
The Transport Layer:  
TCP and UDP

Machine	B

Application

Transport

Network

Data	Link

Physical

Machine	A

Application

Network

Data	Link

Physical

Transport

Series of links, switches
routers, LANs, …

Contents
1. UDP
2. TCP Basics: Sliding Window and Flow Control
3. TCP Connections and Sockets
4. More TCP Bells and Whistles
5. Secure Transport
6. Where should packet losses be repaired ?

Textbook

Part 4 Chapters 3 and 8.6

Reminder from 1st lecture: Transport layer services
• Network + Data link + Physical

layers carry packets end-to-end

• packets may be lost because of:
- errors at the physical layer
- buffer overflow events at routers or

switches
• or reordered because they may

follow different paths to destination

• Transport layer
- makes network services available to

programs
- is in end-systems only, not in routers’ data

plane (i.e. not at forwarding level)
- may handle packet loss/reordering or not:

• UDP (User Datagram Protocol):
not reliable transfer, takes no action

• TCP (Transmission Control Protocol):
reliable, in-order transfer by using
sophisticated mechanisms

What is the definition of a «server» in networks?
A. A machine that hosts resources used in the web
B. A computer with high CPU performance
C. A computer with large data storage
D. The role of a program that waits for requests to come
E. The role of a program that allows users to access

large amounts of resources
F. None of the above
G. I don’t know

Go to web.speakup.info or
download speakup app

Join room
46045

https://web.speakup.info/
https://web.speakup.info/

Solution
Answer D
Formally, a server is a role at the transport layer, where the program
waits for requests to come.
In contrast, a client initiates communication to a server.

Reminder from 1st lecture: Port Numbers

Host
IP addr=B

Host
IP addr=A

IP SA=A DA=B prot=UDP
source port=1267
destination port=53
…data…

process
sa

process
ra

UDP

process
qa

DNS
client

TCP

IP

1267

process
sb

process
rb

UDP

process
qb

DNS
server

TCP

IP

53

IP network

UDP Source Port UDP Dest Port
UDP Message Length UDP Checksum

UDP payload (data)

IP header

UDP datagramIP packet

Default port number 
 for any DNS server

• assigned by OS to identify processes within a host
• servers’ port numbers must be well-known to clients (e.g. 53 for DNS)
• src and dest port numbers are inside transport-layer header

Ephemeral port 
 dynamically

assigned by OS

The picture shows two processes (= network application programs) pa, and pb that are
communicating. Each of them is associated locally with a port, as shown in the figure.

The example shows a packet sent by the name resolver process at host A, to the domain name
server (DNS) process at host B. The UDP header contains the source and destination ports.
The destination port number is used to contact the name server process at B;
the source port is not used directly; it will be used in the response from B to A.

The UDP header also contains a checksum of the UDP data plus the IP addresses and packet
length. Checksum computation is not performed by all systems.

Ports are 16 bits unsigned integers. They are defined statically or dynamically. Typically, a server
uses a port number defined statically.
Standard services use well-known default port numbers; e.g., all DNS servers use port 53 (look
at /etc/services).
Ports that are allocated dynamically are called ephemeral. They are usually above 1024. If you
write your own client server application on a multiprogramming machine, you need to define your
own server port number and code it into your application.

1. UDP is message-oriented, and unreliable
• UDP delivers the exact message (a.k.a. “datagram”) or nothing
• Consecutive messages may arrive out of order
• Messages may be lost
• One message, up to 65,535 bytes
• If UDP message is too large to fit into a single IP packet (i.e. larger than MTU),

then IP layer fragments it
- at the IP layer of the source, info about fragments added inside IP header
- not visible to the transport layer
- if a fragment/piece is lost then the entire message is considered lost

application layer should handle these,
if necessary

How is UDP implemented in practice?
Via a socket library = programming interface

- sockets in Unix are similar to files for read/write

Figure shows a client-server app using UDP:
client sends a char string to server,
which receives (and displays) it

• socket(socket.AF_INET,…) creates an IPv4 socket and
returns a number (=file descriptor) if successful

• socket(socket.AF_INET6,…) creates an IPv6 socket
• bind() associates an IP address and port number with

the socket—can be skipped for a client socket.
Port = 0 means any available port,
IP address = 0 (0.0.0.0 or ::) means all addresses of
host

• sendto() specifies destination IP address, destination
port number and the message to send

• recvfrom() blocks until a message is received for this
port number; it returns the source IP address and port
number and the message.

client

s=socket.socket()

s.sendto()

s.close()

server

s=socket.socket();

s.bind()

s.recvfrom()

% ./udpClient <destAddr> bonjour les amis
%

% ./udpServ &
%

What socket to open? IPv4 or IPv6?
• Transport layer is not affected by the

choice of IP (no UDPv6, nor TCPv6)
• But, there are IPv4 and IPv6 sockets
• An application program has to choose

IPv4 or IPv6, or better support both

How? Use socket.getaddrinfo() to let the
DNS give you whatever is available

> python
>>> import socket
>>> socket.getaddrinfo("lca.epfl.ch",None)
[(<AddressFamily.AF_INET6: 23>, 0, 0, '',
('2001:620:618:521:1:80b3:2127:1', 0, 0, 0)),
(<AddressFamily.AF_INET: 2>, 0, 0, '',
('128.179.33.39', 0))]

What socket?
socket(AF_INET,…)

or
socket(AF_INET6,…)

s.sendto()

s.close()

s=socket.socket()

socket.getaddrinfo()
 # select one IP version/ 
 # address of destination

An IPv6 socket can be dual-stack
• In some machines, IPv6 sockets can be bound to both IPv6 and IPv4 addresses of the local host
• How? The correspondents’ IPv4 addresses are mapped to IPv6 addresses

- using the IPv4-mapped IPv6 address format
- i.e., by appending the IPv4 address to prefix ::ffff:0:0/96

• Such sockets can receive packets from IPv6 and from IPv4 correspondents.

• Default in Linux, must be enabled for every socket (with setsockopt) in Windows.
• An IPv4 socket cannot be dual-stack. Why?

2020:baba::b0b0 11.22.33.44

IPv6 socket

From 1.2.3.4

From ::ffff:0102:0304 From 2001:face:b00c::1

From 2001:face:b00c::1

Solution
It is possible to map IPv4 addresses to a subset of the IPv6 space
because IPv6 addresses are much longer in bits. The converse is not
possible: there are more IPv6 addresses than IPv4 addresses.

An IPv4 socket cannot receive data from an IPv6 source address.

How does the Operating System view UDP?

UDP datagrams are delivered to
sockets based on dest IP address and
port number:
• Socket 5 is bound to local address

2001:baba::b0b0 and port 32456;
receives all data to 2001:baba::b0b0
udp port 32456

• Socket 3 is bound to local address
11.22.33.44 and port 32456; receives
all data to 11.22.33.44 udp port 32456

• Socket 4 is bound to local address
11.22.33.44 and port 32654; receives
all data to 11.22.33.44 udp port 32654

id=3 id=4

send/
receive  
buffers

port=32456 port=32654

Application program

UDP

IP
address=11.22.33.44

IPv4
socket

IPv4  
socket

id=5

IPv6  
socket

IPv6 packet IPv4 packets

R

port=32456

UDP datagrams

address=2001:baba::b0b0

S RS RS

With a dual-stack IPv6 socket?
Socket 5 is bound to any
local address, which includes
IPv6 and IPv4 addresses,
and to port 32456;
receives all packets to
2001:baba::b0b0, udp port
32456 and to 11.22.33.44
udp port 32456

Socket 4 is bound to IPv4
address 11.22.33.44 and port
32654; receives all packets to
11.22.33.44 udp port 32654

id=4

send/receive  
buffers

port=32456 port=32654

Application program

UDP

IP

IPv4
socket

id=5

IPv6  
socket

IPv6 packet IPv4 packets

port=32456

UDP datagrams

address=11.22.33.44address=2001:baba::b0b0

RS RS

common  
send/receive  

buffers for  
2 addresses

Recap - UDP
On the sending side:

OS sends the UDP message ASAP, but also uses a buffer to store data if
interface is busy
OS may also fragment the message if needed.

On the receiving side:
OS re-assembles IP fragments of UDP message (if needed) and keeps the
message in receive buffer ready to be read.
The message is

• “consumed” when application reads
• or “dropped” because of an overflow event

A socket is bound to a single port and one or multiple IP addresses of the local host

User’s browser sends DNS query to DNS server, over UDP.
What happens if query or answer is lost ?

A. Name resolver in browser waits for timeout, if no
answer received before timeout, sends again

B. Messages cannot be lost because UDP assures
message integrity

C. UDP detects the loss and retransmits
D. Je ne sais pas

Go to web.speakup.info or
download speakup app

Join room
46045

https://web.speakup.info/
https://web.speakup.info/

Solution
Answer A

2. TCP offers reliable, in-order delivery
What does this mean?

TCP guarantees that all data is delivered in order and without loss,
unless the connection is broken

How does TCP achieve this?
• Uses sophisticated mechanisms to detect reordering and loss:

- per-byte sequence numbers —> data is numbered
- a connection-setup phase for the sender/receiver to synchronize their sequence nums
- acknowledgements; if loss is detected, TCP re-transmits

• further optimizations, e.g.:
- flow control avoids buffer overflow at the receiver
- TCP knows the allowable maximum segment size (MSS) and segments data

accordingly —> avoids fragmentation at the IP layer

TCP Basic Operation 1: SEQ and ACK
seq 8001:8500 1

ack 85012 deliver
bytes

8001:8500

A B

8 seq 8501:9000
Timeout !

6

7

seq 8501:9000

seq 9001:9500

seq 9501:10000

ack 8501

3

4

5

ack 9001

seq 9001:9500
9

deliver
bytes

8501:9000

deliver
bytes

9001:1000010

cumulative  
acks

seq 9501:10001  
has been received

The previous slide shows A in the role of sender and B of receiver.
• The application at A sends data in blocks of 500 bytes at a slow pace. So, TCP initially sends 500-byte

segments.
• However, the maximum segment size in this example is 1000 bytes. So, TCP may also merge 2 blocks

of data in one segment if this data happens to be available at the send buffer of the socket.
• Packets 3, 4 and 7 are lost.
• B returns an acknowledgement in the ACK field. The ACK field is cumulative, so ACK 8501 means: B is

acknowledging all bytes up to (excluding) number 8501. I.e. the ACK field refers to the next byte
expected from the other side.

• At line 8, the timer that was set at line 3 expires (A has not received any acknowledgement for the
bytes in the packet sent at line 3 and experiences a timeout). A re-sends data that is detected as lost,
i.e. bytes 8501:9001. When receiving packet 8, B delivers all bytes from 8501 to 9000 in order.

• When receiving packet 10, B can deliver bytes 9001:10000 because packet 5 was received and kept
by B in the receive buffer.

TCP Basic Operation 2: SACK and optimized segmentation (if possible)
seq 8001:8500

ack 8501
seq 8501:9000

seq 9001:9500

seq 9501:10000

seq 8501:9500
ack 8501 sack (9501:10001)

ack 10001

seq 10001:10500

1

2

3

4

5
6

7

8

9

deliver
bytes

8001:8500

deliver
bytes

8501:10000

deliver
bytes

10001:10500

A B

10
TcpMaxDupACKs set to 1 at A

cumulative  
+ 

selective  
ack

2 data blocks
are merged,  

because here: 
MSS = 1000

In addition to the ACK field, most TCP implementations also use the SACK field (Selective
Acknowledgement).

The previous slide shows the operation of TCP with SACK.
• The application at A sends data in blocks of 500 bytes. But, in this example, we assume that the

maximum segment size is MSS=1000 bytes.
• Segments 3 and 4 are lost.
• At line 6, B acknowledges all bytes up to (excluding) number 8501.
• At line 7, B acknowledges all bytes up to 8501 and in the range 9501:10001. Since the set of

acknowledged bytes is not contiguous, the SACK option is used. It contains up to 3 blocks that are
acknowledged in addition to the range described by the ACK field.

• At line 8, A detects that the bytes 8501:9501 were lost and re-sends them ASAP without waiting for a
timeout, because in this example host A uses TcpMaxDupACKs = 1 (we will discuss TcpMaxDupACKs
later). What is important to notice is that at line 8, since the maximum segment size is 1000 bytes, only
one packet is sent. This is what the slide’s title means by “optimized segmentation”.

• When receiving packet 8, B can deliver bytes 9001:10001 because packet 5 was received and kept in
the receive buffer.

TCP receiver uses a receive buffer = re-sequencing buffer to
store incoming packets before delivering them to application
Why invented ?

• Application may not be ready to consume/read data
• Packets may need re-sequencing; out-of-order data is stored but is not visible to application

8001:8500

9501:10000

8001:10000

8001:8500

Can be read  
(received) 

by app

Invisible to app
(cannot be read)

TCP uses a sliding window

Why?
• The receive buffer may overflow if one piece

of data “hangs”
- multiple losses affect the same packet,
- so, multiple out-of-order packets fill the buffer

• The sliding window limits the number of data
“on the fly” (= not yet acknowledged)

P0

A1

P1

P2

A2

Pn

P0 again

Pn+1

 P1

 P1 P2

 P1 P2 ... Pn

 P1 P2 ... Pn+1

Receive
Buffer

How does the sliding window work?
Suppose:

Window size = 4000B;
each segment =1000B

Only seq numbers that are in
the window can be sent
(if of course this data is in the
socket waiting to be sent)

lower window edge =
smallest non-ack’ed
sequence number

upper window edge =
lower_edge
window_size

+

Window

usable part  
of the window,
seq numbers

that the sender  
can send

Window size = 4’000 bytes, one
packet = 1’000 bytes
At time , the usable part of the
sliding window is 4000, and there is
a lot of data in the socket to be sent.
So, the sender sends 4 segments. 
At time , sender…

𝒕0

𝒕𝟏

A. … can send segment S=4
B. … cannot send segment S=4
C. It depends on whether data

was consumed by application
D. I do not know

𝑡0

Go to web.speakup.info or
download speakup app

Join room
46045

https://web.speakup.info/
https://web.speakup.info/

Solution

Answer B.
The window size is 4’000 B, namely here 4 packets.
At time packets -1, 1, 2 and 3 are acked. The window is packets . Packet 4 is outside the window
and cannot be sent. It has to wait until the loss of packet 0 is repaired (at time)
Sender also needs a buffer (“retransmission buffer”); its size is the window size.
Segments are removed from the resequencing/receive buffer when they are finally in-order and application
reads them.

𝑡1 [0 ; 3]
𝑡2

S=0
0;

Retransmission
Buffer

S=1

S=2

S=3

S=0

S=4

0; 1

0; 2

0; 2; 3

0;

0;

Resequencing
Buffer

1

1; 2

1; 2; 3

0;1;2;3

deliver
0 ... 3

4 deliver 4

A=-1, SACK =1

A=-1, SACK =1-3

A=3

A=-1, SACK =1-2

4;

𝑡1

𝑡2

A fixed-size window cannot prevent receive-buffer overflow

• In-order data still remains in
receive buffer, until it is
consumed by application
(typically using a socket
“read” or “receive”)

‣ Slowly reading receiver app
could cause buffer overflow

Application reads
receive buffer

Application reads

Window size = 4000 bytes  
One packet = = 1000 bytes

Flow control: an adaptive window size
• TCP flow control constantly adapts the size of the window by sending window

advertisements back to the source.
- advertized window size is equal to available buffer size
- if no space in buffer, window size is set to 0

• thus, TCP adapts source’s sending rate to receiver’s consuming speed

 Congestion Control, which adapts source’s sending rate to network conditions
[we will see this in an oncoming later lecture]
≠

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

S = 1

ack = -1, window = 2

S = 0

S = 2
S = 3

S = 4

ack = 0, window = 2

S = 5

S = 6

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

ack = 2, window = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

ack = 0, window = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

ack = 4, window = 2

0 1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 12 ack = 6, window = 0

0 1 2 3 4 5 6 7 8 9 10 11 12
ack = 6, window = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

S = 7
1 unit of data = 1000 bytes  

1 packet = 1000 bytes

receive buffer size = 4000 bytes  
1 unit of data, 1 packet = 1000 bytes

ack = 4, window = 2

S = 1

ack = -1, window = 2

S = 0

S = 2
S = 3

S = 4

ack = 0, window = 2

S = 5

S = 6

ack = 2, window = 4

ack = 0, window = 4

ack = 6, window = 0
ack = 6, window = 4

S = 7

3 4 5 6

5 6

7 8 9 10

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

3 4 5 6
3 4 5 6
3 4 5 6

7 8 9 10

0 1

0 1

1 2

-2 -1 -3
-2 -1 -3
-2 -1 0 -3
-2 -1 0 -3

-2 -1 0 1-3
-2 -1 0 1-3 2
-2 -1 0 1-3 2
-2 -1 0 1-3 2 3

-2 -1 0 1-3 2 3 4

-2 -1 0 1-3 2 3 4 5
-2 -1 0 1-3 2 3 4 5 6
-2 -1 0 1-3 2 3 4 5 6

free spaces in the buffer

data acked but not yet consumed

s.read()

s.read()

s.read()

s.read()

TCP Basic Operation, Putting Things Together

 bytes
10001:10500
are available

8001:8500(500) ack 101 win 6000

101:200(100) ack 8501 win 4000
8501:9000(500) ack 201 win 14247

9001:9500(500) ack 201 win 14247

9501:10000(500) ack 201 win 14247

(0) ack 8501 sack 9001:9501 win 3500

8501:9000(500) ack 251 win 14247
201:250(50) ack 8501 sack 9001:10001 win 3000

251:400(150) ack 10001 win 2500

10001:10500(500) ack 401 win 14247

1

2

3

4

5
6

7

8

9

10

bytes
...:8500 are available

and consumed

bytes
8501:10000 are

available

A B

app
consumes

bytes
8501:10000

(0) ack 10001 win 4000

11

retransmission  
after timeout

The picture shows a sample exchange of messages. Every packet carries the
sequence number for the bytes in the packet; in the reverse direction, packets contain
the acknowledgements for the bytes already received in sequence. The connection is
bidirectional, with acknowledgements and sequence numbers for each direction. So
here A and B are both senders and receivers.
Acknowledgements are not sent in separate packets (“piggybacking”), but are in the
TCP header. Every segment thus contains a sequence number (for itself), plus an ack
number (for the reverse direction). The following notation is used:

 firstByte”:”lastByte+1 “(“segmentDataLength”) ack” ackNumber+1 “win”
offeredWindowSise. Note the +1 with ack and lastByte numbers.

At line 8, A retransmits the lost data. When packet 8 is received, the application is not
yet ready to read the data.
Later, the application reads (and consumes) the data 8501:10001. This frees some
buffer space on the receiving side of B; the window can now be increased to 4000. At
line 10, B sends an empty TCP segment with the new value of the window.
Note that numbers on the figure are rounded for simplicity. In real examples we are
more likely to see non-round numbers (between 0 and 232 -1). The initial sequence
number is not 0, but is chosen at random.

If there’s no loss or reordering,
and on a link with capacity
bytes/second, the min window
size required for sending at the
capacity is…

𝒄

A.

B.

C.

D. None of the above
E. I do not know

𝑊𝑚𝑖𝑛 = 𝑅𝑇 𝑇 × 𝑐

𝑊𝑚𝑖𝑛 = 𝑐
𝑅𝑇 𝑇

𝑊𝑚𝑖𝑛 = 𝑅𝑇 𝑇
𝑐

time

Go to web.speakup.info or
download speakup app

Join room
46045

https://web.speakup.info/
https://web.speakup.info/

Solution
If the window size is small, the sender
is blocked after sending a full window.
The sending rate in this case is .
This case occurs when

𝑊
𝑅𝑇 𝑇

𝑊 < 𝑐 × 𝑅𝑇 𝑇

Answer A 
If the window size is large enough, the
window is never fully used and the sender
can send at rate .  
This case occurs when the total amount of
data in flight, , is not larger than ,
i.e. when  
(i.e. window bandwidth-delay product)

𝑐

 c × 𝑅𝑇 𝑇 𝑊
𝑊 ≥ 𝑐 × 𝑅𝑇 𝑇

≥

3. TCP Connection Phases

SYN, seq=x
syn_sent

SYN ACK, seq=y, ack=x+1

ACK, ack=y+1established
established

snc_rcvd

listen

FIN, seq=u

ack=v+1

ack=u+1

FIN seq=v
fin_wait_2

time_wait

close_wait

last_ack

closed

application
active open passive open

application close:

active close
fin_wait_1

Co
nn

ec
ti

on

Se
tu

p
Da

ta

Tr
an

sf
er

Co
nn

ec
ti

on

Re
le

as
e

Before transmitting useful data, TCP requires a connection setup phase:
- used to agree on seq numbers and make sure buffers and window are initially empty

The previous slide shows all phases of a TCP connection:
- Before data transfer takes place, the TCP connection is opened using SYN packets. The effect is

to synchronize the counters on both sides.
- The initial sequence number is a random number.
- Then the data transfer begins and works as described earlier.
- Finally the connection closes. This can be done in a number of ways. The picture shows a

graceful release where both sides of the connection are closed in turn.

There are many more subtleties (e.g. how to handle connection termination, lost or
duplicated packets during connection setup, etc [see Textbook sections 4.3.1 and 4.3.2]

Recall: TCP connections involve only two hosts; routers in between are not involved.

flags meaning
NS used for explicit congestion notification
CWR used for explicit congestion notification
ECN used for explicit congestion notification
urg urgent ptr is valid
ack ack field is valid
psh this seg requests a push
rst reset the connection
syn connection setup
fin sender has reached end of byte stream

paddingoptions (SACK, MSS, …)

src port dest port

sequence number

ack number

hlen windowflags rsvd

urgent pointerchecksum

segment data (if any)

TCP
header
(20 Bytes +
options)

IP header (20 or 40 B + options)

<= MSS bytes

32 bits

Indicates the next  
expected seq num  
from the other host

TCP dataTCP hdr

IP data = TCP segmentIP hdr

prot=TCP

TCP Segment Format

The previous slide shows the TCP segment format.
• SYN and FIN are used to indicate connection setup and close. Each one uses one sequence number.
• The sequence number is that of the first byte in the data.
• The ack number is the next expected sequence number.
• Options may include the Selective ack (SACK) field, or the Maximum Segment Size (MSS), which is negotiated

during SYN-SYNACK phase—the negotiation of the maximum size for the connection results in the smallest value to
be selected.

• The checksum is mandatory.
• The NS, CRW and ECN bits are used for congestion control [see lecture on congestion control].
• The push bit can be used by the upper layer using TCP; it forces TCP on the sending side to create a segment

immediately. If it is not set, TCP may pack together several SDUs (=data passed to TCP by the upper layer) into one
PDU (= segment). On the receiving side, the push bit forces TCP to deliver the data immediately. If it is not set, TCP
may pack together several PDUs into one SDU. This is because of the stream orientation of TCP. TCP accepts and
delivers contiguous sets of bytes, without any structure visible to TCP. The push bit is used by Telnet after every end
of line.

• The urgent bit indicates that there is urgent data, pointed to by the urgent pointer (the urgent data need not be in
the segment). The receiving TCP must inform the application that there is urgent data. Otherwise, the segments do
not receive any special treatment. This is used by Telnet to send interrupt type commands.

• RST is used to indicate a RESET command. Its reception causes the connection to be aborted.

client

s=socket.socket()

server S

s1=socket.socket()

s.connect(S,5003)

s1.bind(5003)

s1.listen()

conn=s1.accept()SYN
SYN ACK

ACK1 2

TCP Sockets
More complicated than UDP
because of the need to open/
close a connection

Opening a TCP connection
requires one side to listen (this
side is called “server”) and one
side to connect (called “client”)

At t=1, client can use the
connection to send or receive
data on this socket

A New Socket is
Created by accept()
At t=2, on server side, a new
socket (conn) is created – will
be used by server to send or
receive data.

This example is simplistic:
client sends one message to
server and quits;
server handles one client at a
time.

1
2

client

s=socket.socket();

server S

s1=socket.socket()

s.connect(S,5003)

s.send(…)

s.close()

s1.bind(5003)

s1.listen()

conn=s1.accept()

conn.recv()

conn.close()

SYN
SYN ACK

ACK

The figure of the previous 2 slides shows toy client and servers. The client sends a string
of chars to the server which reads and displays it.
• socket(AF_INET,…) creates an IPv4 socket and returns a socket object if succesful

socket(AF_INET6,…) creates an IPv6 socket
• bind(5003) associates the local port number 5003 with the socket; the server must

bind, the client need not bind, a temporary port number is allocated by the OS
• connect(S,5003) associates the remote IP address of S and its port number with the

socket and sends a SYN packet
• send() sends a block of data to the remote destination
• listen() declares the size of the buffer used for storing incoming SYN packets;
• accept() blocks until a SYN packet is received for this local port number. It creates a

new socket (in pink) and returns the file descriptor to be used to interact with this new
socket

• recv() blocks until one block of data is ready to be consumed on this port number. You
must tell in the argument how many bytes at most you want to read. It returns a block of
bytes or raises an exception when the connection was closed by the other end.

A more practical server
TCP Server uses parallel execution
threads to handle several TCP connections
+ to listen to incoming connections

“conn”-type are connected sockets (pink),
“s1”-type is a non-connected socket (blue)

TCP uses default port number for listening;
e.g. TCP port 80 is used for web servers

A TCP connection is identified by:
src IP addr, src port, dest IP addr, dest port

client

s=socket.socket()

server S
s1=socket.socket()

s.connect(S,5003)

s.send(…)

s.close()

s1.bind(5003)

s1.listen()

conn=s1.accept()

conn.recv()

conn.close();

conn.recv()

conn.close();

conn.recv()

conn.close();

conn.recv()

conn.close();

conn.recv()

conn.close();

conn.recv()

conn.close();

conn.recv()

conn.close();

conn.recv()

conn.close();

How the Operating System views TCP Sockets

TCP

IP

R

id=3 id=4

port=32456

address=128.178.151.84

R

id=5

Re-sequencing
buffers

IPv4
socket

IPv4
socket

IPv4
socket

Application program

R

id=6

port=32456

IPv6
socket

IPv6
socket

address=
2001:620:618:1a6:3:80b2:9754:1

id=7

IPv6 packetsIPv4 packets

Connection
requests

App
data

App
data

App
data

Connection
requests

R RS S S S S

Re-sequencing
buffers

MSS and segmentation
TCP, not the application, chooses how to segment data
TCP segments should not be fragmented at source

TCP segments have a maximum size (called MSS):
• default values are:

536 bytes for IPv4 operation (576 bytes IPv4 packet),
1220 bytes for IPv6 operation (1280 bytes IPv6 packets)

• otherwise negotiated in Options header field during connection setup = hosts set it
to the smallest value that both declare

Modern OSs use TCP Segmentation Offloading (TSO): Segmentation is performed at the
network interface card NIC with hardware assistance (reduces CPU consumption of TCP)

Sender side:
• data accumulates in send buffer until TCP decides to create a segment

Receiver side:
• data accumulates in receive buffer until put in order and application reads it

No boundaries between bytes: several small messages written by A’s app may
be received by B as a single segment—
and conversely, a single message written by A’s app may be received by B as
multiple segments;

➡ so, apps need to group bytes to messages (if needed)

A side effect is head of the line blocking: If one packet sent by A is lost, all data
following this packet is delayed until the loss is repaired

Recap: TCP offers a streaming service

48

For which types of apps may TCP’s streaming
service be an issue? (multiple answers are fine)
A. an app using http/1, where we have one TCP connection per object
B. an app using http/2, where we have one TCP connection per website
C. a real time video streaming application that sends a new packet every msec
D. None
E. I do not know

Go to web.speakup.info or
download speakup app

Join room
46045

https://web.speakup.info/
https://web.speakup.info/

Solution

50

Answer F: (B and C) For http/2 with one single connection, head-of-the
line blocking can occur: if one packet is lost in the transfer of one
object of the page, the entire page download is delayed until the loss
is repaired.

Head-of-the line blocking may also occur for a real-time streaming app
and is probably even worse: with TCP, the loss of one packet delays all
subsequent packets until the loss is repaired, whereas the live
application might prefer to skip the lost packet and receive the most
recent one. Such an app should use UDP.

51

Why both TCP and UDP ?
Most applications use TCP rather than UDP, as this avoids re-inventing
error recovery in every application
But some applications do not need error recovery in the way TCP does it
(i.e. by packet retransmission)

For example: Voice applications / Sensor data streaming
Q. why ?

For example: an application that sends just one message, like name
resolution (DNS).
Q. Why ?

For example: multicast (TCP does not support multicast IP addresses)

52

Why both TCP and UDP ?
Most applications use TCP rather than UDP, as this avoids re-inventing error
recovery in every application
But some applications do not need error recovery in the way TCP does it (i.e. by
packet retransmission)

For example: Voice applications / Sensor data streaming
Q. why ?
A. Delay is important for interactive voice, while packet retransmission may introduce too much
delay in some cases.
Sensor data streaming may send a new packet every few msecs, better to receive latest packet
than to repeat a lost one.
For example: an application that sends just one message, like name resolution
(DNS).
Q. Why ?
A. TCP sends several packets of overhead before one single useful data message. Such an
application is better served by a Stop and Go protocol at the application layer.
For example: multicast (TCP does not support multicast IP addresses)

