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Exercise 1. We use the large deviations principle to find a tight upper bound. Before this, we
need to check that the moment generating function E(e**1) is finite in a proper neighborhood of
s=0:
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Therefore, by applying the large deviations principle, we obtain for ¢t > 1/\:
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P({Sn > nt}) < exp(—n A*(t)) where A*(t) = max {st — log ( 5 i 8)}

By taking the derivative of st — log (ﬁ) with respect to s and setting it equal to zero, we obtain

that A*(¢) is maximum at s* = A — 1. Hence,

P({S, > nt}) < exp(—n (At — 1 — log(\t)))

Exercise 2.*

R a) For X ~ N (0,0?) we have
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b) For X ~ U([—a,a]) we have
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Now note that, using the Taylor expansion of e given in the hint, we can write
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where the inequality is due to the fact that (2n + 1)! > 2™n!, and the last equality is due to the

Taylor expansion of exp (%) Hence, we conclude that
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c¢) By the Chebyshev-Markov inequality with i(z) = €%, we have
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The optimal s (which can be found by taking the derivative of the right-hand side and putting it
equal to 0) is s = 77%’ which we can substitute into the equation to get
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The same upper-bound can be obtained similarly for P(X < —t), proving the result.

d) Note that, if Y7 and Ys are two independent sub-gaussian random variables for some 7; and 72,
then Y; + Y3 is sub-gaussian with n? = n? + 3. In fact,
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My, 1y, (t) = E(et(Y1+Y2)) _ E(etYl)E(eth) < exp <t (7712+ 772)> '

One can apply this result recursively to prove the same property for the sum of n independent ran-
dom variables. Then, the required result follows directly from part 3 with X = """ | (X; — E(X;)).

Exercise 3. a) Use part (ii) of the definition with U =1 (such a U belongs to G).

b) (i) Z = E(X) is constant and therefore G-measurable; (ii) Let U € G: E(XU) = E(X)E(U) =
E(E(X)U) =E(ZU) (using the independence of X and U and the linearity of expectation).

¢) (i) Z = X is G-measurable by assumption; (ii) Let U € G: E(XU) =E(ZU) !

d) (i) Z = E(X|G)Y is G-measurable; (ii) Let U € G: E(XYU) = E(E(X|G)YU), because
part (ii) of the definition of E(X|G) implies the previous equality (indeed, YU € G). Therefore,
E(XYU) = E(ZU).

e) Let us first check the left-hand side equality: E(X|H) is H-measurable, therefore G-measurable,
so one can apply property c).

For the right-hand side equality, one has: (i) Z = E(X|H) is H-measurable; (ii) Let U € H:
E(E(X|9)U) = E(E(XU|9)) = E(XU) = E(E(X|H)U) = E(ZU)

using successively d), a) and the definition of E(X|H).



