
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 34 Information Theory and Coding
Final Exam January. 27, 2023

4 problems, 64 points
180 minutes
2 sheets (4 pages) of notes allowed.

Good Luck!

Please write your name on each sheet of your answers.

Please write the solution of each problem on a separate sheet.



Problem 1. (12 points) Suppose W is a channel with input alphabet X and output
alphabet Y , and with capacity C(W ).

Suppose that p1 and p2 are two probability distributions on X , and let q1 and q2 denote
the corresponding output distributions, i.e., qk(y) =

∑
xW (y|x)pk(x). Let I1 and I2 denote

the mutual information I(X;Y ) between the channel input and channel output when X
has distribution p1 and p2 respectively.

(a) (4 pts) Show that

I1 =
∑
x

p1(x)D
(
W (·|x)

∥∥ q2)−D(q1‖q2).

[Here W (·|x) denotes the probability distribution q on Y with q(y) = W (y|x).]

(b) (4 pts) Suppose that I2 = C(W ), i.e., p2 is a capacity achieving input distribution.
Show that ∑

x

p1(x)D
(
W (·|x)

∥∥ q2) ≤ C(W ).

(c) (2 pts) Suppose further that p1 is also capacity achieving. Show that q1 = q2.

(d) (2 pts) Consider a deterministic channel with input x ∈ {0, 1, 2} and output y =
1{x 6= 0}. What is the capacity and which input distributions achieve it?
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Problem 2. (16 points) Suppose W1 and W2 are two channels with the same input alpha-
bet X and the same output alphabet Y . Both the channels are discrete and memoryless.

We are asked to design an encoder enc : {1, . . . ,M} → X n and decoder dec : Yn →
{1, . . . ,M} so that the error probability is small for both of the following two cases: (1) the
channel is W1 for the duration of the transmission, (2) the channel is W2 for the duration
of the transmission.

For this task we adopt a random coding technique (as in class). That is, we pick a
distribution pX , and choose

{Enc(m)i : m = 1 . . . ,M, i = 1 . . . , n}

as i.i.d. random variables each with distribution pX .

Let p
(k)
XY (x, y) = pX(x)Wk(y|x), k = 1, 2. Let q

(k)
XY denote the distibution with the same

marginals as p(k), but is in product form, i.e., q(k)(x, y) = pX(x)p
(k)
Y (y).

Fix ε > 0. Let Tk = T (n, p
(k)
XY , ε) be the set of ε-typical (xn, yn) pairs with respect to

the distribution pX(x)Wk(y|x).

(a) (4 pts) Two colleagues suggest two different ideas for the decoder:

α. decode m if Enc(m) is the only codeword for which (Enc(m), yn) ∈ T1 ∩ T2.
β. decode m if Enc(m) is the only codeword for which (Enc(m), yn) ∈ T1 ∪ T2.

Explain why ‘idea α’ should not be used.

Define the quantity

δ1 = Pr
(
(Xn, Y n) 6∈ T1

)
+ (M − 1) Pr

(
(X̃n, Y n) ∈ T1

)
+ (M − 1) Pr

(
(X̃n, Y n) ∈ T2

)
where {(Xi, Yi, X̃i) : i = 1, . . . , n} are i.i.d. with distribution pX(x)W1(y|x)pX(x̃). Define
δ2 analogously.

(b) (4 pts) Show that when W1 is the channel, the expected error probability of the
random code decoded by ‘idea β’ is upper bounded by δ1.

Let Ik denote I(X;Y ) when (X, Y ) has distribution p(k). Note that Ik = D(pk‖qk).

(c) (4 pts) Show that D(p2‖q1) ≥ I2.

(d) (4 pts) Show that whenever R is strictly less than both I1 and I2, for any δ > 0 there
exists an encoder and decoder of rate at least R and error probability at most δ under
both the cases (of the channel being W1 or W2).

[Hint: consider the three terms in the expression for δ1. We know from class that,
ignoring ε’s, Pr((X̃n, Y n) ∈ T1) ≈ 2−nD(p1‖q1). What can you say about Pr((X̃n, Y n) ∈
T2) that appears in the third term.]
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Problem 3. (18 points) Suppose G ∈ {1, 2, . . . } is a positive integer valued random
variable with distribution pG.

(a) (4 pts) Suppose N is a random variable with pN(k) = (1− q)qk−1, k = 1, 2, . . . , with
q chosen such that E[N ] = E[G]. Show that H(N)−H(G) = D(pG‖pN).

(b) (2 pts) Fact: for a random variable N as above H(N) = f(E[N ]) with f(µ) =
µ log µ− (µ− 1) log(µ− 1). Show that H(G) ≤ f(E[G]).

Suppose U is a random variable taking values in the finite alphabet U = {1, . . . , K}.
Let pk = Pr(U = k). We learn the value of U by asking a sequence of questions of the
form “Is U equal to u?”, until the answer is ‘yes’. Let G be the number of questions asked.
(Note that the phrase “until the answer is ‘yes’ ” may require us to ask a question whose
answer we already know.)

A ‘questioning strategy’ is a deterministic map from (p1, . . . , pK) to the order in which
we pose the questions “Is U = 1?”, . . . , “Is U = K?”.

(c) (4 pts) Suppose p1 ≥ · · · ≥ pK . What questioning strategy minimizes E[G]? Justify
your answer. [Hint: suppose pi < pj but the question “Is U = i?” is asked before “Is
U = j”. Show that such a strategy can’t be optimal.]

(d) (2 pts) Show that the strategy you found in (a) not only minimizes E[G] but also
Pr(G > k) for every k.

(e) (2 pts) What is the relationship between H(G) and H(U)?

Suppose U1, U2, . . . is a stationary process with entropy rate H. We use a questioning
strategy as above to learn U1 in G1 questions. Having learned that U1 = u1, we know
that U2 is distributed according to pU2|U1=u1 . We use a questioning stragegy based on this
distribution to learn U2 with G2 questions. Continuning in this fashion, having already
learned (u1, . . . , un−1), we use the strategy based on the distribution pUn|Un−1=un−1 to learn
Un in Gn questions.

(f) (4 pts) With the function f as in part (b), show that

f(E[Gn|Un−1 = un−1]) ≥ H(Un|Un−1 = un−1),

and conclude that f(E[Gn]) ≥ H. [Hint: f is a concave function.]
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Problem 4. (18 points)
Recall that the minimum distance of a binary code C is defined as

dmin(C) := min
x,x′∈C
x 6=x′

dH(x, x′).

Suppose we are told that for any binary code with blocklength n and minimum distance d
or larger, the number of codewords satisfies M ≤ bound0(n, d).

(a) (4 pts) Show that we can improve such a bound to

M ≤ bound1(n, d) := min
0≤n′≤n

2n−n′ bound0(n
′, d).

[Hint: classify the M codewords of the code according to their (n− n′) bit prefixes.]

(b) (2 pts) Consider the function bound0(n, d) that equals to 1 if d > n, and equals to∞
if d ≤ n. Why is this an upper bound to the number of codewords of a binary code
of blocklength n with minimum distance d or more?

(c) (2 pts) What is the improved bound constructed by the method in (a) starting from
the bound in (b)? How does this compare with the Singleton bound?

(d) (4 pts) Suppose a binary code C is of blocklength n and has M codewords. Let
cm = (cm1, . . . , cmn) denote the m’th codeword (m = 1, . . . ,M). Fix an index i ∈
{1, . . . , n}, and let Mi be the number of codewords with cmi = 1. Show that

M∑
m=1

M∑
m′=1

1{cmi 6= cm′i} = 2Mi(M −Mi) ≤M2/2.

(e) (4 pts) For C as in (d) and d denoting its minimum distance, show that M(M−1)d ≤
nM2/2.

The inequalty in (e) is equivalent to, 2d ≤ nM
M−1 . We can re-arrange this inequality to upper

bound M in terms of n and d, but since nM
M−1 > n, this can only be done when 2d > n. We

thus find M ≤ b2d/(2d− n)c, valid for 2d > n.

(f) (2 pts) For d = 7 and n = 14 compare the bound above to its improvement via
(a), and also to the Singleton and Sphere packing bounds. [Possibly useful numerics:
V3 :=

∑3
i=0

(
14
i

)
= 470, V6 :=

∑6
i=0

(
14
i

)
= 6476, 214/V3 = 34.859 . . . , 214/V6 =

2.52 . . . .]
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