
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Problem 1.

(a) By the chain rule and ‘conditioning reduces entropy’ we have H(UnV n) = H(Un) +
H(V n|Un) = H(Un) +

∑n
i=1H(Vi|UnV i−1) ≤ H(Un) +

∑n
i=1H(Vi|Ui).

(b) By Fano’s inequality, for every i, H(Vi|Ui) ≤ h2(pi) + pi log(|U| − 1). Therefore,
1
n

∑n
i=1H(Vi|Ui) ≤ 1

n

∑n
i=1 h2(pi) +

(
1
n

∑n
i=1 pi

)
log(|U| − 1). Since h2(·) is a concave

function, 1
n

∑n
i=1 h2(pi) ≤ h2(

1
n

∑n
i=1 pi).

(c) Using (a) and (b) we find 1
n
H(V n) ≤ 1

n
H(UnV n) ≤ 1

n
H(Un) + h2(

1
n

∑n
i=1 pi) +(

1
n

∑n
i=1 pi

)
log(|U| − 1).

Therefore, 1
n
H(V n)− 1

n
H(Un) ≤ h2(

1
n

∑n
i=1 pi) +

(
1
n

∑n
i=1 pi

)
log(|U|−1). Taking the

limits, since entropy is a continuous function, we get, HV −HU ≤ h2(p)+p log(|U|−1).
The result follows by noting that the same argument hold if we swap U and V .

The problem shows that if two processes are close in the sense that the fraction of indices
in which they disagree is small, then they must have a small difference in entropy rate —
one can interpret this as a continuity property.



Problem 2.

(a) We partition the set U with subsets of size 2j where j ∈ J . Then we map the elements
of the subset of size 2j to {0, 1}j. For every j, both the domain and the codomain
have the same cardinality therefore we can find an injective map. Since we use a
different codomain for every j the whole map c from U to {0, 1}∗ is also injective.

(b) Suppose that L = i. There are 2i many elements which get mapped to all possible
length i binary sequences which all have the same probability. Therefore, conditioned
on L = i all elements of {0, 1}i have equal probability 2−i. But pXi(xi) = 2−i for every
xi ∈ {0, 1}i is the probability distribution of i i.i.d. {0, 1}-valued random variables
X1, . . . , Xi with Pr(X1 = 0) = Pr(X1 = 1) = 1

2
.

(c) From (b) we see that conditioned on L = i, W is uniformly distributed on {0, 1}i,
and thus H(W |L = i) = i. Consequently, H(W |L) =

∑
i∈J Pr(L = i)H(W |L = i) =∑

i∈J Pr(L = i)i = E[L].

(d) Note that for any j ∈ J 2j ≤ |U|. Therefore, all elements of J are less than or equal
to log|U|. Therefore, L can take at most 1 + log|U|— the additional 1 because it can
also take the value 0. Since the maximum entropy that a random variable over a set
A can have is log|A|, H(L) ≤ log(1 + log|U|).

(e) Note that W is uniformly distributed on a set of |U| values and L is a function of
W . Therefore, log |U| = H(W ) = H(W,L) = H(L) + H(W |L) = H(L) + E[L] ≤
E[L] + log(1 + log|U|), which gives us the required lower bound on E[L].

Thus, by the method outlined in (a), from a uniformly distributed U with entropy log |U|
we can generate, in expectation at least log |U| − o(log |U|) i.i.d. and fair random bits. It
is easy to see that no deterministic method can generate more than log |U| such bits (and
further thought reveals that equality in general is not possible).
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Problem 3.

(a) E[log f(U)] − D(pU ||pV ) = E
[
log f(U)− log

(
pU(U)

pV (U)

)]
= E

[
log

pV (U)

pU(U)
f(U)

]
≤

logE
[
pV (U)

pU(U)
f(U)

]
= logE[f(V )].

Where the last equality is because E[f(V )] =
∑
u∈U

pV (u)f(u) =
∑
u∈U

pU(u)
pV (u)

pU(u)
f(u).

(b) The only inequality that we used in part (a) is Jensen’s inequality, which is tight

if for every u,
pV (u)

pU(u)
f(u) is a constant. Therefore, choosing f(u) =

pU(u)

pV (u)
we have

equality. Since the inequality holds for every nonnegative f and it is an equality for
a specific nonnegative f the result follows.

(c) Note that D(pŨ ||pṼ ) = E[log f̃(Ũ)]− logE[f̃(Ṽ )] for some function f̃ : Ũ → R+. Let
f(·) = f̃(g(·)).
Therefore, E[log f̃(Ũ)]−logE[f̃(Ṽ )] = E[log f(U)]−logE[f(V )] ≤ D(pU ||pV ). Where
the last inequality holds from part (a).

(d) Let g(x, y) = 1[x=y] be the indicator function which takes value 1 when x = y. This
is the function g(·) defined on the domain of X, Y and X ′, Y ′ and it takes values in
{0, 1}. Let pU = pXY and pV = pXpY . Then using the notation of part (c), Ũ is a
Bernoulli random variable with parameter pe and Ṽ is a Bernoulli random variable
with parameter qe. Consequently, using part (c) we get, I(X;Y ) = D(pXY ||pXpY ) =
D(pU ||pV ) ≥ D(pŨ ||pṼ ) = D2(pe||qe) = pe log pe

qe
+ (1− pe) log 1−pe

1−qe .

(e) Now suppose that X is uniformly distributed. Then X ′ is also uniformly distributed.

Since Y ′ is independent of X ′, Pr(X ′ 6= Y ′) = |U|−1
|U| . Therefore, by part (d)

log|U| −H(X|Y ) = H(X) −H(X|Y ) = I(X;Y ) ≥ pe log pe + (1 − pe) log(1 − pe) +

pe log |U|
|U|−1 + (1 − pe) log|U| = log|U| − h2(pe) − pe log(|U| − 1). Subtracting log|U|

from all sides gives us,
H(X|Y ) ≤ h2(pe) + pe log(|U| − 1), which is exactly the Fano’s inequality.

The result of parts (a) and (b) is known as the Donsker–Varadhan characterization of
divergence. Part (c) is known as the data processing equality of divergence. Part (d) is a
(slight) generalization of Fano’s inequality.
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Problem 4.

(a) Note that the Lempel-Ziv algorithm parses the sequence u∞ as a, b, aa, ab, ba, bb, aaa,
aab, . . . which are the sequences we concatenated to construct u∞ at the first place.
By the time it reaches a segment of length n for the first time it will have seen all the
length n − 1 segments. For example, by the time it reaches 000 it will have already
encoded 00, 01, 10, 11. Therefore there will be at least 8 elements in its dictionary.
Therefore, it will use at least n bits to describe any segment of length n. Therefore
the bits/letter that the LZ algorithm produces must be greater than or equal to 1.
That is, ρLZ(u∞) ≥ 1.

We know that ρLZ(u∞) ≤ ρFSM−IL(u∞). Note that for the simple finite state machine
which outputs 0 when it sees a and 1 when it sees b (which is a 1-state information
lossless machine) the compressibility is 1. Therefore, ρFSM−IL(u∞) ≤ 1. So we
conclude that ρLZ(u∞) = 1.

(b) If the process is stationary yes, as we have seen in the class. However, If U∞ takes the
value u∞ deterministically, it will have entropy rate limn→∞

1
n
H(Xn) = limn→∞ 0 = 0,

yet the LZ compressibility of the sequence is 1. Therefore, the answer to the question
is no.

(c) The LZ algorithm will parse v∞ as x1, x2, x3, .... By the time it encodes xm it will
have output at most m logm many bits. The input length that it encodes with m
iterations is

∑m
i=1 i = Θ(m2/2). Therefore the compressibility of the sequence v∞ is

lim
m→∞

2m logm

m2
= 0.

(d) We fix an s−state information lossless finite-state machine. Note that whichever
state the machine is at when it begins to encode the segment xn, it has to produce

at least m log
m

8s2
many bits when the encoding of the segment xn is finished. If

we take the parsing as the parsing that LZ produces for the sequence xn. We have

that lim
n→∞

1

n
length(yn) ≥ lim

n→∞

mLZ(un)

n
log

mLZ(un)

8s2
= lim

n→∞

mLZ(un)

n
logmLZ(un) =

lim
n→∞

1

n
length(LZ(un)) = ρLZ(u∞) = 1. The result follows from the definition of the

limit.

(e) Note that for any fixed information lossless finite state machine, large enough n, say,
for all n ≥ n0(ε), length(yn) ≥ (1−ε)n = (1−ε) length(xn). Then, length(y1y2...yn) =∑n

i=1 length(yi) =
∑n0−1

i=1 length(yi) +
∑n

i=n0
length(yi) ≥ (1 − ε)

∑n
i=n0

length(xi).

Therefore,
length(y1y2...yn)

length(x1x2...xn)
≥ (1 − ε)

length(xn0xn0+1...xn)

length(x1x2...xn)
. Upon observing that

limn→∞
length(xn0 . . . xn)

length(x1 . . . xn)
= 1 we conclude lim

n→∞

length(y1y2...yn)

length(x1x2...xn)
≥ 1 − ε. This is

true for any ε. Therefore, lim
n→∞

length(y1y2...yn)

length(x1x2...xn)
≥ 1. The limit we wrote is also the

compressibility ρcM (v∞). Therefore, ρcM (v∞) ≥ 1.

The IL-FSM we have chosen was arbitrary therefore the finite state compressibility
of v∞ (taking infimum over all IL FSM’s) is also greater than or equal to 1. It
cannot be larger than 1 because of the simple FSM described in part (a). Therefore,
ρFSM−IL(v∞) = 1.

In (c–e) we see that the inequality in ρLZ ≤ ρFSM−IL can be strict. In (a–b) we see that
LZ need not always compress to the entropy rate for non-stationary processes.
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