ 1

2

(
1

2 + γ̄

)
≈ 1

2γ̄
,

where we used the approximation
√

1− ε ≈ 1− ε
2, which holds for small ε,

and the fact that 2 + γ̄ ≈ γ̄ when γ̄ is large.
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We see that the error probability associated to a non-fading channel is

drastically different from the error probability of a fading channel, even when

the average signal-to-noise ratio is the same: in the former case Pe decreases

exponentially as a function of γ̄, whereas in the latter case P̄e is inversely

proportional to γ̄.

In Appendix B we argue that the disappointing behavior of P̄e is essentially

due to the probability that Γ is less than 1.
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Diversity

Diversity mitigates the unfavorable effect of Rayleigh fading.

The main idea is to create the conditions to make many, say L, independent

observations of the transmitted symbols. Even if each observation is the

output of a Rayleigh faded channel, the probability that all L channels are in

a deep fade at the same instant becomes small when L is sufficiently large.

There are many ways to create diversity:

• time diversity exploits the time-varying nature of the fading channel.

• frequency diversity exploits the frequency-selective nature of multipath

channels.

• spatial diversity exploits the position-dependent selectivity of multipath

channels.
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All forms of diversity have the same effect on the probability of error, and

can be studied in a similar manner.

For example, with OFDM we could do frequency diversity by transmitting

each symbol over L of the N parallel channels. If the L channels are

sufficiently separated in frequency, they experience independent fading. The

price for diversity in this case is a reduction of the data rate to N
L symbols

per OFDM block.

If Y is the vector that consists of the L channel outputs that carry the same

symbol a, then we have

Y = ha + Z,

where h, the vector of coefficients, is assumed to be a realization of

H ∼ CN (0, σ2IL), a is the transmitted symbol which, for comparison with

the previously studied case, we assume to be in {±
√
E}, and

Z ∼ CN (0, N0IL).

As before, we assume that h is known to the receiver.
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We are in a typical PDC situation: To minimize the error probability, we

project the observed Y onto h to form the sufficient statistic

Y =
〈
Y ,

h

‖h‖

〉
(2)

=
〈
ha + Z,

h

‖h‖

〉
= a‖h‖ + Z,

where Z ∼ CN (0, N0).

Let Y = y. A maximum likelihood receiver decides

â =

{
+
√
E if y > 0

−
√
E otherwise.
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When a = −
√
E , a decision error occurs if <{Z} >

√
E‖h‖. The probability

that this occurs is Q
(√
E‖h‖√
N0/2

)
= Q

(√
E‖h‖2
N0/2

)
= Q

(√
γ
)
, with γ = E‖h‖2

N0/2
.

By symmetry, we obtain the same result when a = +
√
E .

Hence

Pe(γ) = Q
(√

γ
)

(3)

is the error probability, conditioned on the event Γ = γ, where Γ = E‖H‖2
N0/2

.

Notice that (1) and (3) are the same function of γ; what changes is the

distribution of Γ.
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Γ = E‖H‖2
N0/2

has a chi-square distribution with 2L degrees of freedom, namely

fΓ(γ) =
1

(L− 1)!
( Eσ2

N0/2

)L γL−1 e
−γ
(
N0/2

Eσ2

)
, for γ ≥ 0

(see Appendix C ).
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To compute the average error probability P̄e, we integrate Q
(√

γ
)

against

fΓ(γ) as we did earlier for the special case of L = 1.

After repeated integrations by part, we obtain

P̄e(γ̄) =

(
1

2

(
1−

√
γ̄

2 + γ̄

))L L−1∑
l=0

(
L− 1 + l

l

)(
1

2

(
1 +

√
γ̄

2 + γ̄

))l
.

For large γ̄, the above approximates to

P̄e(γ̄) ≈
(

1

2γ̄

)L(
2L− 1

L

)
. (∗)

Observe that for L = 1 we get back our earlier approximation.

Observe also that, in essence, the effect of order-L diversity is to raise to the

power L the original error probability.
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The action of combining two or more observables like Yi and Yj into

Y = Yihi + Yjhj as we have done above (see (2)), is commonly referred to as

maximal-ratio combining.

The name stems from the fact that this way of combining does indeed

maximize the signal-energy to noise-variance ratio.
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The following plots of fΓ(γ) (the χ2 distribution with k degrees of freedom)

help to understand why diversity makes a difference: it drastically changes

the probability that Γ is below 1.
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Appendix A: the PDF of R and that of V

H = X + jY is zero-mean, circularly symmetric, of variance σ2.

Equivalently, X and Y are zero-mean, independent Gaussian random

variables of variance σ2/2 each.

Hence

fH(h) = fX,Y (x, y) =
1

2πσ
2

2

exp

(
− x2 + y2

2σ
2

2

)
=

1

πσ2
exp

(
− |h|

2

σ2

)
.
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Next, let r, φ be the polar coordinates of the Cartesian point x, y.

Recall that

fR,Φ(r, φ) = | det J |fX,Y
(
r cos(φ), r sin(φ)

)
,

where J is the Jacobian of the coordinate transformation

(r, φ)→ (x, y) =
(
r cos(φ), r sin(φ)

)
.

i.e.,

det J =

∣∣∣∣∣cos(φ) −r sin(φ)

sin(φ) r cos(φ)

∣∣∣∣∣ = r.

Plugging in,

fR,Φ(r, φ) =

{
r
πσ2 exp

(
− r2

σ2

)
, if r ≥ 0 and 0 ≤ φ < 2π,

0, otherwise.
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Integrating over φ yields

fR(r) =

{
2r
σ2 exp

(
− r2

σ2

)
, if r ≥ 0,

0, otherwise,

which is a Rayleigh distribution.

Finally, we determine the distribution of V = R2, namely the exponential

distribution

fV (v) =

{
1
σ2 exp

(
− v

σ2

)
, if v ≥ 0,

0, otherwise.
.
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Appendix B: The Disappointing Behavior of P̄e Explained

To gain insight about the disappointing behavior of P̄e, let us break down the

computation of P̄e as follows:

P̄e =

∫ ∞
0

Q(
√
γ)fΓ(γ)dγ

=

∫ 1

0

Q(
√
γ)fΓ(γ)dγ +

∫ ∞
1

Q(
√
γ)fΓ(γ)dγ

≥ Q(1)

∫ 1

0

fΓ(γ)dγ

= Q(1)Pr{Γ ≤ 1}
= Q(1)

(
1− e

1
γ̄
)

≈ Q(1)
1

γ̄

This shows that the probability of the event Γ ≤ 1 is essentially 1
γ̄ and this

alone explains why P̄e cannot decay faster than 1
γ̄ .
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Appendix C: The Chi-Square Distribution

The chi-square distribution with 2L degrees of freedom, also denoted χ2
2L

distribution, is

χ2
2L(γ) =

1

(L− 1)! 2L
γL−1 e−

γ
2 , for γ ≥ 0.

It is the distribution of
∑2L

i=1X
2
i where X1, . . . , X2L are zero-mean iid

Gaussian random variables, each of unit variance.

If Yi = αXi, so that Yi has variance α2, then
∑2L

i=1 Y
2
i = α2

∑2L
i=1X

2
i , and its

density is

1

α2
χ2

2L

( γ
α2

)
=

1

(L− 1)! (2α2)L
γL−1 e

− γ

2α2 , for γ ≥ 0.
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Now suppose that

Γ̃ =

2L∑
i=1

Y 2
i ,

where

Y 2
i =

E
N0/2

σ2

2
X2
i =
Eσ2

N0
X2
i .

If Xi ∼ N (0, 1), then Γ̃ has the same statistic as Γ = E‖H‖2
N0/2

.

Hence

fγ(γ) = fΓ̃(γ) =
1

α2
χ2

2L(
γ

α2
)

with

α2 =
Eσ2

N0
.

Therefore

fΓ(γ) =
1

(L− 1)!
( Eσ2

N0/2

)L γL−1 e
−γ
(
N0/2

Eσ2

)
, for γ ≥ 0.
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