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Problem 1.

(a) I(A;B|C) = I(A;B, g(B)|C) = I(A; g(B)|C) + I(A;B|C, g(B)) ≥ I(A; g(B)|C).

(b) sn =
∑n

i=1 ∆i =
∑n

i=1 I(Z;Ui|U i−1) = I(Z;Un) ≤ H(Z) for all n. Since sn is
non-decreasing and bounded (by H(Z)), it tends to a limit s∗. This shows that
limi ∆i = limi si − si−1 = s∗ − s∗ = 0.

(c) Observe that Z1 −−◦ Z2 −−◦ (Z3, . . . , Zi+1). Hence

I(Z1;U2, . . . , Ui+1|Z2) ≤ I(Z1; (Z2, U2), . . . , (Zi+1, Ui+1)|Z2)

= I(Z1;Z2, . . . , Zi+1|Z2) = 0.

This proves the statement in the Hint. Now we complete the proof by

I(Z1;U2, . . . , Ui+1|Z2) =
i∑

j=1

I(Z1;Uj+1|Z2, U
j
2 ) = 0,

which shows that every term in the summation must be 0, as they must be non-
negative.

(d) The first equality in part (a) implies H(A|B,C) = H(A|B, g(B), C), and part (c)
implies H(Ui+1|Z2, U

i
2) = H(Ui+1|Z1, Z2, U

i
2). Observe

H(Ui|Z1, U
i−1)

(s)
= H(Ui+1|Z2, U

i
2)

(c)
= H(Ui+1|Z1, Z2, U

i
2)

(a)
= H(Ui+1|Z1, Z2, U1, U

i
2) ≤

H(Ui+1|Z1, U
i),

where (s) follows from stationarity, (c) follows from part (c), and (a) follows from
part (a) with U1 = f(Z1).

(e) First observe that (U1, U2, . . . ) is stationary, therefore its entropy rate exists and is
equal to limi

1
i
H(U i) = limiH(Ui|U i−1) = H. Let us write

ai = H(Ui|Z1, U
i−1) = H(Ui|U i−1)− I(Ui;Z1|U i−1).

From part (b), we know limi I(Ui;Z1|U i−1) = 0, and limiH(Ui|U i−1) = H. Since
both limits on the right hand side exist, the limit of ai also exists and is equal to H.

Since bi = H(Ui|U i−1) converges to the entropy rate of the process U from above, the
sequence of intervals [ai, bi] give increasingly accurate lower/upper bounds to the entropy
rate, and thus we have a procedure to find the entropy rate to any desired accuracy for
such processes as U . Such processes are called ‘hidden Markov processes’ and are good
models for a large class of physical phenomena.



Problem 2.

(a) H(Uk) = H(Vi, Ui) = H(Vi)+H(Ui|Vi). Therefore kH(Uk) =
∑k

i=1H(Vi)+H(Ui|Vi) ≤∑k
i=1H(Vi) + H(Ui|U i−1) = H(Uk) +

∑k
i=1 H(Vi).

(b) The hint suggests that for any S with |S| = k + 1,
∑
T :|T |=k 1{T ⊂ S}H(UT ) ≥

kH(US). Sum both sides over S to obtain∑
S:|S|=k+1

∑
T :|T |=k

1{T ⊂ S}H(UT ) ≥
∑

S:|S|=k+1

kH(US) = kHk+1.

Change the order of summation on left-hand side to obtain∑
S:|S|=k+1

∑
T :|T |=k

1{T ⊂ S}H(UT ) =
∑
T :|T |=k

∑
S:|S|=k+1

1{T ⊂ S}H(UT )

= (n− k)
∑
T :|T |=k

H(UT ) = (n− k)Hk

since
∑
S:|S|=k+1 1{T ⊂ S} equals to the number of subsets of size k+1 which contain

a set T of size k, which is equal to (n− k).

(c) Rearrange the result of part (b) to obtain 1
k
Hk ≥ 1

n−kHk+1. Divide both sides by
(
n
k

)
to obtain

1

k

Hk(
n
k

) ≥ 1

n− k

Hk+1(
n
k

) =
1

n− k

Hk+1

n!
(n−k)!k!

=
Hk+1

n!
(n−k−1)!k!

=
1

k + 1

Hk+1

n!
(n−k−1)!(k+1)!

=
1

k + 1

Hk+1(
n

k+1

) .
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Problem 3.

(a) According to the notes, l0 = 1, i.e., the initial dictionary contains words of length
1. Therefore, aaaa . . . will be parsed as a, aa, aaa, . . . , with w1 = a, w2 = aaa,
w3 = aaaa, and so on. This shows that while wm+1 is being parsed, lm = m + 1.

(b) Since the words added to the dictionary are 1-letter extensions of the just parsed
word lm+1 ≤ lm + 1. With l0 = 1, we get lm ≤ m + 1, i.e., the special case in (a) is
the worst case.

(c) un+1 is surely reconstructed upon the reception of un+lm . We know from part (b)
that lm ≤ m + 1. Note that w1 . . . wm is a distinct parsing of u1u2 . . . un. Moreover
none of these wis are null. Thus, m ≤ m∗(un)− 1 and lm ≤ m∗(un).

(d) 1 + A + · · · + Ak−1 is the number of all possible A-ary words of length < k. As this
is less than m/2, at least m/2 of the wi’s must have length k or more.

(e) The solution for x in (Ax − 1)/(A− 1) = m/2 is the quantity inside the floor. Thus
k = bxc satisfies the condition in (d).

(f) If m∗ < 2A
√
n, then for sufficiently large n, it will be smaller than 4n/ logA n as√

n logA n/n → 0. If m∗ ≥ 2A
√
n, then n ≥ 1

2
m∗ logA

m∗

2A
≥ 1

2
m∗ logA

2A
√
n

2A
=

1
4
m∗ logA n. A rearrangement gives 4n/ logA n ≥ m∗.
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