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Orthonormal Expansions

Let us first review the Fourier transform and the related transforms.
The place to start is the concept of orthonormal expansion.
A vector x (not necessarily an n-tuple) that belongs to an
inner-product space spanned by an orthonormal basis φ

1
, . . . , φ

N
can be written as

x =

N∑
i=1

aiφi where

ai = 〈x, φi〉
(n-tuple)

=

N∑
k=1

xkφ
∗
ik.

Here 〈·, ·〉 denotes the inner product and ∗ denotes complex
conjugation.
The coefficient ai may be interpreted as the (signed) length of the
projection of x onto φ

i
.
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The transformation preserves inner products in the sense that

〈x, y〉 = 〈a, b〉,

for any two vectors x and y of the inner-product space and the
corresponding n-tuples a and b of coefficients.

Hence it preserves the norm, i.e., ‖x‖ = ‖a‖, where ‖x‖ =
√
〈x, x〉

and ‖a‖ is defined similarly.

Transformations that preserve norms are called unitary.

We refer to
∑
aiφi as the orthonormal expansion of x (with respect

to the basis φ
1
, . . . , φ

N
).
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The FT, FS, DFS, DFT but also the transformation between a
band-limited signal and its samples are all “cousins” of the above
orthonormal expansion (the basis is not always normalized though).

When the vectors are functions, the inner product is an integral (rather
than a sum).

When the orthonormal basis consists of a continuum of functions, the
expansion itself is an integral (rather than a sum).
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Fourier Transform (FT)

s(t) =

∫ ∞
−∞

sF (f)e
j2πftdf

sF (f) =

∫ ∞
−∞

s(t)e−j2πftdt

Notice the symmetry of the formulas.
The “−” in the exponent is due to the complex conjugation of ej2πft.
Be aware that the time functions of the form ej2πft do not have finite
norm. Yet Parseval’s relationship holds:∫

x(t)y∗(t)dt =

∫
xF (f)y

∗
F (f)df.
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Fourier Series (FS)

Let s̃(t) be periodic of period Tp.

s̃(t) =
∑
k∈Z

Ake
j 2π
Tp
kt
, t ∈ R

Ak =
1

Tp

∫ Tp

0
s̃(t)e

−j 2π
Tp
kt
dt, k ∈ Z.

Notice the simplicity of the expansion (top formula).
Be aware though that the FS basis is orthogonal but not orthonormal.
To make it orthonormal over one period we have to use

φk(t) =
1√
Tp

exp

{
j
2π

Tp
kt

}
in the expansion and φ∗k(t) in the projection.
The factor 1/Tp in the expression for Ak ensures that Ak is not
affected by a rescaling of the time axis.6



Discrete Fourier Series (DFS)

Let s̃[n] be periodic of period N . For n ∈ Z and k ∈ {0, 1, . . . , N − 1},

s̃[n] =

N−1∑
k=0

Bke
j 2π
N
nk

Bk =
1

N

N−1∑
n=0

s̃[n]e−j
2π
N
kn.
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Discrete Fourier Transform (DFT)

Let s[0], . . . , s[N − 1] be given. For n, k ∈ {0, . . . , N − 1},

s[n] =
1

N

N−1∑
k=0

sF [k]e
j 2π
N
nk

sF [k] =

N−1∑
n=0

s[n]e−j
2π
N
kn.

Note the similarity of the DFS and the DFT.
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The DFS and DFT are not orthonormal either. An orthonormal version
of the DFT is

m[n] =
1√
N

N−1∑
k=0

mξ[k]e
j 2π
N
nk

mξ[k] =
1√
N

N−1∑
n=0

m[n]e−j
2π
N
nk

For reasons of implementation speed, it is advantageous to leave out
the factor 1/

√
N . Hence the definition of DFT as it is.

We should mention that we can insert the factor 1
N in the transform or

in the inverse (but not in both). MATLAB and Python have it in the
inverse.
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The Main Goal of this Lecture

We want to use MATLAB/Python to determine (or approximate) the
Fourier transform of a finite-duration signal s(t).

s(t) is related to its periodic extension s̃(t) as well as to the sampled
versions s̃[n] and (s[0], s[1], . . . , s[N − 1]).

Hence, in principle, the FT of s(t) can be obtained via
• the FS of s̃(t) or
• the DFS of s̃[n] or
• the DFT of (s[0], s[1], . . . , s[N − 1]).

We choose the latter, since there is a fast algorithm, called the FFT,
to compute the DFT.

10



So, we need to determine the relationship between the Fourier
transform of a finite-duration signal s(t) and the DFT of a vector
(s[0], s[1], . . . , s[N − 1]) that contains the signal’s samples taken every
Ts seconds.

We choose Tp = NTs for some integer N , where N is sufficiently large
so that Tp is larger than the signal’s duration.

Since the relationship between the Fourier transform of s(t) and that
of s(t− Tshift) for an arbitrary Tshift is well understood, we assume
that the support of s(t) is contained in [0, Tp].
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s(t) versus s̃(t) :=
∑

i∈Z s(t− iTp)

Let s̃(t) =
∑

i∈Z s(t− iTp) be the periodic extension (period Tp) of
s(t).

Clearly we can always go from s(t) to s̃(t) and back.

For later use, we are interested in the Fourier-domain relationship
between s(t) and s̃(t).
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Ak =
1

Tp

∫ Tp

0
s̃(t)e

−j 2π
Tp
kt
dt

=
1

Tp

∫ Tp

0

∑
i∈Z

s(t− iTp)e
−j 2π

Tp
k(t−iTp)

dt

=
1

Tp

∫ ∞
−∞

s(t)e
−j 2π

Tp
kt
dt

=
1

Tp
sF

(
k

Tp

)
.

Hence the Fourier series coefficients {Ak}k∈Z are obtained by sampling
and scaling the Fourier transform sF (t). The sampling occurs at
integer multiples of the frequency 1

Tp
.
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We summarize:

s(t) ⇐⇒ s̃(t)
m m

sF (f) ⇐⇒ Ak

with

1

Tp
sF

(
k

Tp

)
= Ak

(Question: would you know how to determine sF (f) from {Ak}k∈Z ?)
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s̃(t) versus s̃[n] = s̃(nTs)

We choose Tp = NTs, i.e., we are taking N samples within one period
Tp of s̃(t).

We know that if we satisfy the condition of the sampling theorem, we
can reconstruct s̃(t) from s̃(nTs). We want to know how the two
relate in the frequency domain.
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From the DFS:

s̃[n] =

N−1∑
k=0

Bke
j 2π
N
nk

From the FS:

s̃(nTs) =
∑
k∈Z

Ake
j 2π
Tp
knTs

=

N−1∑
l=0

∑
m∈Z

Al+mNe
j 2π
N

(l+mN)n

=
N−1∑
l=0

(∑
m∈Z

Al+mN

)
ej

2π
N
ln
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Now we use the fact that s̃[n] = s̃(nTs). Comparing the corresponding
expressions yields

Bk =
∑
m∈Z

Ak+mN , k = 0, 1, . . . , N − 1

Clearly we can go from the {Ak}k∈Z to the {Bk}k∈Z, which is
consistent with the fact that we can always sample a signal.

We can go the other way if the condition of the sampling theorem is
met, i.e., if the Fourier transform of s(t) has support contained in an
interval of length 1/Ts. We’ll come back to this later.

In the following diagrams,
(∗∗)⇐= denotes that we can go in the indicated

direction whenever the condition of the sampling theorem is fulfilled.
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s̃[n], n ∈ Z, vs. s[n], n = 0, . . . , N − 1

There is a one-to-one map between s̃[n], n ∈ Z and s[n],
n = 0, . . . , N − 1.

We want to relate the corresponding frequency domain
characterizations.

Equating the reconstruction formulas for the DFS and DFT we obtain

Bk =
1

N
sF [k], k = 0, 1, . . . , N − 1
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Putting Things Together

Recall that the support of s(t) is contained in [0, NTs].

s(t) ⇐⇒ s̃(t)
(∗∗)⇐=
=⇒ s̃[n] ⇐⇒ (s[0], . . . , s[N − 1])

m FT m FS m DFS m DFT

sF (f) ⇐⇒ {Ak}k∈Z
(∗∗)⇐=
=⇒ {Bk}N−1k=0 ⇐⇒ (sF [0], . . . , sF [N − 1])

With

sF [k] = NBk = N
∑
l∈Z

Ak+lN =
1

Ts

∑
l∈Z

sF

(
k

Tp
+

l

Ts

)
,

where k = 0, 1, . . . , N − 1.
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From

sF [k] = NBk = N
∑
l∈Z

Ak+lN =
1

Ts

∑
l∈Z

sF

(
k

Tp
+

l

Ts

)
,

it is clear that we can always go from sF (f) to sF [k].

How to go the other direction? (It is the other direction that allows us
to infer sF (f) from the MATLAB/Python–computed sF [k].)
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If the support of sF (f) is contained in an interval (fmin, fmax] or
[fmin, fmax) of length 1

Ts
, then for each k = 0, 1, . . . , N − 1, there is

exactly one l = l(k) such that k
Tp

+ l
Ts

is in the specified interval.1

In this case we can write

sF [k] =
1

Ts
sF

(
k

Tp
+
l(k)

Ts

)
,

k = 0, 1, . . . , N − 1.

1Strictly speaking, the support of sF (f) cannot be finite since we have assumed
that s(t) is of finite duration. However, for all practical purposes we can say that
the support of sF (f) is contained in some sufficiently large interval.
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Example (Passband) with N =
Tp
Ts

= 6

1
Ts

f

sF (f)

0 1
Tp

1
Ts

2
Ts

3
Ts

i

Ts · sF [i]

0 1 2 3 4 5
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Baseband Signal

Of particular interest is the case when the support of sF (f) is
contained in [− 1

2Ts
, 1
2Ts

). (This means that s(t) is a baseband signal).

Recall that

sF [k] =
1

Ts

∑
l∈Z

sF

(
k

Tp
+

l

Ts

)
.

Hence, as mentioned earlier, since the support of sF (f) is contained in
an interval of length 1

Ts
, then for each k = 0, 1, . . . , N − 1, there is

exactly one l = l(k) such that k
Tp

+ l
Ts

is in the specified interval. In
this case, we can indeed go back from sF [k] to sF (f).
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To summarize with the typical situation, suppose that the support of
sF (f) is contained in [− 1

2Ts
, 1
2Ts

) and N is even, which is always the
case to take advantage of the Fast Fourier Transform (FFT).
In this case, we have that

sF [k] =
1

Ts
sF

(
k

Tp
+
l(k)

Ts

)
, k = 0, 1, . . . , N − 1.

Notice that for k = N/2, k
Tp

= N/2
Tp

= 1
2Ts

which is already outside the
support of sF (f). So for k ≥ N/2 we have to choose l(k) = −1. (And
for k < N/2 we choose l(k) = 0). Hence the N components of the
DFT split into the first N/2 components that describe sF (f) at N/2
positive frequencies and the last N/2 values that describe it at
negative frequencies:

sF [k] =

{
1
Ts
sF
(
k
Tp

)
, k = 0, 1, . . . , N2 − 1

1
Ts
sF
(
k−N
Tp

)
, k = N

2 , . . . , N − 1.
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The fftshift operation

i

Ts · sF [i]

0 1 2 3 4 5
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The fftshift operation

i

Ts · sF [i]

0 1 2 3 4 5
i

Ts · sF [i]

0 1 2 3 4 5

fftshift
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After the fftshift operation, the corresponding frequency vector is

−N/2Tp
,
−N/2 + 1

Tp
, . . . ,

−1
Tp︸ ︷︷ ︸

N/2 components

, 0,
1

Tp
, . . . ,

N/2− 1

Tp︸ ︷︷ ︸
N/2 components

 .

Or equivalently− 1

2Ts
,− 1

2Ts
+

1

Tp
, . . . ,

−1
Tp︸ ︷︷ ︸

N/2 components

, 0,
1

Tp
, . . . ,

1

2Ts
− 1

Tp︸ ︷︷ ︸
N/2 components

 .

(In Python: numpy.fft.fftshift)
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