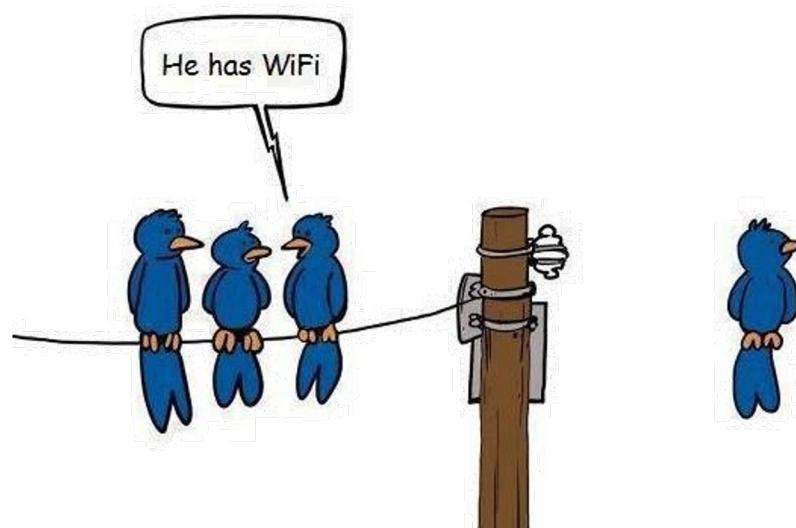
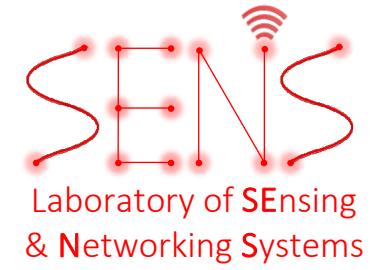


COM-405: Mobile Networks

Lecture 2.1: OFDM I

Haitham Hassanieh



Why OFDM?

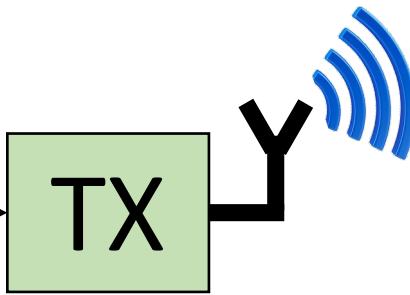
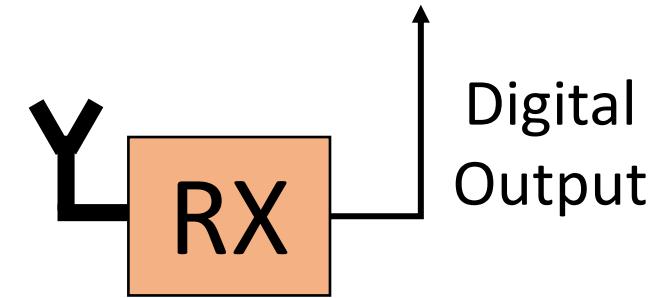
- Makes life easy → channel estimation and correction is straightforward
- Used in most high throughput mobile networks:
 - WiFi 4, 5, 6
 - 4G, 5G, ... 6G
- Higher layer resource allocation schemes use OFDMA (WiFi 6, 4G, 5G)

Wireless Communication

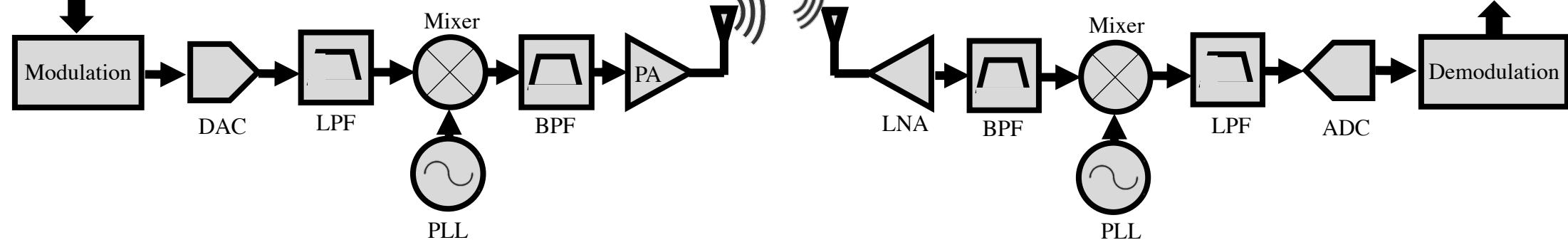
1011010110011001

1011010110011001

Digital
Input



1011010110



1011010110 \rightarrow $s[n] \rightarrow s(t) \rightarrow s(t) \cos 2\pi f_c t \rightarrow h(t) * s(t) \cos 2\pi f_c t \times \cos 2\pi f_c t \rightarrow h(t) * s(t) \rightarrow h[n] * s[n]$

$s[n]$

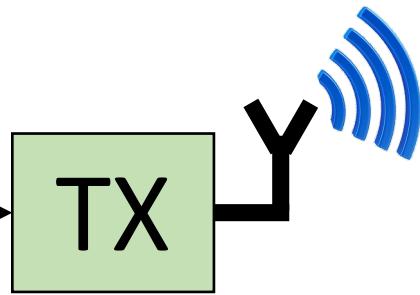
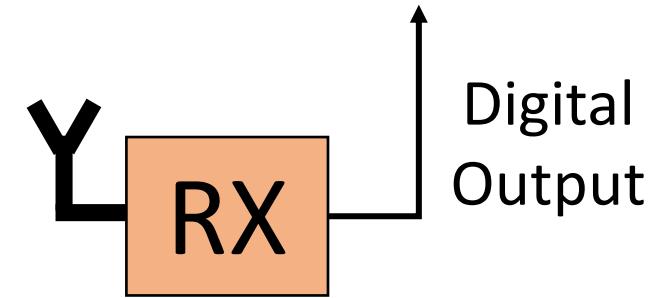
1011010110

Wireless Communication

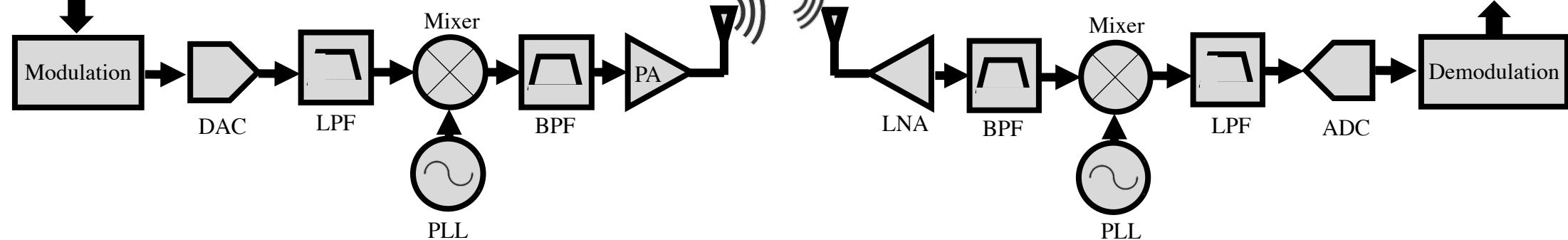
1011010110011001

1011010110011001

Digital
Input



1011010110



1011010110 \rightarrow $s[n] \rightarrow s(t) \rightarrow s(t)e^{-j2\pi f_c t} \rightarrow h(t) * s(t)e^{-j2\pi f_c t} \times e^{+j2\pi f_c t} \rightarrow h(t) * s(t) \rightarrow h[n] * s[n]$

$s[n]$

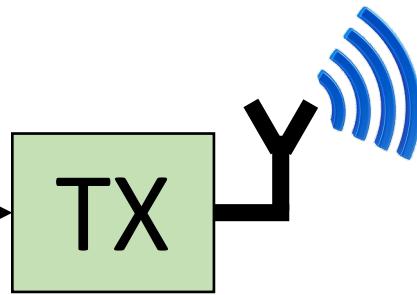
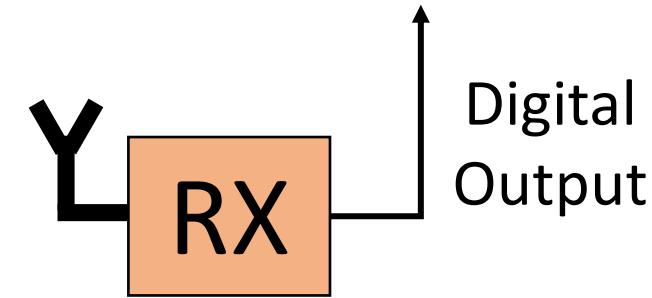
1011010110

Wireless Communication

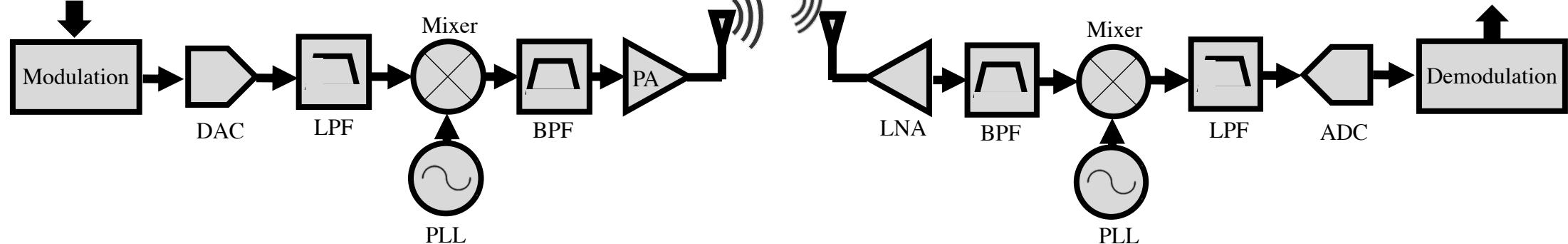
1011010110011001

1011010110011001

Digital
Input



1011010110



1011010110011001 → $s[n]$ →

$s[n]e^{-j2\pi f_c t}$ → $h[n] * s[n]e^{-j2\pi f_c t} \times e^{+j2\pi f_c t}$

→ $h[n] * s[n]$

$s[n]$

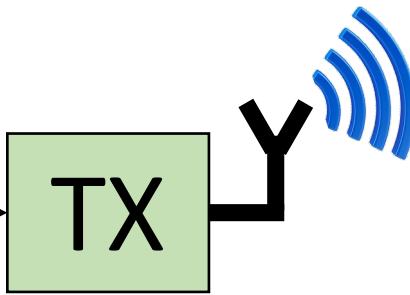
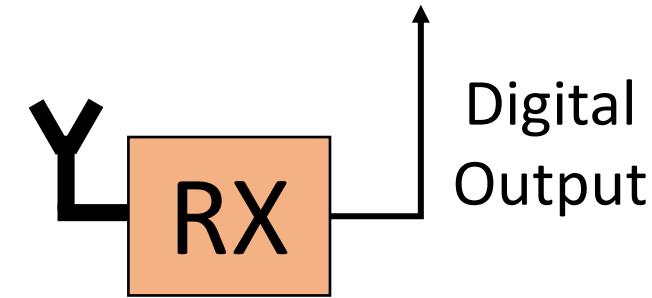
1011010110011001

Wireless Communication

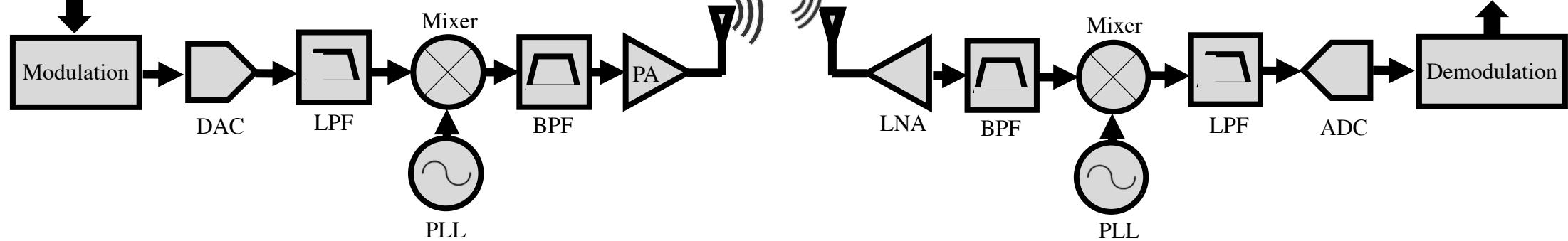
1011010110011001

1011010110011001

Digital
Input



1011010110



1011010110 \rightarrow $s[n]$ \rightarrow $s[n]e^{-j2\pi f_c t}$ \rightarrow $h[n] * s[n]e^{-j2\pi f_c t} \times e^{+j2\pi f_c t}$ \rightarrow $h[n] * s[n]$ \rightarrow $s[n]$ \rightarrow 1011010110

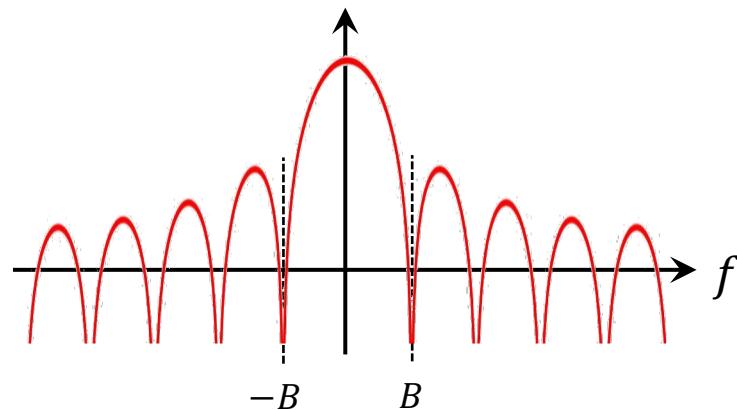
Single Carrier Modulation

Symbols modulated on a single carrier frequency: $s[n]e^{-j2\pi f_c t}$

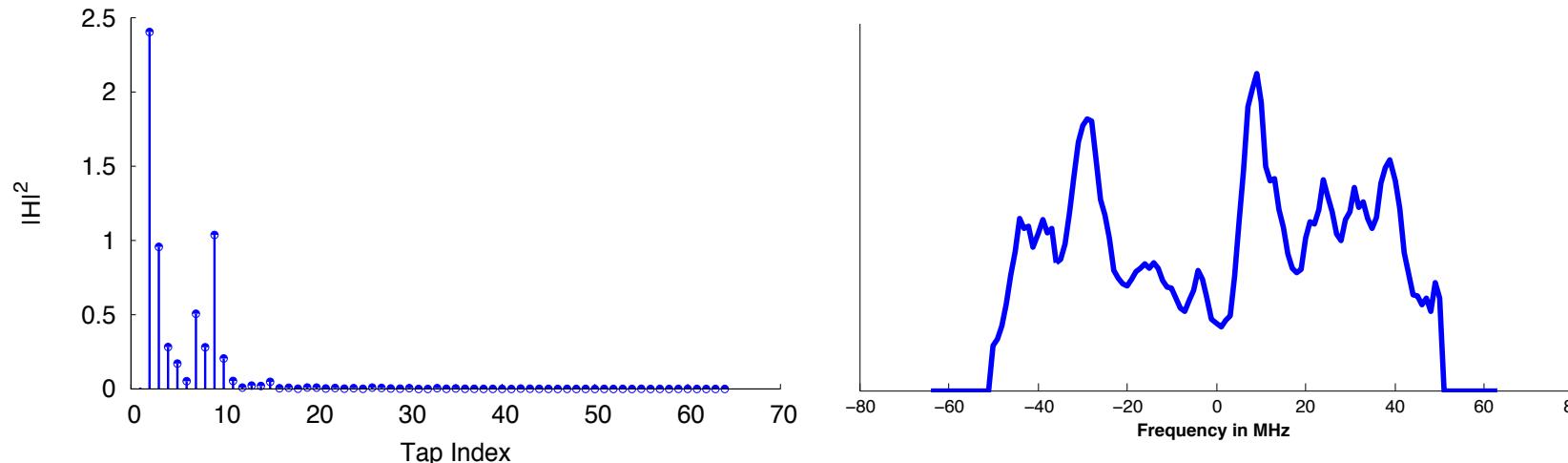
Single Carrier Modulation

Symbols modulated on a single carrier frequency

- Low Spectral Efficiency: leakage



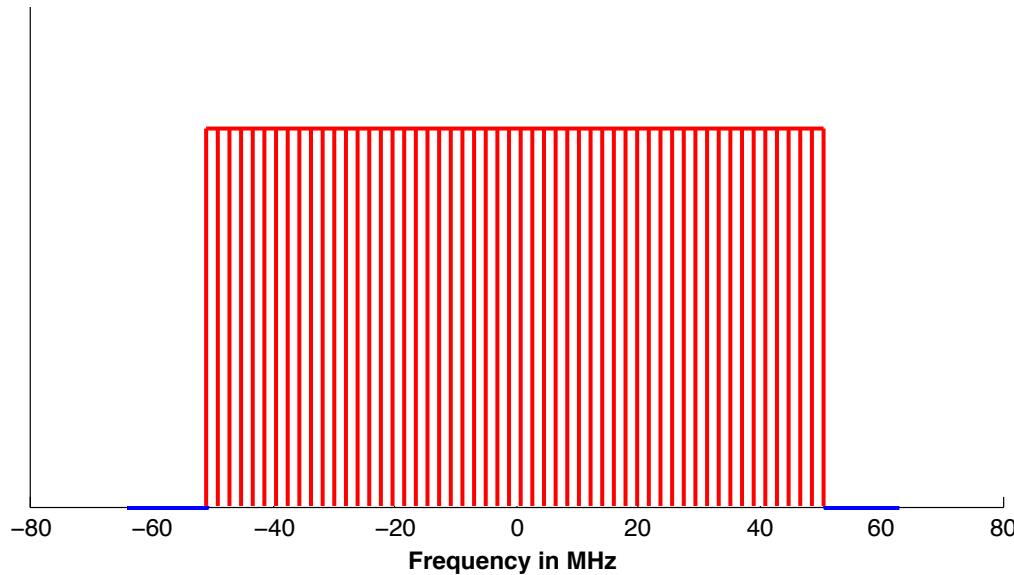
- ISI: Inter-Symbol-Interference limits performance



Multi-Carrier Modulation

Symbols modulated on multiple Sub-carrier frequencies

- Divide spectrum into many narrow bands



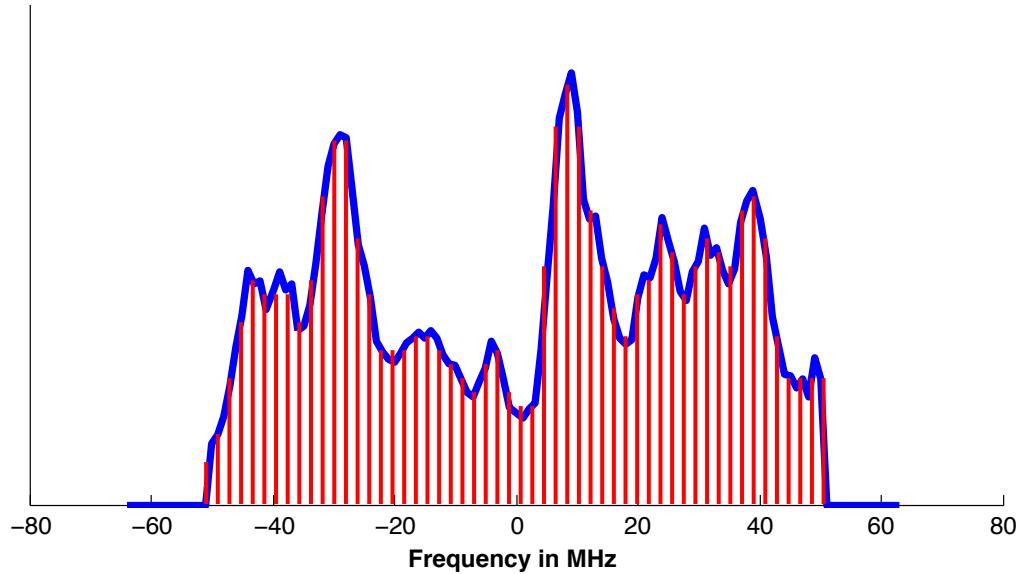
$$x(t) = \sum_i s_i[n] e^{-j2\pi f_i t}$$

- Transmit symbols on different carriers in narrow bands
- Channel is Flat → No need to worry about ISI

Multi-Carrier Modulation

Symbols modulated on multiple Sub-carrier frequencies

- Divide spectrum into many narrow bands



$$x(t) = \sum_i s_i[n] e^{-j2\pi f_i t}$$

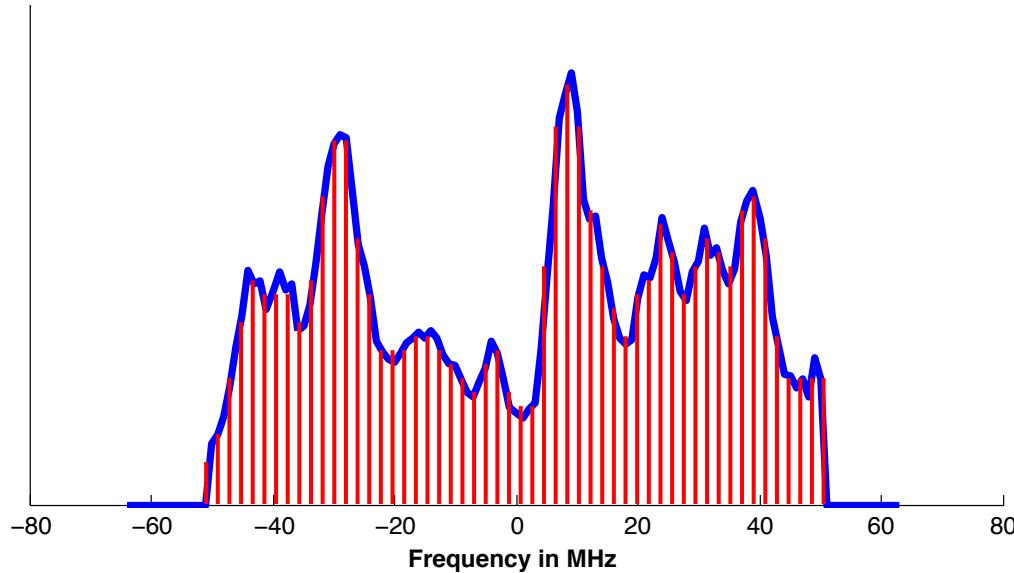
$$y(t) = \sum_i h_i s_i[n] e^{-j2\pi f_i t}$$

- Transmit symbols on different carriers in narrow bands
- Channel is Flat → No need to worry about ISI

Multi-Carrier Modulation

Symbols modulated on multiple Sub-carrier frequencies

- Divide spectrum into many narrow bands



$$x(t) = \sum_i s_i[n] e^{-j2\pi f_i t}$$

$$y(t) = \sum_i h_i s_i[n] e^{-j2\pi f_i t}$$

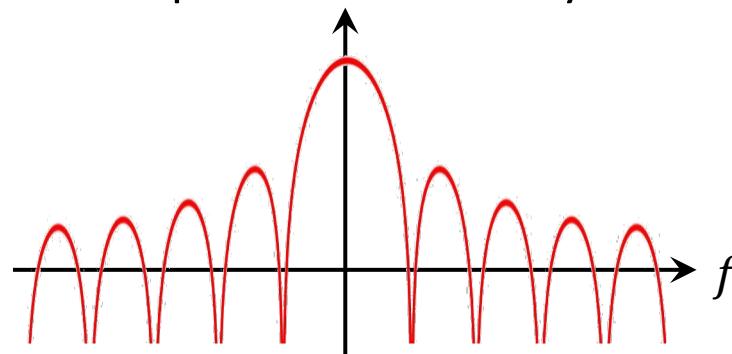
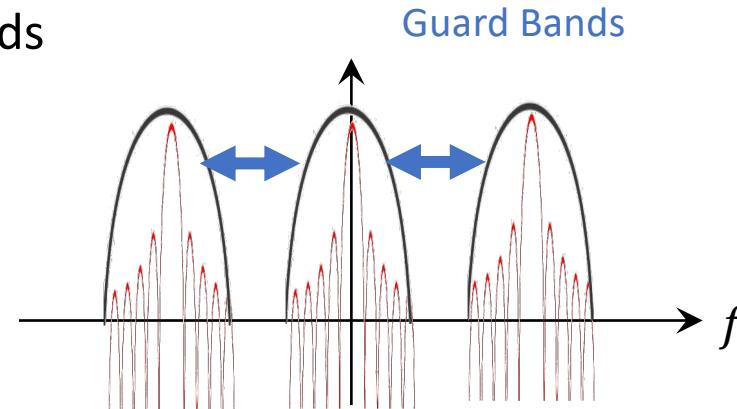
- Transmit symbols on different carriers in narrow bands
- Channel is Flat → No need to worry about ISI

Not That Simple!

Multi-Carrier Modulation

Symbols modulated on multiple Sub-carrier frequencies

- Divide spectrum into many narrow bands



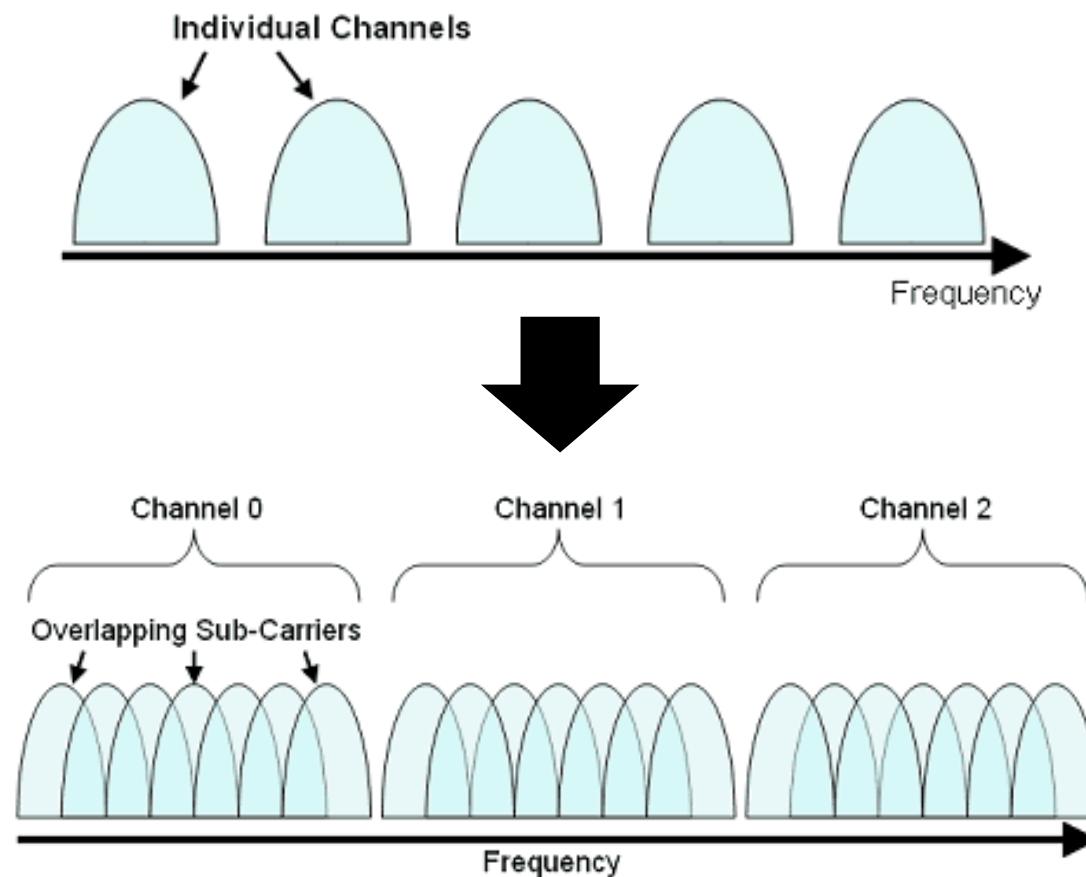
- Significant Leakage between adjacent subcarriers
- Need Guard Bands → Very inefficient!

Solution: Make the Sub-Carriers Orthogonal

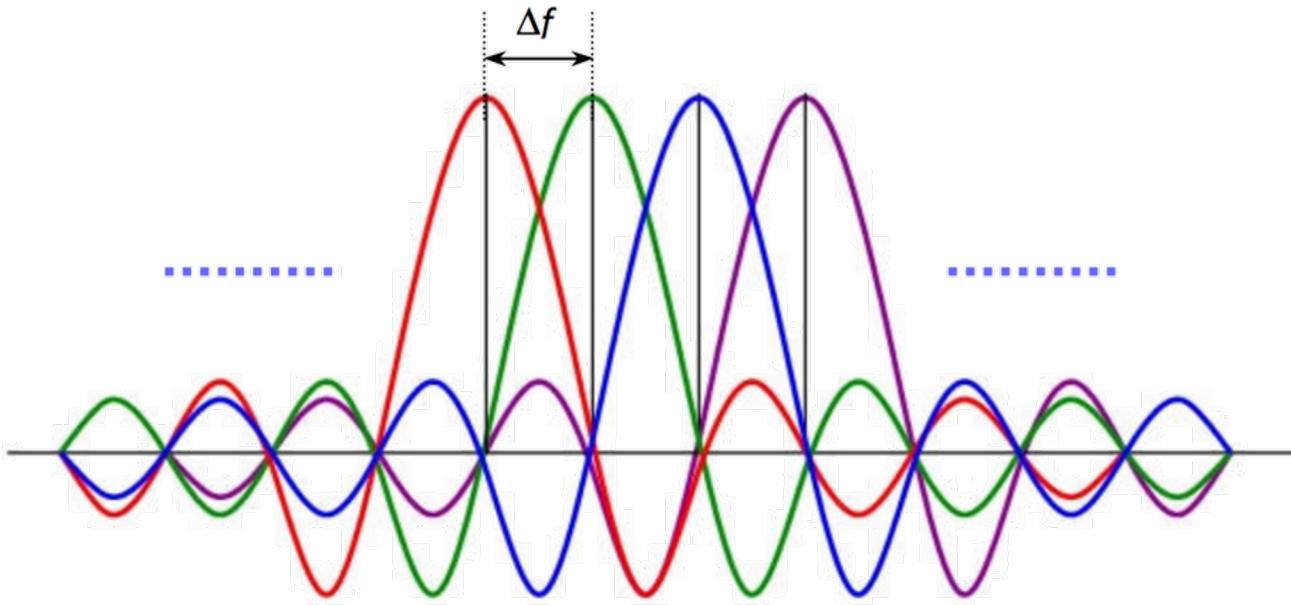
Multi-Carrier Modulation

Symbols modulated on multiple Sub-carrier frequencies

Make the Sub-Carriers Orthogonal



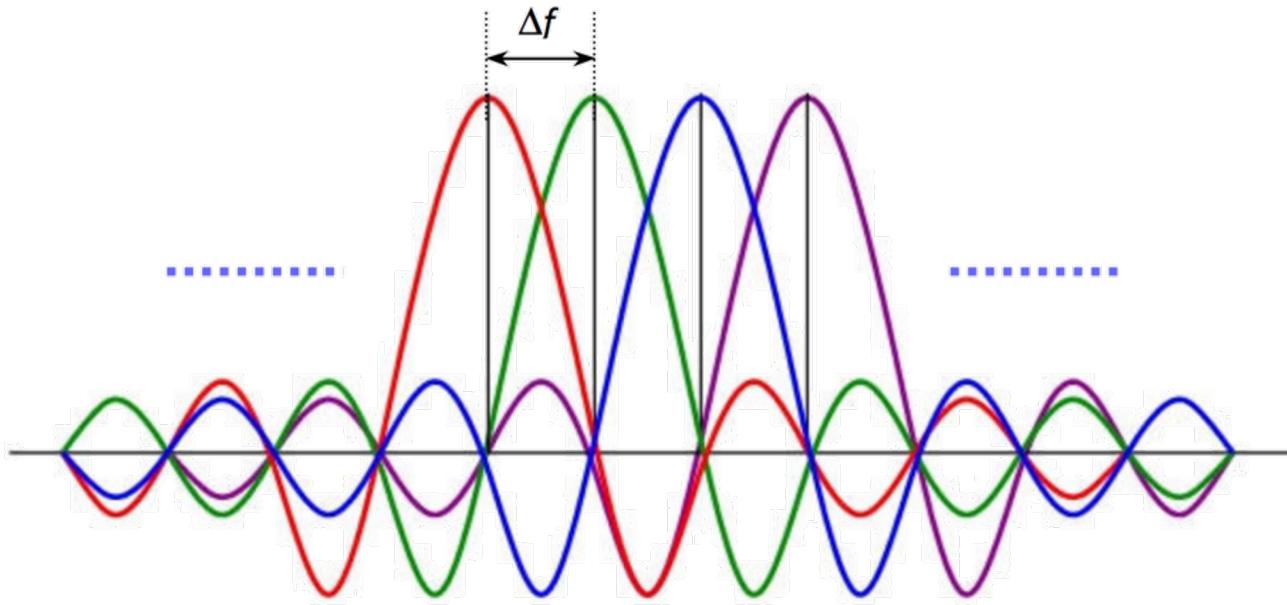
OFDM: Orthogonal Frequency Division Multiplexing



- Subcarriers are orthogonal: At the sub-carrier frequency, the sampled value has zero leakage from other subcarriers.
- Subcarrier separation can be very small, for N subcarriers and bandwidth B :

$$\Delta f = \frac{B}{N}$$

OFDM: Orthogonal Frequency Division Multiplexing



- Subcarriers are orthogonal: At the sub-carrier frequency, the sampled value has zero leakage from other subcarriers.
- Subcarrier separation can be very small, for N subcarriers and bandwidth B :

$$\Delta f = \frac{B}{N}$$

How to Achieve This?

OFDM: Orthogonal Frequency Division Multiplexing

Use DFT: Discrete Fourier Transform

$$\text{N-Point DFT: } X(f_i) = \frac{1}{N} \sum_{t=0}^{N-1} x(t) e^{-j \frac{2\pi f_i t}{N}}$$

$$\text{N-Point IDFT: } x(t) = \sum_{f_i=0}^{N-1} X(f_i) e^{j \frac{2\pi f_i t}{N}}$$

Send symbols in Frequency Domain

$X(f_i) = s[n] \rightarrow$ Compute and transmit $x(t)$ using IDFT

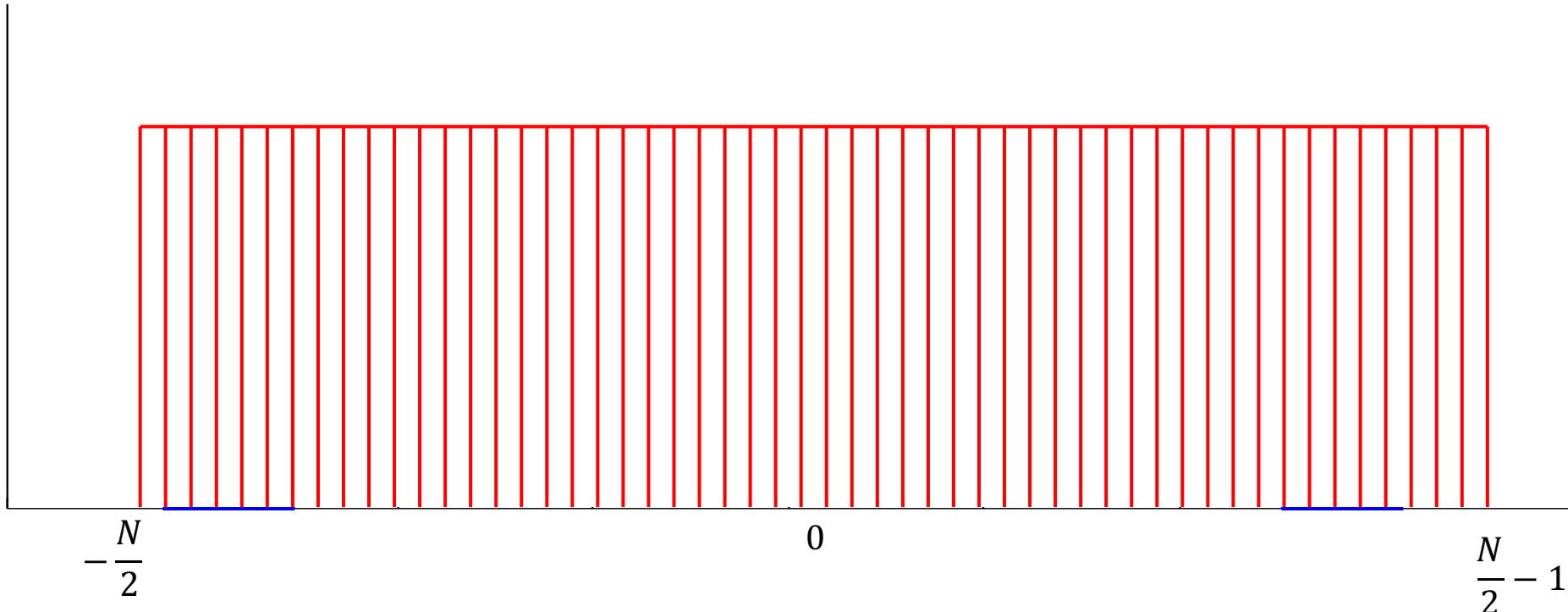
OFDM: Orthogonal Frequency Division Multiplexing

Send symbols in Frequency Domain

$X(f_i) = s[n] \rightarrow$ Compute and transmit $x(t)$ using IDFT

- N subcarrier \rightarrow IDFT of length N
- Symbols $s[n]$ can come from any modulation: BPSK, QPSK, QAM...
- $x(t)$ is complex \rightarrow need I & Q \rightarrow No point using PAM or ASK ...
- OFDM Symbol: N samples of $x(t)$ generated from the same modulated symbols using IDFT.
- OFDM Symbol Time: $T = N/B$ where B is the bandwidth.
- OFDM Frequency Bin Width: $\Delta f = 1/T = B/N$

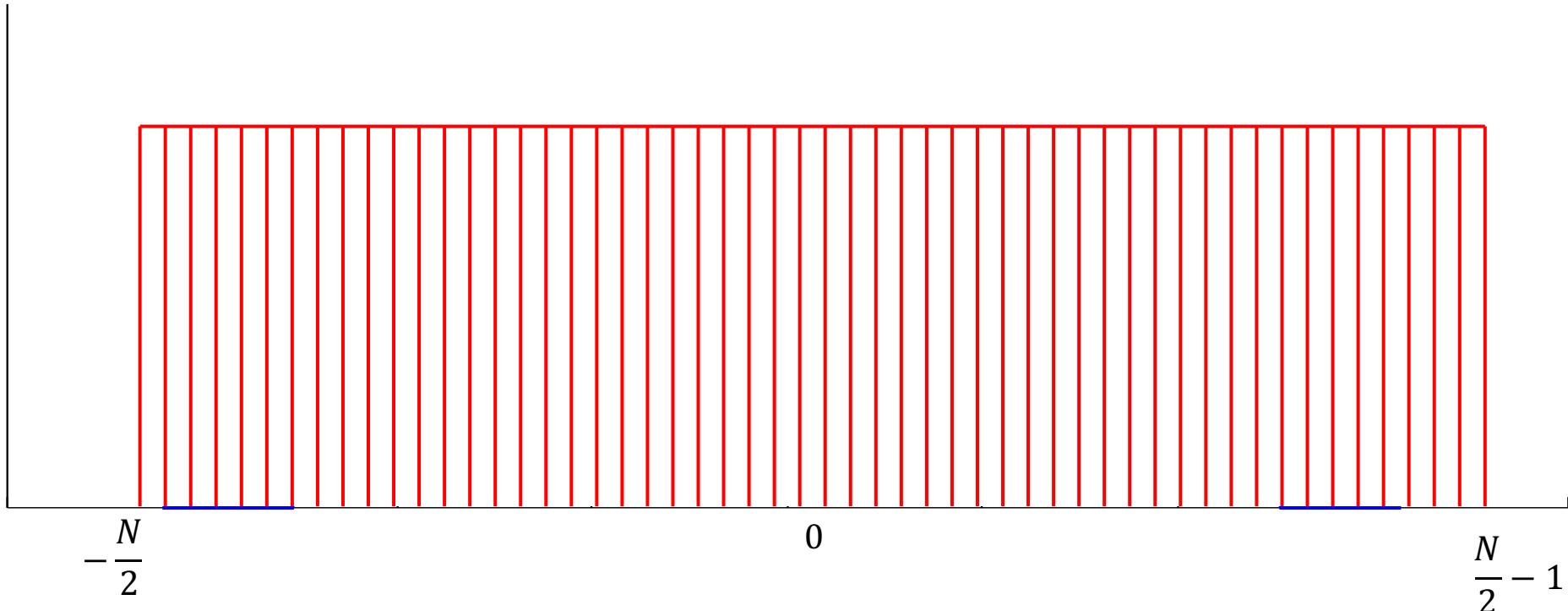
OFDM Symbol in Frequency Domain



- FFT can be represented 0 to $N - 1$ or $N/2$ to $N/2 - 1$.
- OFDM Symbol created in digital baseband \rightarrow 0 bin corresponds to DC

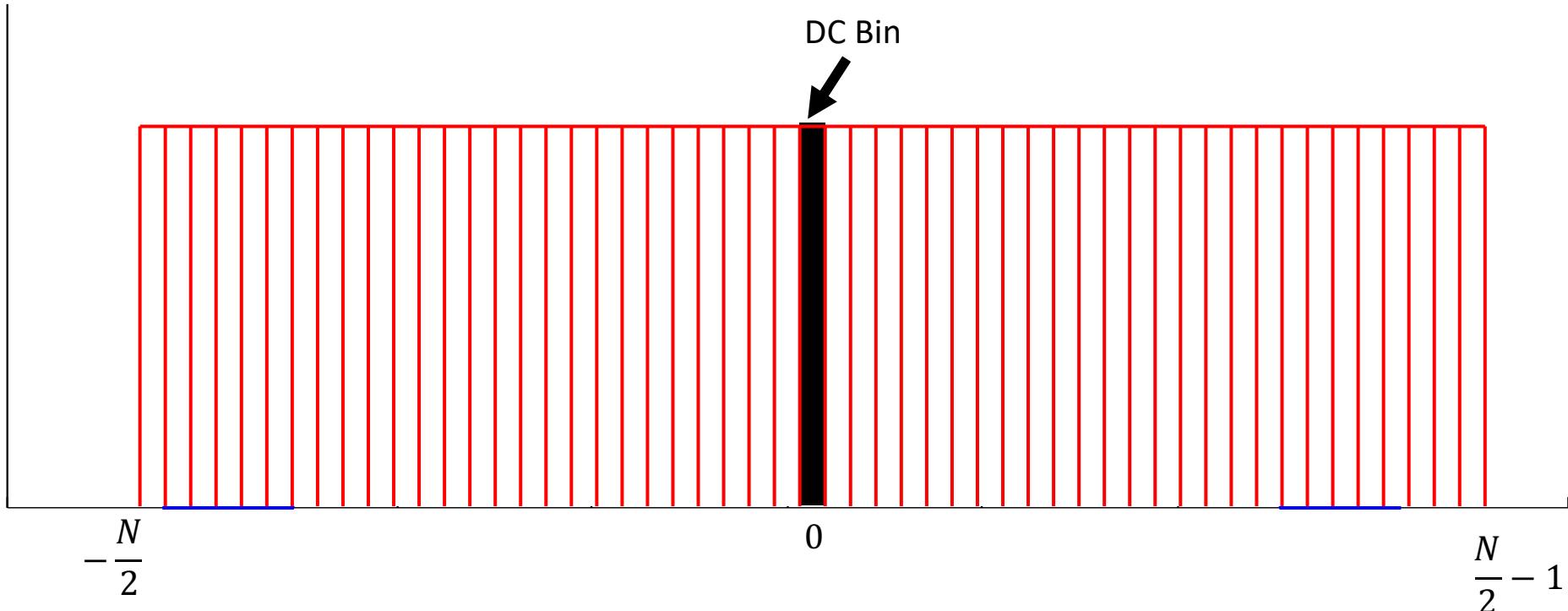
$$X(0) = \frac{1}{N} \sum_{t=0}^{N-1} x(t) e^{-j \frac{2\pi 0 t}{N}} = \frac{1}{N} \sum_{t=0}^{N-1} x(t) = DC$$

OFDM Symbol in Frequency Domain



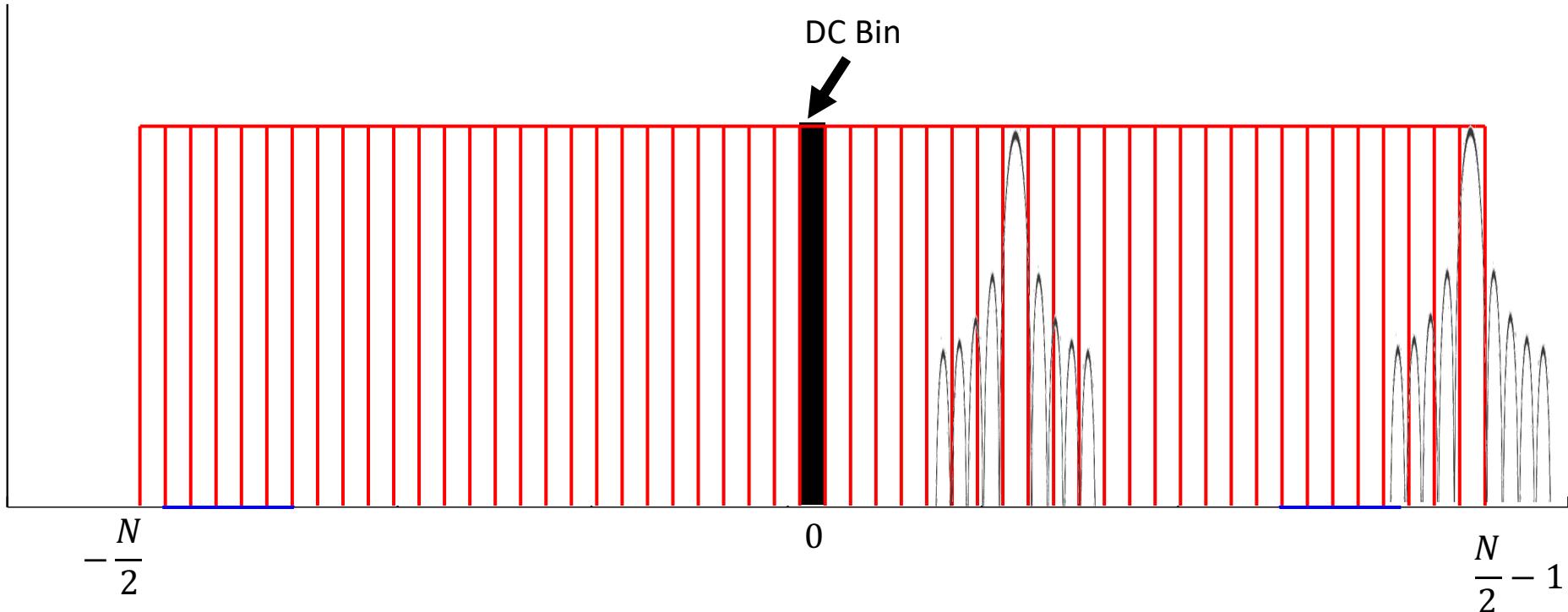
- FFT can be represented 0 to $N - 1$ or $N/2$ to $N/2 - 1$.
- OFDM Symbol created in digital baseband \rightarrow 0 bin corresponds to DC
- DC of the circuits corrupts bits sent on the 0 bin \rightarrow Do not use 0 bin

OFDM Symbol in Frequency Domain



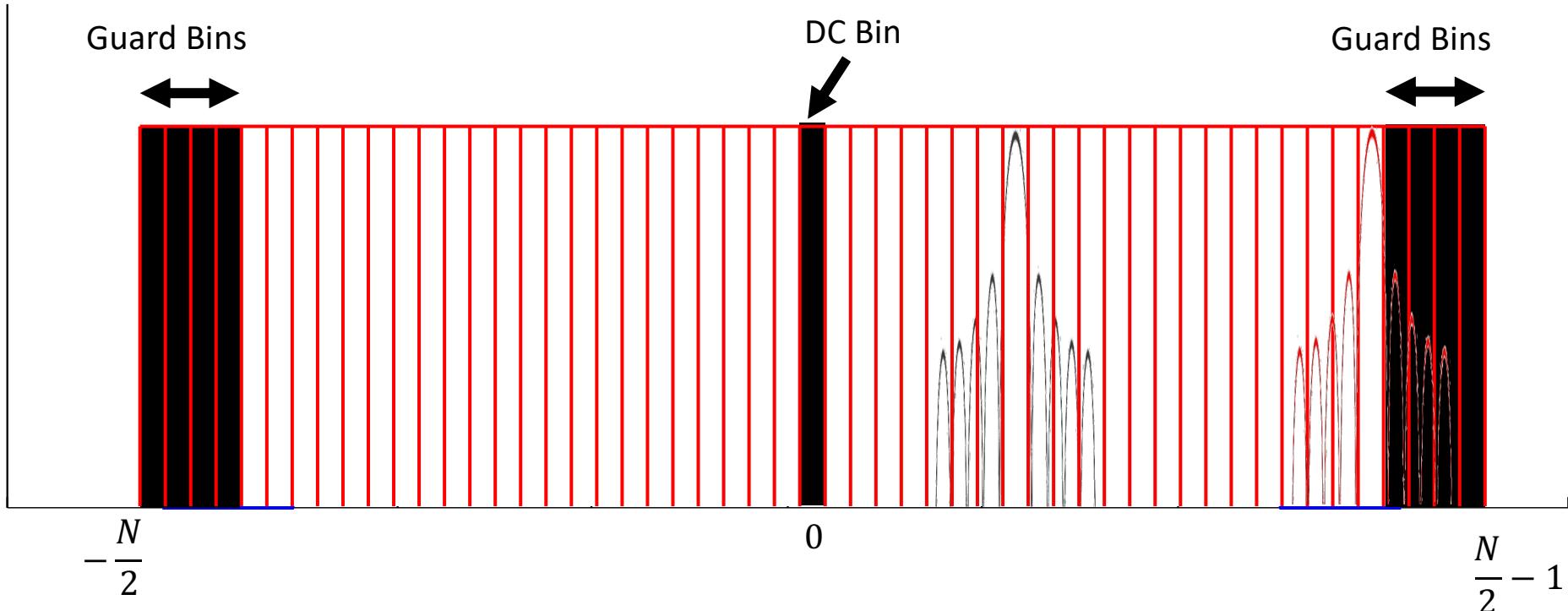
- FFT can be represented 0 to $N - 1$ or $N/2$ to $N/2 - 1$.
- OFDM Symbol created in digital baseband \rightarrow 0 bin corresponds to DC
- DC of the circuits corrupts bits sent on the 0 bin \rightarrow Do not use 0 bin

OFDM Symbol in Frequency Domain



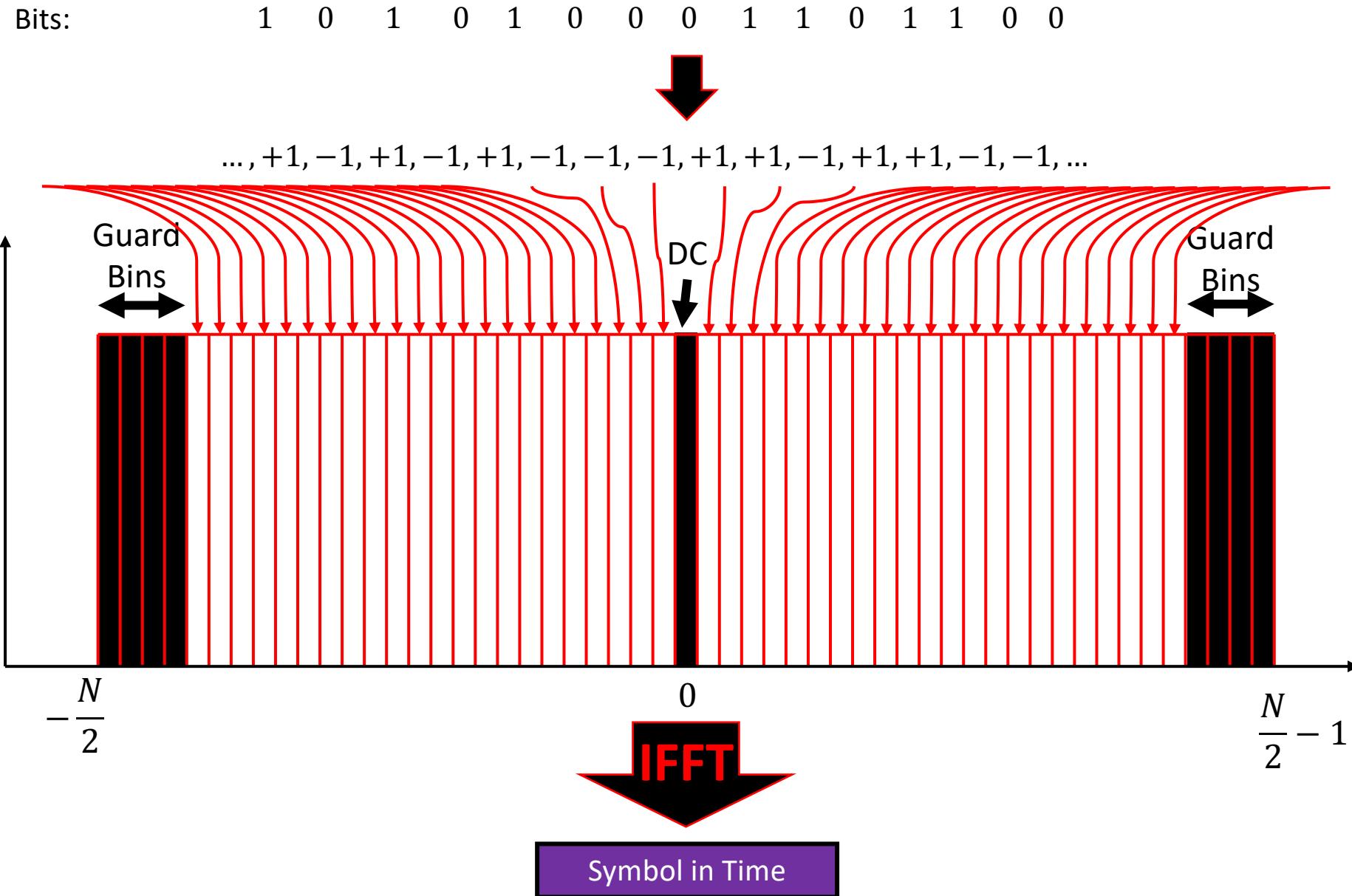
- Subcarriers orthogonal to each other but not to near by channels.
- Need Guard Bins at sides of the channel → Transmit nothing there

OFDM Symbol in Frequency Domain

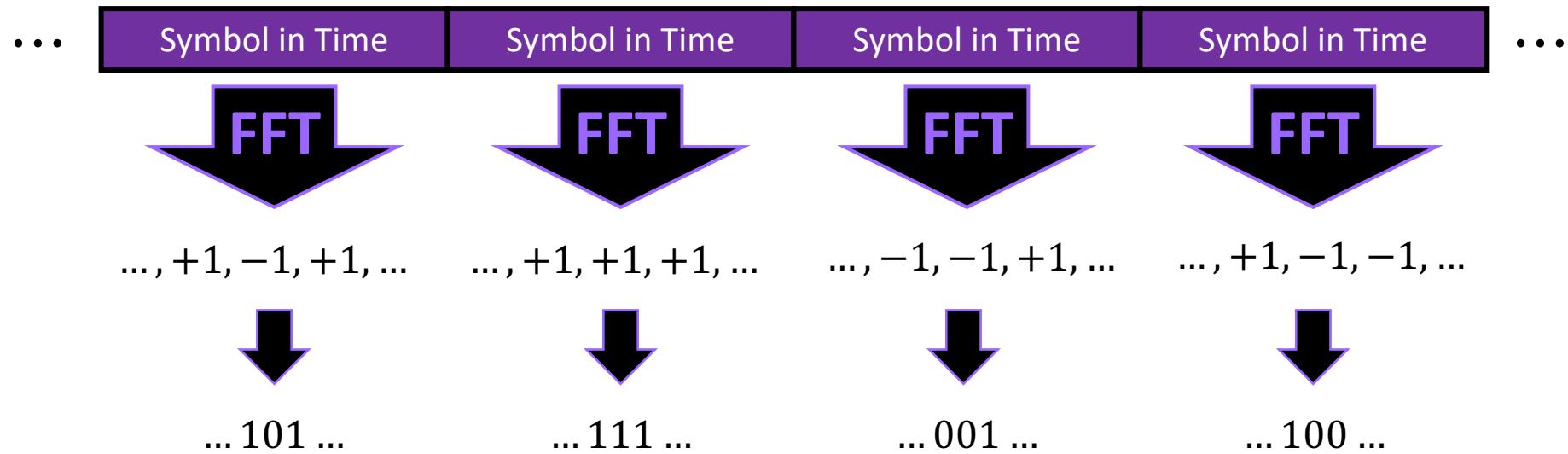


- Subcarriers orthogonal to each other but not to near by channels.
- Need Guard Bins at sides of the channel → Transmit nothing there
- Reduce Number of Guard band from N to 2 → Very Spectrally Efficient

OFDM Symbol

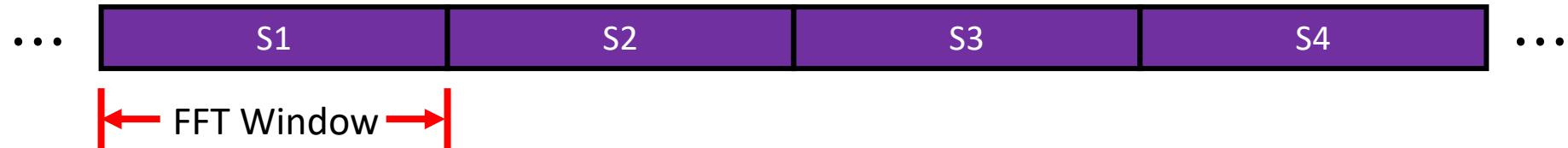


OFDM Symbol



Not That Simple

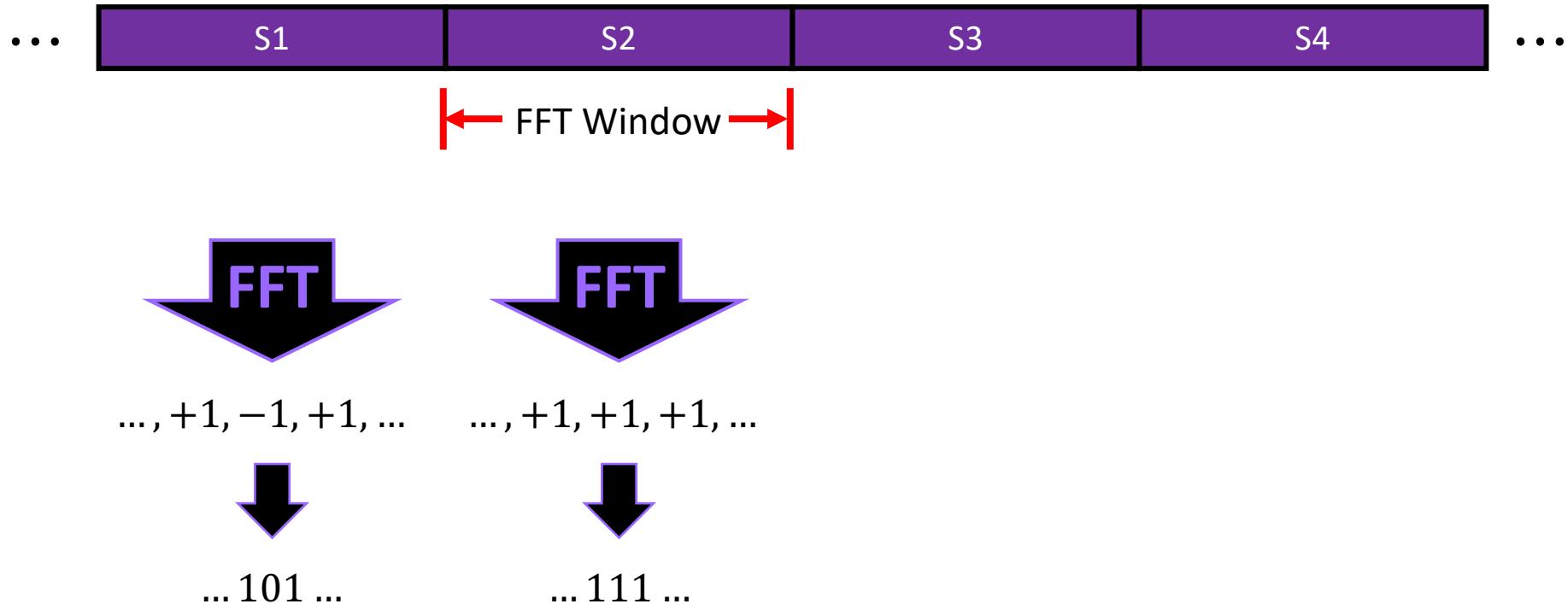
OFDM Symbol



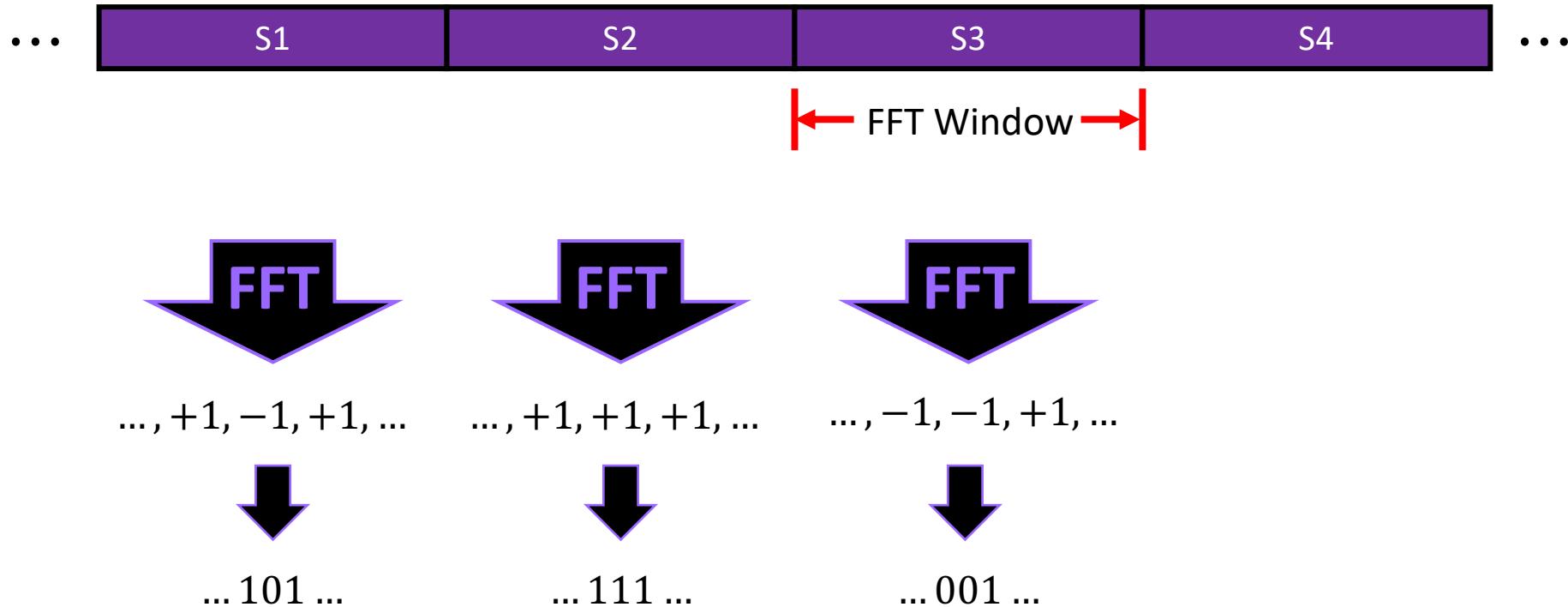
$\dots, +1, -1, +1, \dots$

$\dots 101 \dots$

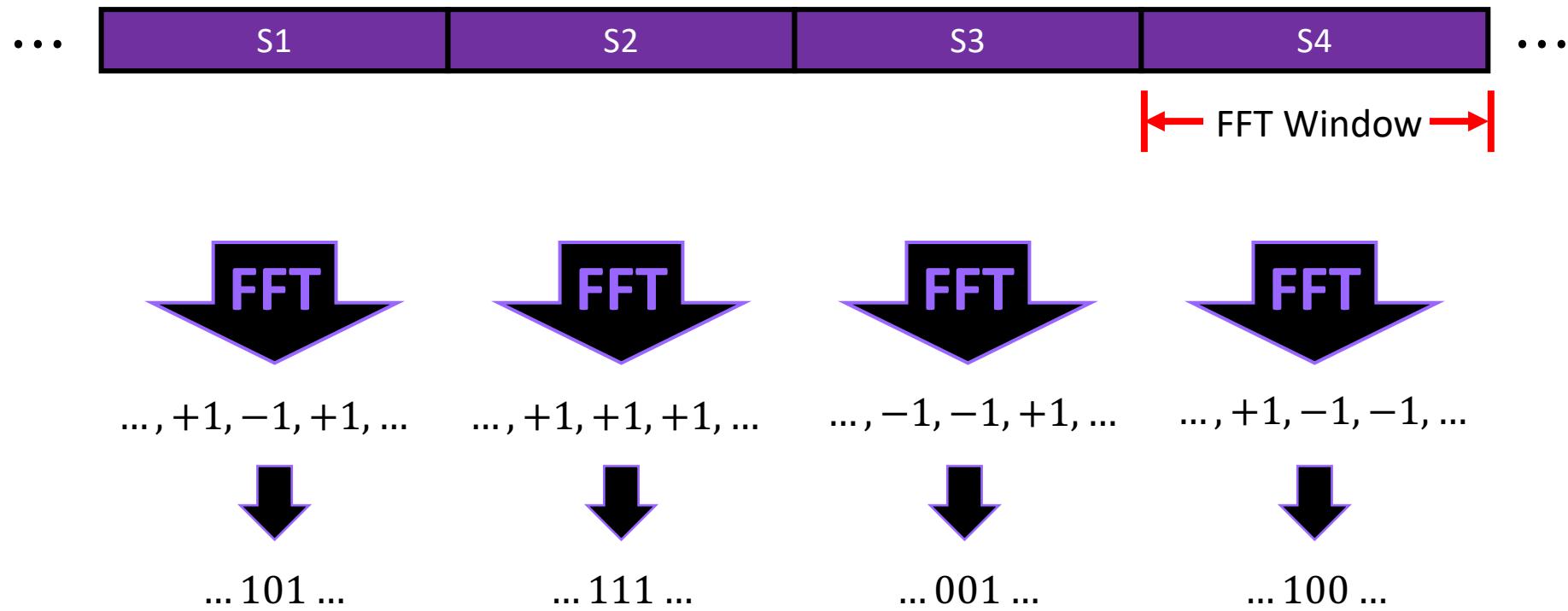
OFDM Symbol



OFDM Symbol

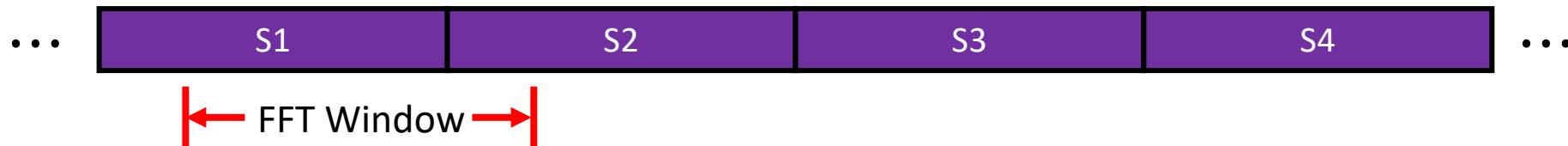


OFDM Symbol



Assumes FFT window is perfectly aligned with symbol boundaries

OFDM Symbol



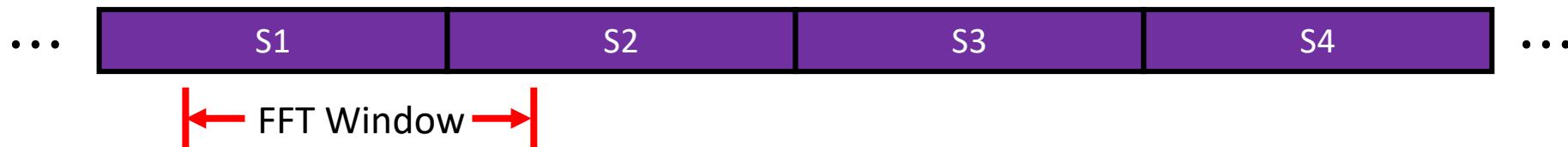
$\dots, +0.5 + 1i, -0.7 + 0.3i, \dots$

✗ Cannot decode!

FFT window is misaligned with symbol

Subcarriers are no longer orthogonal.

OFDM Cyclic Prefix

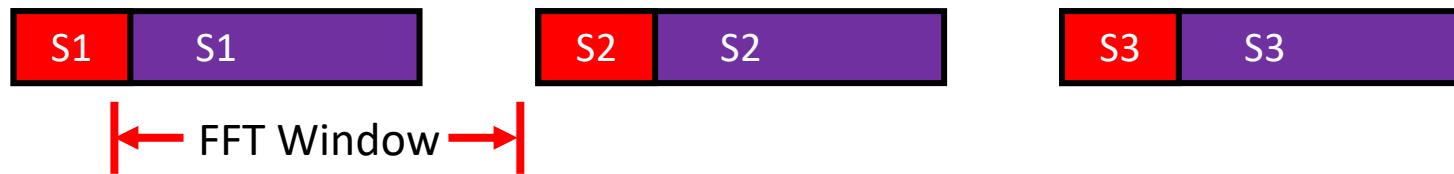


- DFT (FFT) assumes time samples are periodic of period N
- Circular Shift before taking FFT:

$$x[t] \rightarrow X[f]$$

$$x[t - \tau \bmod N] \rightarrow X[f]e^{-j\frac{2\pi f \tau}{N}}$$

OFDM Cyclic Prefix

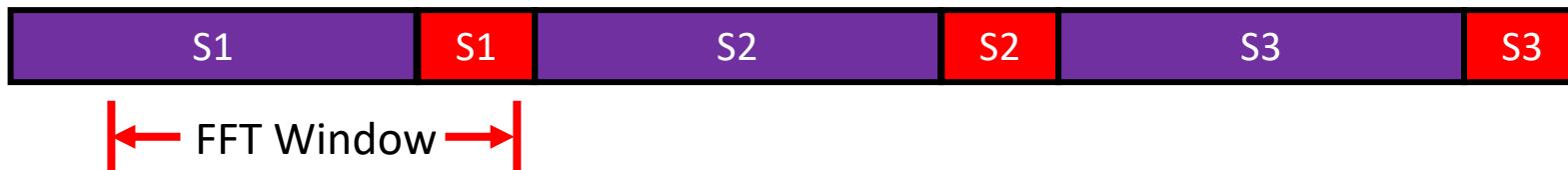


- DFT (FFT) assumes time samples are periodic of period N
- Circular Shift before taking FFT:

$$x[t] \rightarrow X[f]$$

$$x[t - \tau \bmod N] \rightarrow X[f]e^{-j\frac{2\pi f \tau}{N}}$$

OFDM Cyclic Prefix

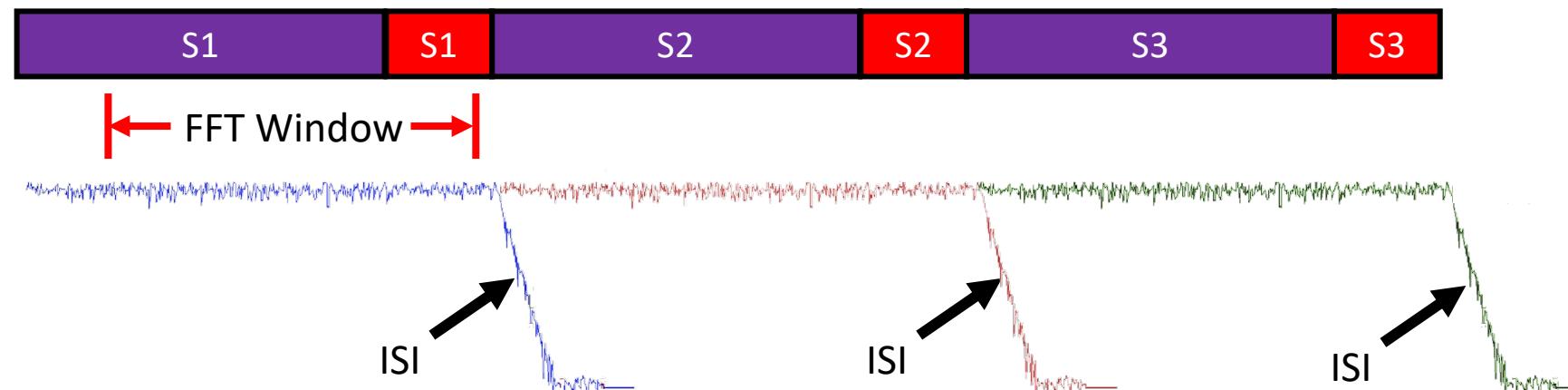


- Even if FFT window is misaligned, CP ensures that all samples come from the same symbol → Orthogonality is preserved!
- Cyclic Prefix can be created by:
 - Take first few samples and append them to end of symbol.
 - Take last few samples and prefix them to beginning of symbol.
- Simple Phase Shift → Can be corrected by lumping with channel $H[f]$

OFDM Cyclic Prefix

Cyclic Prefix:

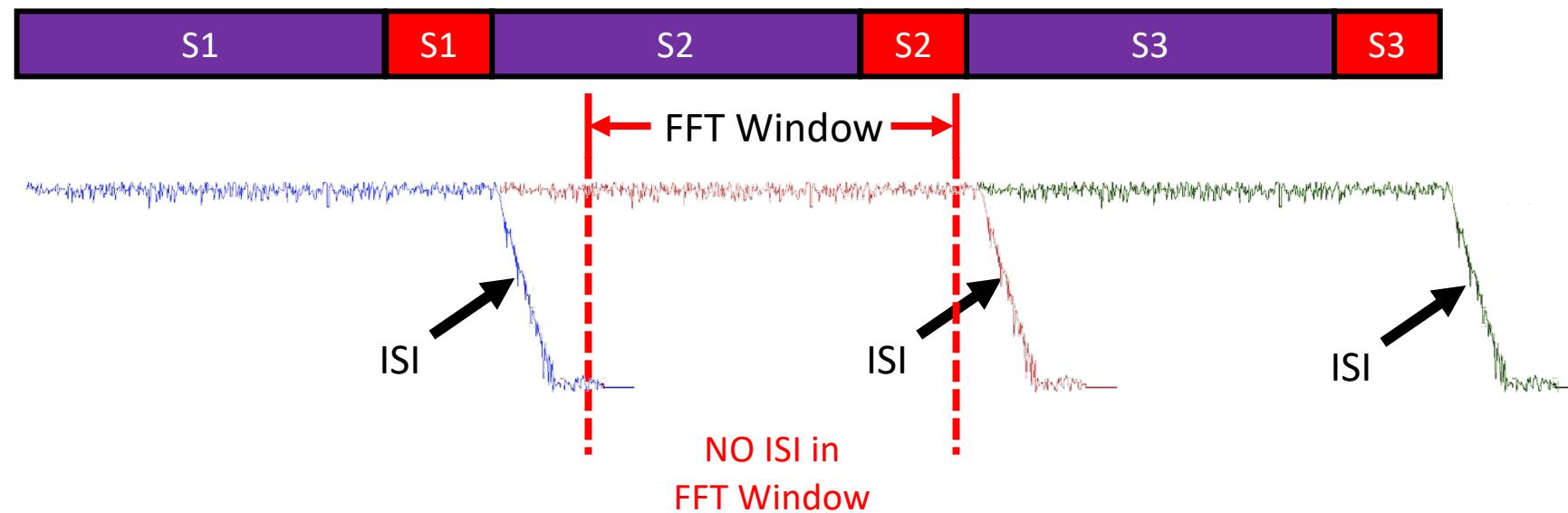
- Preserves orthogonality by allowing some misalignment in FFT Window
- Deals with Inter-Symbol-Interference



OFDM Cyclic Prefix

Cyclic Prefix:

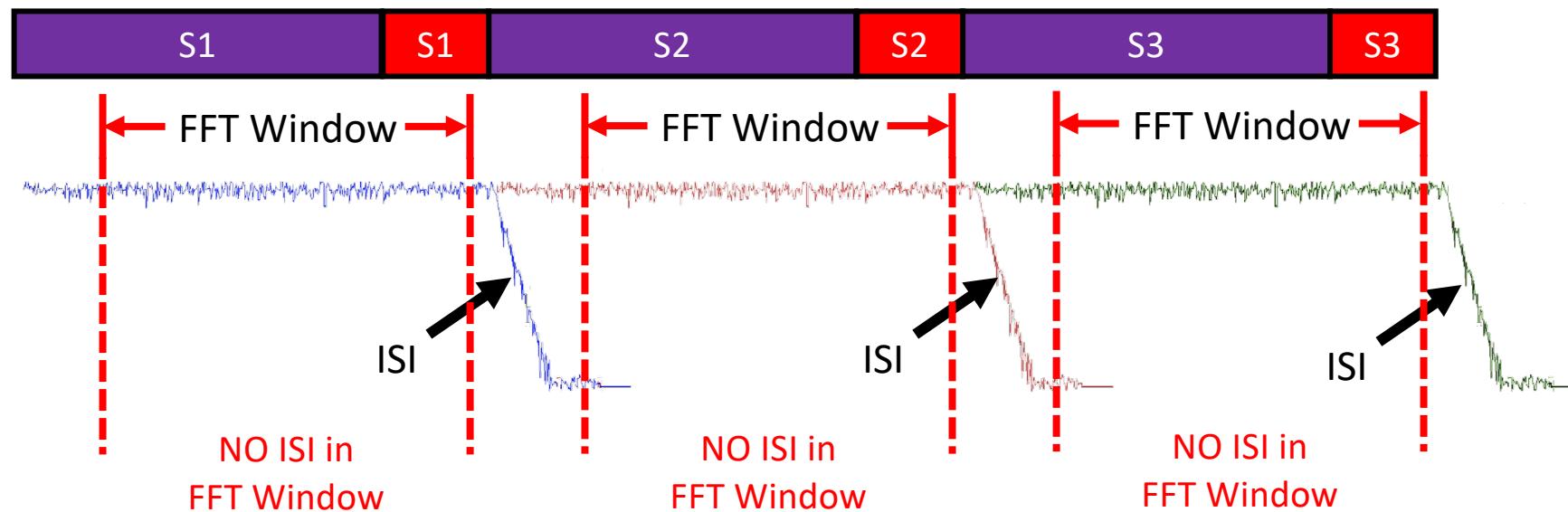
- Preserves orthogonality by allowing some misalignment in FFT Window
- Deals with Inter-Symbol-Interference



OFDM Cyclic Prefix

Cyclic Prefix:

- Preserves orthogonality by allowing some misalignment in FFT Window
- Deals with Inter-Symbol-Interference



OFDM Cyclic Prefix

Cyclic Prefix:

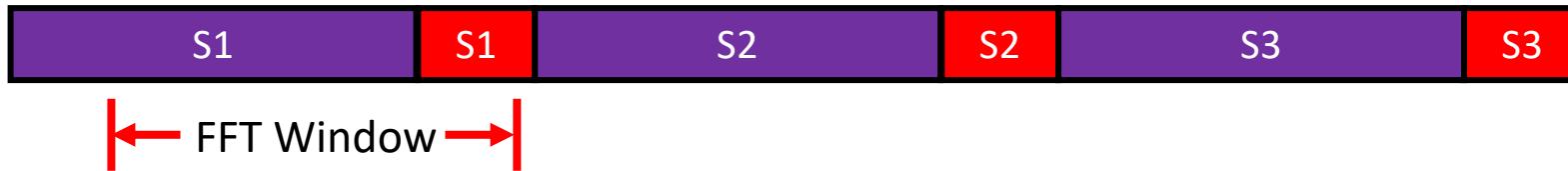
- + Preserves orthogonality by allowing some misalignment in FFT Window
- + Deals with Inter-Symbol-Interference
- Overhead: Send $CP + N$ samples for every N samples

$$\text{Overhead} = \frac{CP}{CP + N}$$

e. g. WiFi 802.11n: $N = 64$, $CP = 16 \rightarrow \text{Overhead} = 20\%$

e. g. LTE: $N = 1024$, $CP = 72 \rightarrow \text{Overhead} = 6.5\%$

OFDM Cyclic Prefix



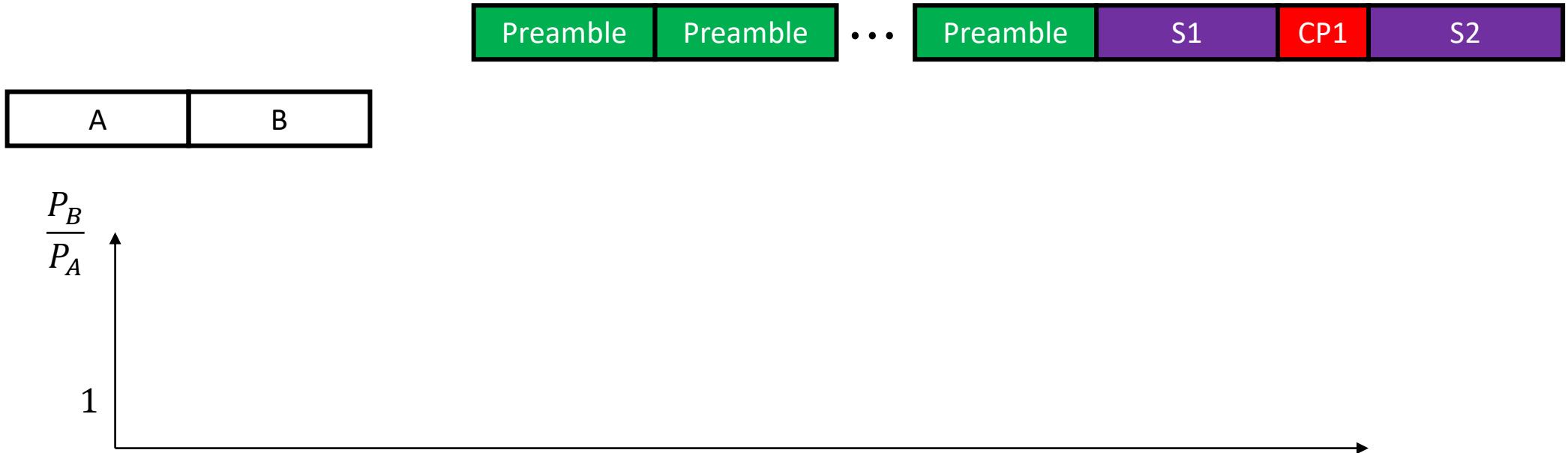
- Cyclic prefix is not a bullet proof solution.
- Can still end up misaligned!
- Need a way to ensure we detect the beginning of the packet correctly.
- If we do, CP will ensure that even if we are not accurate, we can still decode.

OFDM Packet Detection

- Detect Beginning of packet to make sure we are within the CP
- Send Training Sequence: Preamble Symbols
- Preamble Symbols: Known Symbol Repeated at the beginning of packet

- No need for CP with preamble symbols

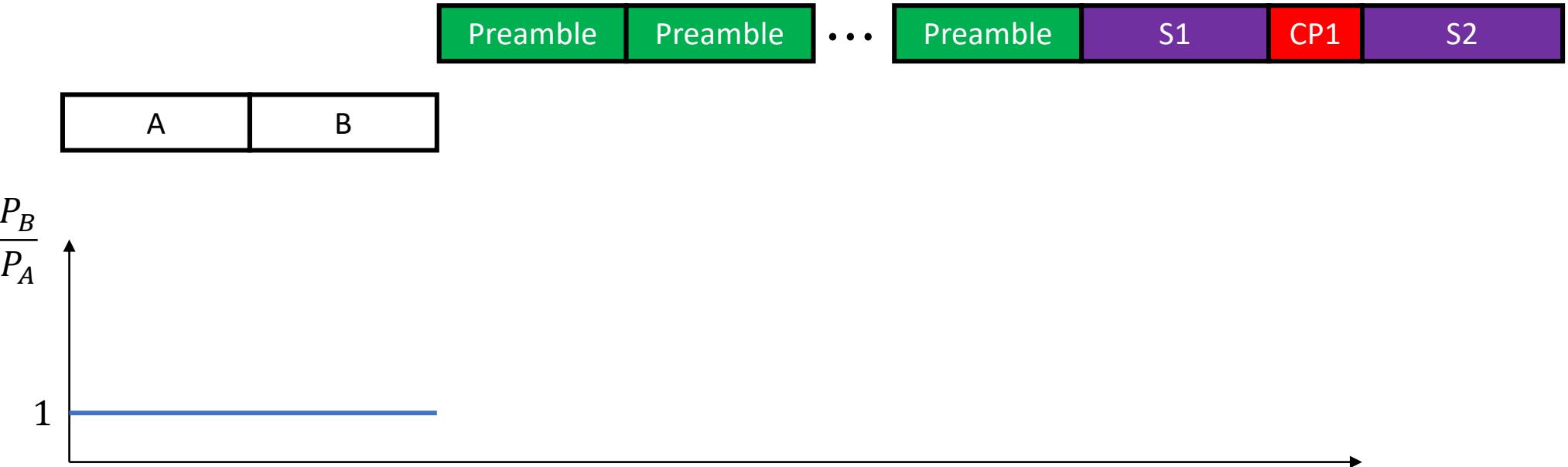
OFDM Packet Detection: Sliding Window



- Two windows of L ($2N$) samples each.

- Compute:
$$\frac{P_B}{P_A} = \frac{\sum_{k=t+L}^{t+2L} |y[k]|^2}{\sum_{k=t}^{t+L} |y[k]|^2}$$

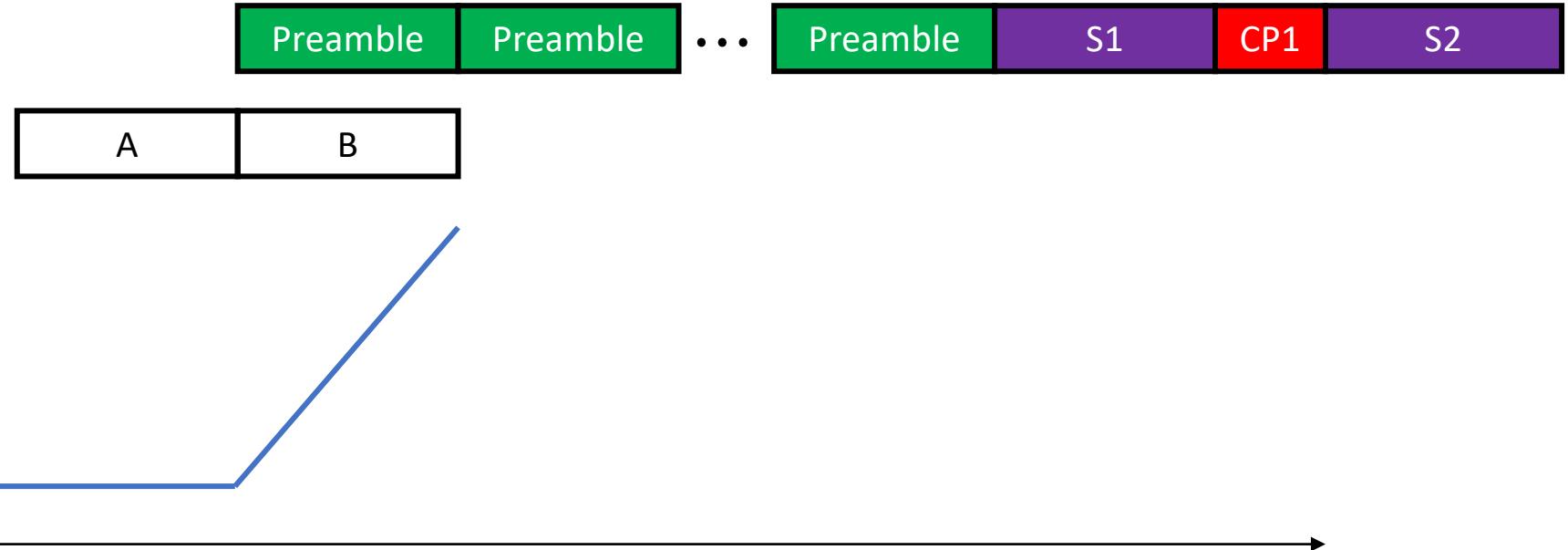
OFDM Packet Detection: Sliding Window



- Two windows of L ($2N$) samples each.

- Compute:
$$\frac{P_B}{P_A} = \frac{\sum_{k=t+L}^{t+2L} |y[k]|^2}{\sum_{k=t}^{t+L} |y[k]|^2}$$

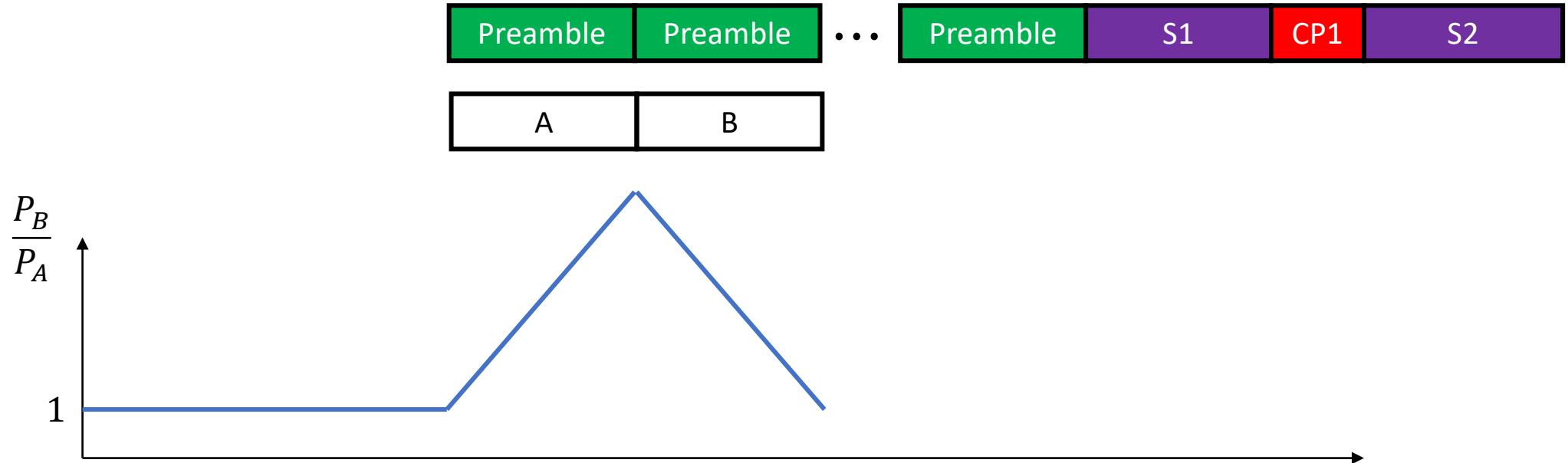
OFDM Packet Detection: Sliding Window



- Two windows of L ($2N$) samples each.

- Compute:
$$\frac{P_B}{P_A} = \frac{\sum_{k=t+L}^{t+2L} |y[k]|^2}{\sum_{k=t}^{t+L} |y[k]|^2}$$

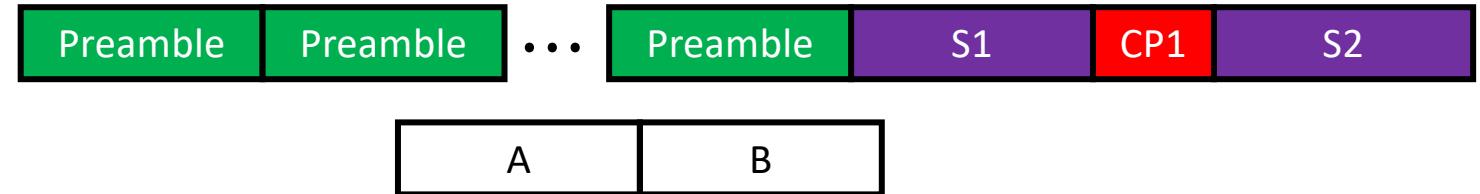
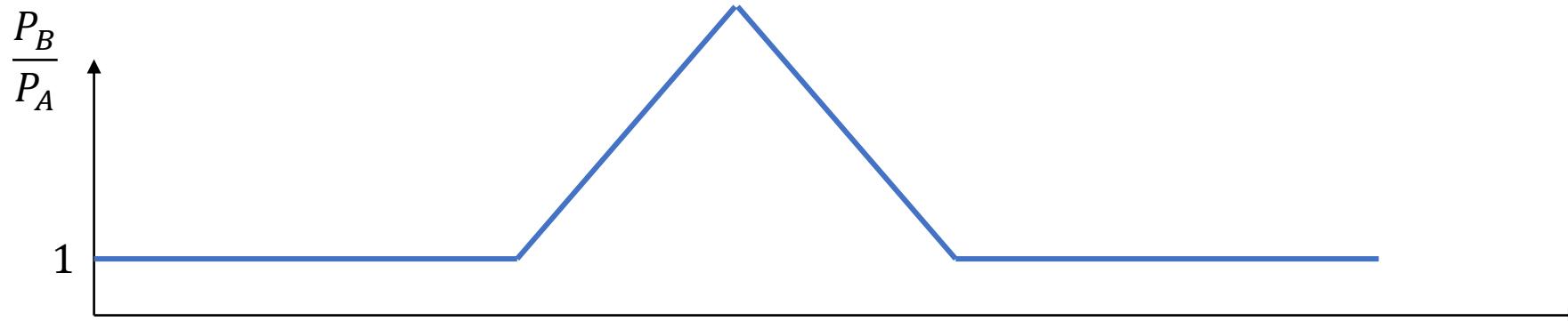
OFDM Packet Detection: Sliding Window



- Two windows of L ($2N$) samples each.

- Compute:
$$\frac{P_B}{P_A} = \frac{\sum_{k=t+L}^{t+2L} |y[k]|^2}{\sum_{k=t}^{t+L} |y[k]|^2}$$

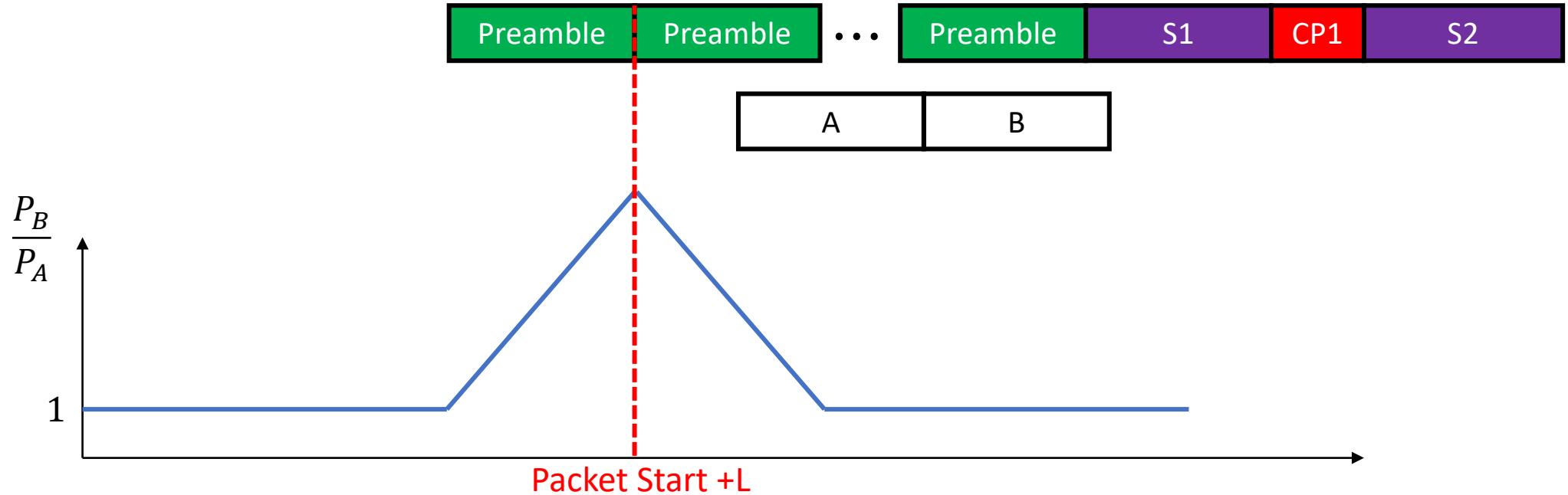
OFDM Packet Detection: Sliding Window



- Two windows of L ($2N$) samples each.

- Compute:
$$\frac{P_B}{P_A} = \frac{\sum_{k=t+L}^{t+2L} |y[k]|^2}{\sum_{k=t}^{t+L} |y[k]|^2}$$

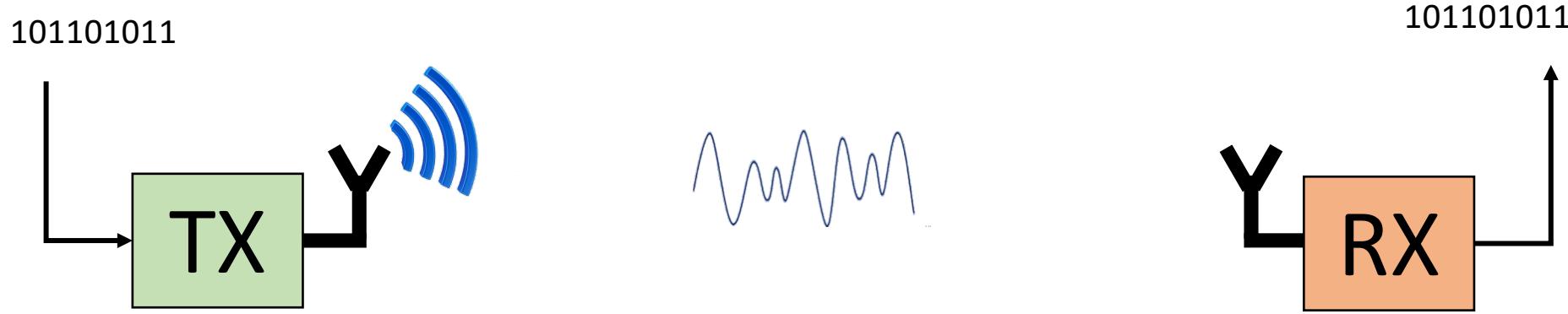
OFDM Packet Detection: Sliding Window



- Two windows of L ($2N$) samples each.

- Compute:
$$\frac{P_B}{P_A} = \frac{\sum_{k=t+L}^{t+2L} |y[k]|^2}{\sum_{k=t}^{t+L} |y[k]|^2}$$

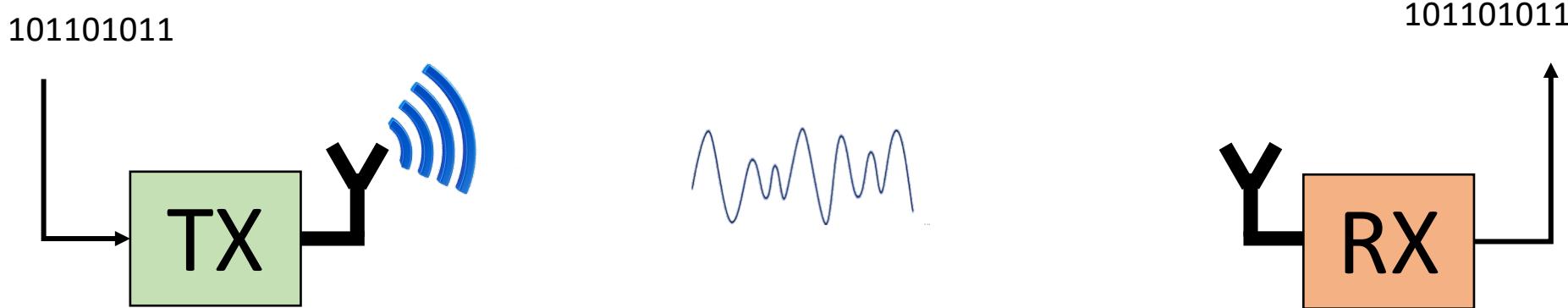
Carrier Frequency Offset



$$\begin{aligned} x(t) \rightarrow & x(t) \times e^{-j2\pi f_c t} \rightarrow h(t) * x(t) e^{-j2\pi f_c t} \rightarrow h(t) * x(t) e^{-j2\pi f_c t} \times e^{j2\pi f_c t} \\ & \rightarrow h(t) * x(t) \\ & \rightarrow y(t) = h(t) * x(t) + v(t) \end{aligned}$$

Assumes TX & RX perfectly synched

Carrier Frequency Offset



$$x(t) \rightarrow x(t) \times e^{-j2\pi f_c t} \rightarrow h(t) * x(t) e^{-j2\pi f_c t} \rightarrow h(t) * x(t) e^{-j2\pi f_c t} \times e^{j2\pi f'_c t}$$

TX & RX are not synched $\rightarrow h(t) * x(t) e^{-j2\pi \Delta f_c t}$

CFO: $\Delta f_c = f_c - f'_c$ $\rightarrow y(t) = h(t) * x(t) e^{-j2\pi \Delta f_c t} + v(t)$

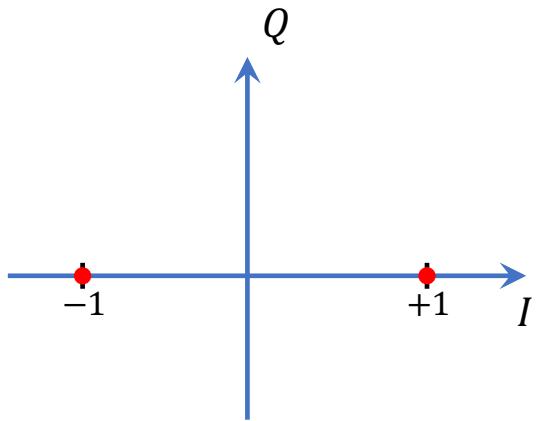
Phase changes with time!

Carrier Frequency Offset

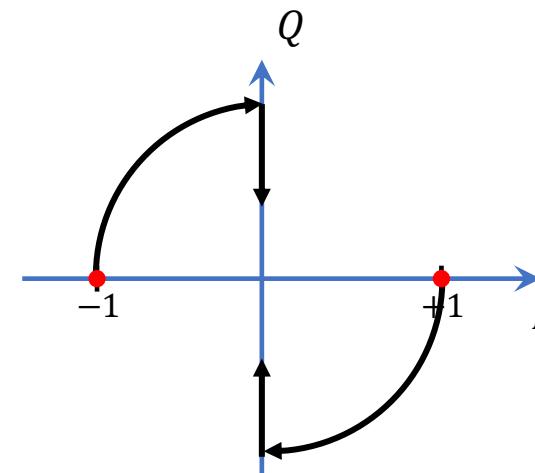
Consider BPSK Modulation.

$$0 \rightarrow -1$$

$$1 \rightarrow +1$$



$x(t)$



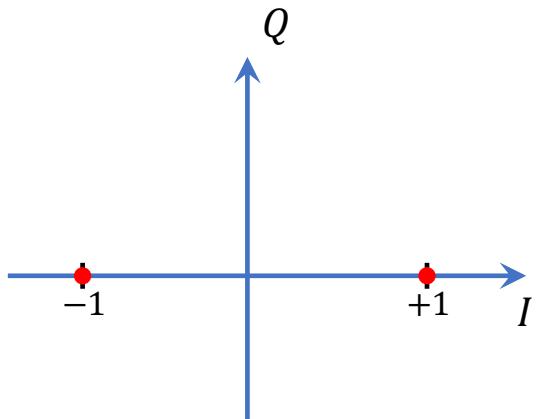
$h x(t - \tau) e^{-j2\pi\Delta f_c t} + v(t)$

Carrier Frequency Offset

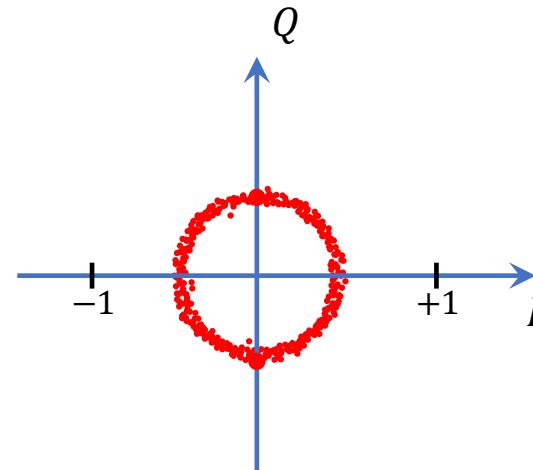
Consider BPSK Modulation.

$$0 \rightarrow -1$$

$$1 \rightarrow +1$$



$$x(t)$$

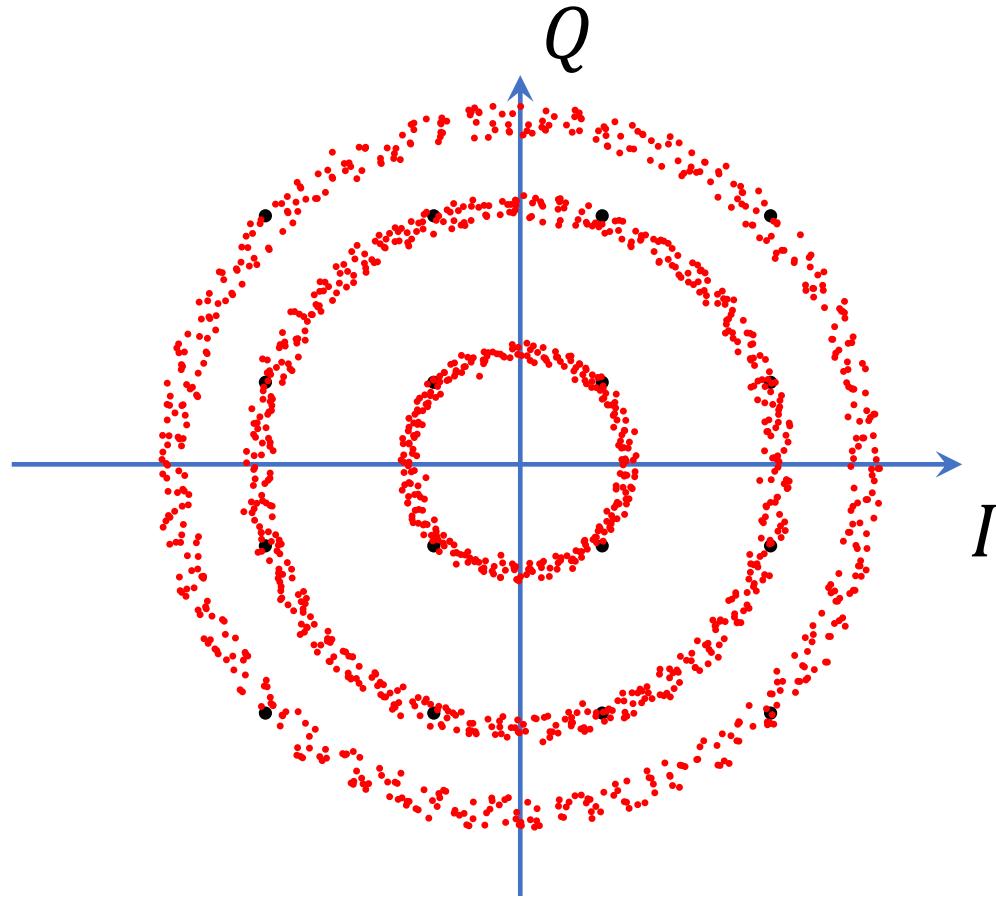


$$h x(t - \tau) e^{-j2\pi\Delta f_c t} + v(t)$$

Impossible to Decode!

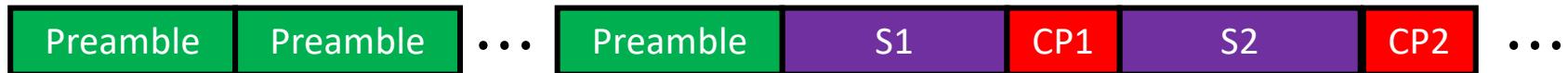
Carrier Frequency Offset

Consider 16 QAM Modulation



Need to estimate and correct CFO to decode!

OFDM CFO Estimation & Correction



- Use Preamble to estimate CFO

$$y_1(t) = x(t)e^{-j2\pi\Delta f_c t}$$

Sample at $t = nT_s$
Symbol has N samples $\rightarrow T = NT_s$

$$y_2(t) = x(t)e^{-j2\pi\Delta f_c(t+T)}$$

OFDM CFO Estimation & Correction

- Use Preamble to estimate CFO

$$y_1[n] = x[n]e^{-j2\pi\Delta f_c n T_s}$$

Sample at $t = nT_s$
Symbol has N samples $\rightarrow T = NT_s$

$$y_2[n] = x[n]e^{-j2\pi\Delta f_c (nT_s + NT_s)}$$

- Compute: $A = \sum_{n=1}^N y_1[n]y_2^*[n] = \sum_{n=1}^N x[n]x^*[n]e^{j2\pi\Delta f_c NT_s}$

$$= e^{j2\pi\Delta f_c NT_s} \sum_{n=1}^N |x[n]|^2 \quad \rightarrow \quad \Delta f_c = \frac{\angle A}{2\pi NT_s}$$

OFDM CFO Estimation & Correction

- Use Preamble to estimate CFO

$$y_1[n] = x[n]e^{-j2\pi\Delta f_c n T_s}$$

$$y_2[n] = x[n]e^{-j2\pi\Delta f_c(n T_s + N T_s)}$$

- Compute: $A = \sum_{n=1}^N y_1[n]y_2^*[n] \rightarrow \Delta f_c = \frac{\angle A}{2\pi N T_s}$

- Correct CFO: $y[n] \times e^{j2\pi\Delta f_c n T_s}$