Exam booklet

2024 - 2025

Reserved address blocks (IPv4)

0.0.0.0|absence of address

127/8|loopback addresses (this host, e.g. 127.0.0.1)

10.0.0.0/8, 172.16.0.0/12, |private addresses (e.g. at home): used by anyone, but not in the
192.168.0.0/16 |public Internet (internet routers drop packets destined to them)

100.64/10|private addresses used only by Internet Service Providers (ISPs)—
Carrier Grade NAT addresses

192.88.99/24 | IPv6-to-IPv4 relay routers

169.254.0.0/16|link local addresses (can be used only by systems in same LAN)

224/4 | multicast

240/4 [reserved “for experimental/future use” until recently

255.255.255.255/32]link local (LAN) broadcast

IPv4 Packet Format

0 - 8 I‘IZ

16

Version IHL | Type of Service

Identification

Flags

Higher layer
protocol
[1 = ICMP*,
6 = TCP,
17 = UDP]

* (ICMP is used to carry error messages at the network layer)

Header
20 bytes
(+ options,
if any)

payload

protocol
overhead

useful bits
(higher-layer
data)

Reserved address blocks (IPv6)

/128 |absence of address

::1/128|loopback address (this host)

fc00::/7 (i.e. fcxx: and fdxx:)|unigue local addresses = private networks (e.g. in EPFL):
EPFL forexample:| not to be used in the public Internet
Private %.fd24:ec43:12cg 1a6:a00:20ff:fe78:30f9

fe80::/10|link local addresses (used only by systems in same LAN)

ff00::/8 |multicast

ff02::1:ff00:0/104 | solicited node multicast (see NDP later)

ff02::1/128|link local broadcast

ff02::2/128 |multicast to all link-local routers (in same LAN)

IPve Packet Format

0 3 11 15 23 31 Higher layer protocol
ver [e Flowlabel % [58=IPv6-ICMP,
Ll header opm 17 = UDP]
i %
Address field Source address (128 bits)
16 bytes Header
40 bytes
(+ options,
if any)
Dedination address (128 bits)
Payload
“*We will see the functions of
the fields other than the

addresses in a following lecture

Multicast MAC addresses

* |s there Multicast ARP?
No, multicast MAC address is algorithmically
derived from multicast |IP address:

- Last 23 bits of IPv4 multicast address
are used in MAC address

- Last 32 bits of IPv6 multicast address
are used in MAC address

* Note:

- Multicast MAC depends only on multicast IP address m,
not on source address s, even if mis an SSM address

- Several multicast IP addresses may yield the same MAC

- packets received unnecessarily at the MAC layer are
removed by the OS; hopefully this happens rarely

/ N

~

} 15t bit of hextet is 0 §

MAC my}/cast addr.

Used for

01 -oo-5e(l()<-xx-xx

IPv4 multicast

33-33-XX-XX-XX-XX

IPv6 multicast

IP dest address 229.130.54.207
IP dest address (hexa) e5-82-36-cf
IP dest address (bin) ...-10000010-...
Keep last 23 bits (bin) ...-00000010-...
Keep last 23 bits (hexa) 02-36-cf

MAC address

01-00-5e-02-36-cf

Duplicate address test

host A other host on-link router on-link

s

A attempts to acquire its link local

ff:£fe78:30£9

1. Neighbour Solicitation, multicast to ff02::1:ff78:30f9
[(dupl test)

A accepts its link local “““‘““‘“*““‘“--““_$

unicast address:
fe80::0a00:20ff:£fe78:30£9

A sends a Neighbour Solication (NS) message to check for address
duplication, sent to the Solicited Node Multicast Address.

Any host that would have to same link local address listens to this
multicast address

Port Numbers

+ assigned by OS to identify processes within a host
* servers’ port numbers must be well-known to clients (e.g. 53 for DNS, 80 for HTTP, 443 for HTTPs)

* src and dest port numbers are inside transport-layer header

Host
Ephemeral port IP addr=A IP network —

dynamically e, e
assigned by OS ‘

Default port number
for any DNS server

S..

IP SA=A DA=B prot=UDP
source port=1267
destination port=53
...data...

UDP Source Port UDP Dest Port
IP packet UDP Message Length UDP Checksum | UDP datagram
v UDP payload (data) 4

IP header (20 or 40 B + options)

TCP Segl I lent FOrl I lat src port dest port
sequence number

prot=TCP ack number)

it » TCP hdr TCP data TCP

: hlen| rsvd|_flags \window header

IP hdr IP data = TCP segment (20 Bytes +
cksum urgeNF pointer . y
options)
options (SACK, MSS, .) \E padding .|
segment data (if any) <= MSS bytes
32 bits \

flags meaning
NS used for explicit congestion notification
CWR used for explicit congestion notification .
ECN used for explicit congestion notification Indicates the next
urg urgent ptr is wvalid
ack ack field is valid eXpeC’[ed Seq num
psh this seg requests a push (creating a segment immediately) from the other host
rst reset the connection
syn connection setup
fin sender has reached end of byte stream

The Decision Process

. BGP Adj-RIB-In) BGP Adj-RIB-Out
The decision process chooses at most one route Peer:N] BGP lA_Iclac Rl 5GP Mg
to each different destination prefix as best BGP Msgs acceptable to Peer{N]
e.g.: only one route to 2.2/16 can be chosen, from PeerNl - ™ peer(1] routes Peer(1]
but there can be different routes to 2.2.2/24 and 2.2/16 BGP Msgs —— hwute | L " 6ap ée—c:}é'ib ~ ke
manlpulauon \\ PI’OCESS / manlpulatlon 1) tBGPP M[sﬁs
— o Peer|
One best
How? route to each
P, . destinati
- A route can be selected only if its next-hop is reachable %
. = Routing table
* For each dest. prefix, all acceptable routes ;arelcompared routes obtained locally
w.r.t. their attributes using a sequence of criteria (redistributed)

(until only one route remains); a common sequence is:

0. Highest weight (Cisco proprietary)
Highest LOCAL-PREF
Shortest AS-PATH
Lowest MED, if taken seriously by this network
e-BGP > i-BGP (= if route is learnt from e-BGP, it has priority)
Shortest path to NEXT-HOP, according to IGP

Lowest BGP identifier (router-id of the BGP peer from whom route is received)
(The Cisco and FRR implementation of BGP, used in lab 6, have additional cases, not shown here)

S

The result of the decision process is stored in forwarding table and in Adj-RIB-out (one route per destination for each BGP peer).
The router sends updates when Adj-RIB-out changes (addition or deletion) after applying export rules.

Fairness of TCP Reno

For long lived flows, the rates obtained with TCP Reno are as if they were distributed according to utility

X;T;
fairness, with utility of flow i given by U;(x;) = — arctan —
T \/5
with x; = rate (in MSSs) = W/z;, 7; = RTT (see “Rate adaptation, Congestion Control and Fairness: A Tutorial")

For flows that have same RTT, the fairness of TCP is between max-min and proportional fairness, closer to
proportional fairness:

e

rescaled utility
functions;
RTT =100 ms

maxmin approx.isU(x) =1 — x~

5

TCP Reno
Loss - Throughput Formula

Consider a large TCP flow size (many bytes to transmit).
Assume we observe that, in average, a fraction q of packets is lost (or marked with ECN).

MSS 1.22

RTT,/q '

The throughput should be close to 6 =

Formula assumes:
transmission time is negligible compared to RTT,
losses are rare and occur periodically,
time spent in Slow Start and Fast Recovery is negligible.

[see “Rate adaptation, Congestion Control and Fairness: A Tutorial”]

Cubic’s Loss throughput formula

Given the same assumptions as for TCP Reno:

1.054 1.22

0 ~ max

RTT"®¢75 " RTT./q

So:

e Cubic’s formula is same as Reno

for small RTTs and small BW-delay products

* but a TCP Cubic connection gets more
throughput than TCP Reno when bit-rate and

RTT are large

Other details: computation of W,

max

in MSS per second.

103

102 A
o P N\NEubit-@ RTT= 100 ms |
100k T~

10 F

~._ . Reno /

RTT =12.5ms

RTT=800ms

Yy — —
~— ~— —
— — —

102

106 10

104 10-2 102

uses a more complex mechanism called “fast convergence” - see Latest IETF Cubic
RFC / Internet Draft or http://elixir.free-electrons.com/linux/latest/source/net/ipv4/tcp cubic.c

http://elixir.free-electrons.com/linux/latest/source/net/ipv4/tcp_cubic.c

duplicate ACK

TCP Reno — recap

dupACKcount++

A

cwnd=1 MSS
ssthresh=64 KB
dupACKcount=0 ~

A Slow

start

timeout

ssthresh=cwnd/2
cwnd=1 MSS
dupACKcount=0
retransmit missing segment

dupACKcount==

ssthresh=cwnd/2
cwnd=ssthresh+3-.MSS

retransmit missing segment

Figure from our textbook:
"Computer Networking: A top-down approach”
by J. Kurose and K. Ross

new ACK

cwnd=cwnd+MSS
dupACKcount=0
transmit new segment(s), as allowed

cwnd =ssthresh
A

new ACK

cwnd=cwnd+MSS . (MSS/cwnd)
dupACKcount=0
transmit new segment(s), as allowed

» Congestion

timeout

ssthresh=cwnd/2
cwnd=1 MSS
dupACKcount=0

retransmit missing segment

timeout

new ACK
ssthresh=cwnd/2

avoidance

duplicate ACK

dupACKcount++

cwnd=1
dupACKcount=0
retransmit missing segment

Fast
recovery

duplicate ACK

cwnd=cwnd+MSS
transmit new segment(s), as allowed

cwnd=ssthresh
dupACKcount=0

dupACKcount==

ssthresh=cwnd/2
cwnd=ssthresh+3.MSS
retransmit missing segment

