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PROBLEM 1.

(a) By the chain rule and ‘conditioning reduces entropy’ we have H(U"V"™) = H(U™) +
HVMU™) = HU") + 205, HVIU"VT) < H(U™) + 350, H(VilU).

(b) By Fano’s inequality, for every i, H(V;|U;) < ha(p;) + pilog(JU| — 1). Therefore,
LS VHViU) < 2570 ha(ps) + (2300, pi) log(JU| — 1). Since hy(+) is a concave
function, 5 377 ha(pi) < ha(y; 220, pi)-

(c) Using (a) and (b) we find tH(V") < LH(U"V") < LH(U") 4+ ho(£ 30 i) +
(3 2oimy i) log([U] = 1).
Therefore, LH (V") = LH(U") < ha(2 S, pi) + (£ 30, pi) log((14] ~1). Taking the
limits, since entropy is a continuous function, we get, Hy — Hy < ho(p)+plog(|U|—1).
The result follows by noting that the same argument hold if we swap U and V.

The problem shows that if two processes are close in the sense that the fraction of indices
in which they disagree is small, then they must have a small difference in entropy rate —
one can interpret this as a continuity property.



PROBLEM 2.

(a)

()

We partition the set U with subsets of size 2/ where j € J. Then we map the elements
of the subset of size 27 to {0,1}/. For every j, both the domain and the codomain
have the same cardinality therefore we can find an injective map. Since we use a
different codomain for every j the whole map ¢ from U to {0, 1}* is also injective.

Suppose that L = i. There are 2° many elements which get mapped to all possible
length ¢ binary sequences which all have the same probability. Therefore, conditioned
on L = i all elements of {0, 1}* have equal probability 2. But px:(z*) = 27 for every
z' € {0,1}" is the probability distribution of 4 i.i.d. {0, 1}-valued random variables
Xi,...,X; with Pr(X; =0) =Pr(X; =1) = 5.

From (b) we see that conditioned on L = i, W is uniformly distributed on {0, 1},
and thus H(W|L = i) = i. Consequently, H(W|L) =>_._,Pr(L =0H(W|L =1) =
> ey Pr(L =i)i = E[L].

icJ

Note that for any j € J 29 < |U|. Therefore, all elements of J are less than or equal
to log|tf|. Therefore, L can take at most 1+ log|i/| — the additional 1 because it can
also take the value 0. Since the maximum entropy that a random variable over a set
A can have is log|A|, H(L) < log(1 + log|U|).

Note that W is uniformly distributed on a set of || values and L is a function of
W. Therefore, log|U| = HW) = HW,L) = H(L)+ HW|L) = H(L) + E[L] <
E[L] 4 log(1 + log|U|), which gives us the required lower bound on E[L].

Thus, by the method outlined in (a), from a uniformly distributed U with entropy log ||
we can generate, in expectation at least log [U| — o(log |U|) i.i.d. and fair random bits. It
is easy to see that no deterministic method can generate more than log [U/| such bits (and
further thought reveals that equality in general is not possible).



PROBLEM 3.

(a) Ellog f(U)] — D(pllpv) = E [mgfw) o (pU(U))] _E {mg pV(U)f(U)] <

. pu(U)
log B |3 1(0)] = og Bl (V)

Where the last equality is because E[f (V)] = va(u)f(u) = ZpU(u)pv(u)f(u).
ueld ueld pu(u)

(b) The only inequality that we used in part (a) is Jensen’s inequality, which is tight
pv (u) (u) = pu(u)

pviu
equality. Since the inequality holds for every nonnegative f and it is an equality for
a specific nonnegative f the result follows.

if for every u, f(u) is a constant. Therefore, choosing f we have

(c) Note that D(pg||py) = E[log F(O)] = log E[f(V)] for some function f : U — RT. Let
S =) .
Therefore, E[log f(U)]—log E[f(V)] = E[log f(U)]—logE[f(V)] < D(py||pv). Where
the last inequality holds from part (a).

(d) Let g(z,y) = 1=, be the indicator function which takes value 1 when x = y. This
is the function g(-) defined on the domain of X,Y and X’ Y’ and it takes values in
{0,1}. Let py = pxy and py = pxpy. Then using the notation of part (c), U is a
Bernoulli random variable with parameter p. and V is a Bernoulli random variable
with parameter ¢.. Consequently, using part (c) we get, I(X;Y) = D(pxy||lpxpy) =

D(pullpv) = D(pgllpy) = Da(pellge) = pelog 2 + (1 — pe) log 172

(e) Now suppose that X is uniformly distributed. Then X' is also uniformly distributed.
Since Y is independent of X', Pr(X' #Y’) = W"T_‘l Therefore, by part (d)
loglt/| — H(X|Y) = H(X) — H(X|Y) = I(X;Y) > pelogpe + (1 — pe) log(1 — pe) +
De 10g % + (1 - pe) 10g|Z/{| = log|Z/{] - h2(pe) — De log(\U\ - 1) SUbtraCting 10g’u’
from all sides gives us,
H(X|Y) < ha(pe) + pelog(|U] — 1), which is exactly the Fano’s inequality.

The result of parts (a) and (b) is known as the Donsker—Varadhan characterization of
divergence. Part (c) is known as the data processing equality of divergence. Part (d) is a
(slight) generalization of Fano’s inequality.



PROBLEM 4.

(a)

Note that the Lempel-Ziv algorithm parses the sequence u™ as a, b, aa, ab, ba, bb, aaa,
aab, ... which are the sequences we concatenated to construct u> at the first place.
By the time it reaches a segment of length n for the first time it will have seen all the
length n — 1 segments. For example, by the time it reaches 000 it will have already
encoded 00,01,10,11. Therefore there will be at least 8 elements in its dictionary.
Therefore, it will use at least n bits to describe any segment of length n. Therefore
the bits/letter that the LZ algorithm produces must be greater than or equal to 1.
That is, prz(u™) > 1.

We know that prz(u*) < prsy—rn(u™). Note that for the simple finite state machine
which outputs 0 when it sees a and 1 when it sees b (which is a 1-state information
lossless machine) the compressibility is 1. Therefore, ppgp—rp(u®) < 1. So we
conclude that prz(u™) = 1.

If the process is stationary yes, as we have seen in the class. However, If U takes the
value u* deterministically, it will have entropy rate lim,,_, %H (X™) =lim, o, 0 =0,
yet the LZ compressibility of the sequence is 1. Therefore, the answer to the question
is no.

The LZ algorithm will parse v> as 1,22, x3,.... By the time it encodes x,, it will
have output at most mlogm many bits. The input length that it encodes with m
iterations is ", ¢ = ©(m?/2). Therefore the compressibility of the sequence v™ is
. 2mlogm

lim —>— =0.

m—oo m

We fix an s—state information lossless finite-state machine. Note that whichever
state the machine is at when it begins to encode the segment z,, it has to produce

at least mlogﬁ2 many bits when the encoding of the segment x,, is finished. If

we take the parsing as the parsing that LZ produces for the sequence x,,. We have
mpz(u” mpz(u” mrz(u"

rz(u™) log rz(u") ~ lm rz(u")
852 n—o0o

1
that lim —length(y,) > lim logmpz(u") =
n—oo 1 n—00

1
lim —length(LZ(u")) = prz(u™) = 1. The result follows from the definition of the

n—oo N
limit.
Note that for any fixed information lossless finite state machine, large enough n, say,
for all n > ny(e), length(y,) > (1—€)n = (1—e¢) length(x,,). Then, length(y1ys...y,) =
iy length(y,) = 3270 length(y:) + 7, length(y;) > (1 —€) 37L,, length(z,).
length(ylyZ-'-yn> > (1 . E) length(mnoxno+1---xn)
length(zixs...2,) — length(z12s...2,)
length(z,, ...z, . length o UYn
ength(zn, ... ) — 1 we conclude lim —2 (y182:-4n)
length(zy ... z,) n—oo length(zixs...2,)
length o Yn
true for any e. Therefore, lim ength(yiy:.-yn)
n—oo length(xyxy...7,)
compressibility p.,, (v>°). Therefore, p,,, (v>°) > 1.

Upon observing that

Therefore,

> 1 — ¢ This is

lim,, o

> 1. The limit we wrote is also the

The IL-FSM we have chosen was arbitrary therefore the finite state compressibility
of v (taking infimum over all IL FSM’s) is also greater than or equal to 1. It
cannot be larger than 1 because of the simple FSM described in part (a). Therefore,

prsy—1r(v>®) = 1.

In (c—e) we see that the inequality in prz < prsy—rr can be strict. In (a—b) we see that
LZ need not always compress to the entropy rate for non-stationary processes.
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