
Exam booklet

2024 - 2025



Reserved address blocks (IPv4)
0.0.0.0 absence of address
127/8 loopback addresses (this host, e.g. 127.0.0.1)

10.0.0.0/8, 172.16.0.0/12,  
192.168.0.0/16 

private addresses (e.g. at home): used by anyone, but not in the 
public Internet (internet routers drop packets destined to them)

100.64/10 private addresses used only by Internet Service Providers (ISPs)—
Carrier Grade NAT addresses

192.88.99/24 IPv6-to-IPv4 relay routers
169.254.0.0/16 link local addresses (can be used only by systems in same LAN)

224/4 multicast
240/4 reserved “for experimental/future use” until recently

255.255.255.255/32 link local (LAN) broadcast



IPv4 Packet Format

Header 
20 bytes 

(+ options,  
if any)

payload

Higher layer 
protocol  

[1 =  ICMP*,  
6 = TCP,  

17 = UDP]

protocol  
overhead 

useful bits 
(higher-layer  

data) 

✴ (ICMP is used to carry error messages at the network layer)



Reserved address blocks (IPv6)
::/128 absence of address

::1/128 loopback address (this host)
fc00::/7 (i.e. fcxx: and fdxx:)   

for example: 
fd24:ec43:12ca:1a6:a00:20ff:fe78:30f9

unique local addresses = private networks (e.g. in EPFL): 
not to be used in the public Internet 

fe80::/10 link local addresses (used only by systems in same LAN)
ff00::/8 multicast

ff02::1:ff00:0/104 solicited node multicast (see NDP later)
ff02::1/128 link local broadcast
ff02::2/128 multicast to all link-local routers (in same LAN)

EPFL 
Private



IPv6 Packet Format
 Higher layer protocol 

[58 =  IPv6-ICMP,  
6 = TCP,  

17 = UDP]

**We will see the functions of 
the fields other than the 
addresses in a following lecture

Header 
40 bytes 

(+ options,  
if any)

Payload

Address field  
16 bytes



Multicast MAC addresses
• Is there Multicast ARP? 

No, multicast MAC address is algorithmically 
derived from multicast IP address:  

- Last 23 bits of IPv4 multicast address  
are used in MAC address 

- Last 32 bits of IPv6 multicast address  
are used in MAC address 

• Note: 
- Multicast MAC depends only on multicast IP address m, 

not on source address s, even if m is an SSM address 
- Several multicast IP addresses may yield the same MAC 

- packets received unnecessarily at the MAC layer are 
removed by the OS; hopefully this happens rarely

MAC multicast addr. Used for
01-00-5e-YX-XX-XX IPv4 multicast
33-33-XX-XX-XX-XX IPv6 multicast

IP dest address 229.130.54.207

IP dest address (hexa) e5-82-36-cf

IP dest address (bin) …-10000010-…

Keep last 23 bits (bin) …-00000010-…

Keep last 23 bits (hexa) 02-36-cf

MAC address 01-00-5e-02-36-cf

1st bit of hextet is 0



Duplicate address testSLAAC Step 2: Duplicate Test

A sends a Neighbour Solication (NS) message to check for address 
duplication, sent to the Solicited Node Multicast Address.
Any host that would have to same link local address listens to this 
multicast address

10

ff02::1:ff78:30f9



Port Numbers

Host  
IP addr=B

Host  
IP addr=A

IP SA=A DA=B prot=UDP 
source port=1267 
destination port=53 
…data… 
                  

process 
sa

process 
ra

UDP

process 
qa

DNS  
client

TCP

IP

1267

process 
sb

process 
rb

UDP

process 
qb

DNS 
server

TCP

IP

53

IP network

UDP Source Port UDP Dest Port 
UDP Message Length UDP Checksum

UDP payload (data)

IP header

UDP datagramIP packet

Default port number 
 for any DNS server

• assigned by OS to identify processes within a host 
• servers’ port numbers must be well-known to clients (e.g. 53 for DNS, 80 for HTTP, 443 for HTTPs) 
• src and dest port numbers are inside transport-layer header 

Ephemeral port 
 dynamically 

assigned by OS



flags 	 meaning          
NS	 used for explicit congestion notification 
CWR	 used for explicit congestion notification 
ECN	 used for explicit congestion notification 
urg  	 urgent ptr is valid 
ack  	 ack field is valid 
psh  	 this seg requests a push (creating a segment immediately) 
rst  	 reset the connection 
syn  	 connection setup 
fin  	 sender has reached end of byte stream

paddingoptions (SACK, MSS, …)

src port dest port

sequence number

ack number

hlen windowflags rsvd

urgent pointerchecksum

segment data (if any) 

TCP 
header 
(20 Bytes +  
options)

IP header (20 or 40 B + options)

<= MSS bytes

32 bits

Indicates the next  
expected seq num  
from the other host

TCP dataTCP hdr

IP data = TCP segmentIP hdr

prot=TCP   

TCP Segment Format



= Routing table

routes obtained locally 
(redistributed)

The Decision Process
The decision process chooses at most one route  
to each different destination prefix as best 

e.g.: only one route to 2.2/16 can be chosen, 
but there can be different routes to 2.2.2/24 and 2.2/16 

How? 
• A route can be selected only if its next-hop is reachable 
• For each dest prefix, all acceptable routes are compared  

w.r.t. their attributes using a sequence of criteria 
(until only one route remains); a common sequence is: 

0. Highest weight (Cisco proprietary)
1. Highest LOCAL-PREF
2. Shortest AS-PATH
3. Lowest MED, if taken seriously by this network
4. e-BGP > i-BGP (= if route is learnt from e-BGP, it has priority)

5. Shortest path to NEXT-HOP, according to IGP
6. Lowest BGP identifier (router-id of the BGP peer from whom route is received) 

(The Cisco and FRR implementation of BGP, used in lab 6, have additional cases, not shown here) 
 

The result of the decision process is stored in forwarding table and in Adj-RIB-out (one route per destination for each BGP peer). 
The router sends updates when Adj-RIB-out changes (addition or deletion) after applying export rules. 



Fairness of TCP Reno
For long lived flows, the rates obtained with TCP Reno are as if they were distributed according to utility 

fairness, with utility of flow  given by  

with  = rate (in MSSs) = ,     = RTT (see “Rate adaptation, Congestion Control and Fairness: A Tutorial") 

For flows that have same RTT, the fairness of TCP is between max-min and proportional fairness, closer to 
proportional fairness:

𝑖 Ui(xi) =
2

τi
arctan

xiτi

2
xi W/τi τi

rescaled utility 
functions;  
RTT = 100 ms 
maxmin approx. is 𝑈(𝑥) = 1 − 𝑥−5

maxmin≈

proportional fairness
AIMD

Reno



TCP Reno 
 Loss - Throughput Formula
Consider a large TCP flow size (many bytes to transmit). 
Assume we observe that, in average, a fraction q of packets is lost (or marked with ECN). 
	  

The throughput should be close to .

Formula assumes:  
transmission time is negligible compared to RTT,  
losses are rare and occur periodically, 
time spent in Slow Start and Fast Recovery is negligible. 

[see “Rate adaptation, Congestion Control and Fairness: A Tutorial”]

𝜃 =
𝑀𝑆𝑆 1.22
𝑅𝑇 𝑇  𝑞



Cubic’s Loss throughput formula

Given the same assumptions as for TCP Reno: 

  in MSS per second. 

So: 
• Cubic’s formula is same as Reno 

for small RTTs and small BW-delay products 
• but a TCP Cubic connection gets more  

throughput than TCP Reno when bit-rate and 
RTT are large  

Other details: computation of  uses a more complex mechanism called “fast convergence” - see  Latest IETF  Cubic 
RFC / Internet Draft or  http://elixir.free-electrons.com/linux/latest/source/net/ipv4/tcp_cubic.c

𝜃 ≈ max( 
1.054

𝑅𝑇 𝑇 0.25𝑞0.75 
,

1.22
𝑅𝑇 𝑇  𝑞 )

𝑊𝑚𝑎𝑥

q

Mb/s

Reno
RTT = 12.5 ms

RTT = 800 ms

 Cubic @ RTT = 100 ms

http://elixir.free-electrons.com/linux/latest/source/net/ipv4/tcp_cubic.c


TCP Reno — recap

Figure from our textbook:	
"Computer Networking: A top-down approach" 	
by J. Kurose and K. Ross 


