

PROBLEM 1.

$$\begin{aligned}
 (a) \quad I_1 &= \sum_{x,y} p_1(x) W(y|x) \log \left(\frac{p_1(x) W(y|x)}{p_1(x) q_1(y)} \right) \\
 &= \sum_x p_1(x) \sum_y W(y|x) \log \left(\frac{W(y|x)}{q_1(y)} \right) = \sum_x p_1(x) D(W(\cdot|x) \parallel q_1).
 \end{aligned}$$

Also note that,

$$I_1 = \sum_x p_1(x) \sum_y W(y|x) \log \left(\frac{W(y|x)}{q_1(y)} \right) \quad (1)$$

$$= \sum_x p_1(x) \sum_y W(y|x) \log \left(\frac{W(y|x)}{q_2(y)} \frac{q_2(y)}{q_1(y)} \right) \quad (2)$$

$$= \sum_x p_1(x) \sum_y W(y|x) \log \left(\frac{W(y|x)}{q_2(y)} \right) - \sum_y q_1(y) \log \left(\frac{q_1(y)}{q_2(y)} \right) \quad (3)$$

$$= \sum_x p_1(x) D(W(\cdot|x) \parallel q_2) - D(q_1 \parallel q_2) \quad (4)$$

(b) By KKT conditions, since p_2 is a capacity achieving distribution,

$$\begin{cases} D(W(\cdot|x) \parallel q_2) = C(W), & \text{if } p_2(x) > 0 \\ D(W(\cdot|x) \parallel q_2) \leq C(W), & \text{if } p_2(x) = 0 \end{cases}$$

Therefore, $\sum_x p_1(x) D(W(\cdot) \parallel q_2) \leq C(W)$.

(c) Using part (a) and part (b), $I_1 = \sum_x p_1(x) D(W(\cdot|x) \parallel q_2) - D(q_1 \parallel q_2) \leq \sum_x p_1(x) D(W(\cdot|x) \parallel q_2) \leq C(W)$. If p_1 is capacity achieving $I_1 = C(W)$ which means we need equality in the first inequality above. This implies $D(q_1 \parallel q_2) = 0 \implies q_1 = q_2$.

(d) $I(X;Y) = H(Y) - H(Y|X) = H(Y) \leq 1$. ($H(Y|X) = 0$ since the channel is deterministic.) Any input distribution which imposes a uniform distribution in the output achieves a capacity. Therefore, any input distribution which has $p(0) = 1/2$ achieves the capacity.

PROBLEM 2.

(a) The condition α suggests will be true with very low probability, because if W_1 is used $(\text{Enc}(m), y^n) \in T_2$ with exponentially decreasing probability ($\propto 2^{-nD(p_{XY}^{(2)})\|p_{XY}^{(1)}})$ and therefore, $\Pr((\text{Enc}(m), y^n) \in T_1 \cap T_2)$ is even lower. Therefore, even the true message will be decoded with low probability. As for β the true message will be typical with high probability. We know that if W_1 is used, an unsent message-output pair will be typical with respect to T_1 with low probability. Hoping that it has no specific reason to look typical as if it had been sent from W_2 the unsent message will not be decoded.

(b) Assume that the message is chosen uniformly and independently from the codebook. Then,

$$\Pr(\text{Error}) = \frac{1}{M} \sum_{m=1}^M \Pr(\text{Error} \mid M = m) \quad (5)$$

Due to symmetry,

$$= \Pr(\text{Error} \mid M = 1) \quad (6)$$

$$= \Pr((\text{Enc}(1), Y^n) \notin T_1 \cup T_2 \text{ or } \exists m \neq 1 (\text{Enc}(m), Y^n) \in T_1 \cup T_2) \quad (7)$$

$$\leq \Pr((\text{Enc}(1), Y^n) \notin T_1 \cup T_2) + \sum_{m \neq 1} \Pr((\text{Enc}(m), Y^n) \in T_1 \cup T_2) \quad (8)$$

$$\leq \Pr((\text{Enc}(1), Y^n) \notin T_1) + \sum_{m \neq 1} \Pr((\text{Enc}(m), Y^n) \in T_1) + \Pr((\text{Enc}(m), Y^n) \in T_2) \quad (9)$$

Note that for any $m \neq 1$, $\text{Enc}(1), Y^n, \text{Enc}(m)$ has the same distribution as (X^n, Y^n, \tilde{X}^n)

$$= \Pr(X^n, Y^n \notin T_1) + (M-1) \Pr(\tilde{X}^n, Y^n \in T_1) + (M-1) \Pr(\tilde{X}^n, Y^n \in T_2) \quad (10)$$

(c)

$$D(p_2 \| q_1) = \mathbb{E}_{p_X W_2} \left[\log \left(\frac{p_X W_2}{p_X p_Y^{(1)}(y)} \right) \right] \quad (11)$$

$$= \mathbb{E}_{p_X W_2} \left[\log \left(\frac{p_X W_2}{p_X p_Y^{(2)}(y)} \right) \right] + D(p_Y^{(2)} \| p_Y^{(1)}) \quad (12)$$

$$\geq \mathbb{E}_{p_X W_2} \left[\log \left(\frac{p_X W_2}{p_X p_Y^{(2)}(y)} \right) \right] \quad (13)$$

$$= I_2 \quad (14)$$

(d) Let us construct a random codebook \mathcal{C} using the probability distribution p_X . It is enough to show that,

$$\mathbb{E}[\max(p_{e,1}(\mathcal{C}), p_{e,2}(\mathcal{C}))] \rightarrow 0$$

as $n \rightarrow \infty$, where the randomness is over the random codebook and $p_{e,i}(\mathcal{C})$ denotes error probability under channel i given codebook \mathcal{C} . Note that,

$$\mathbb{E}[\max(p_{e,1}(\mathcal{C}), p_{e,2}(\mathcal{C}))] \leq \mathbb{E}[p_{e,1}(\mathcal{C})] + \mathbb{E}[p_{e,2}(\mathcal{C})]$$

If we show that both of the terms in the right hand side go to 0 we are done. Let us do the first term. The proof for the second term is similar. Note that the term $\mathbb{E}[p_{e,1}(\mathcal{C})]$ is the probability of error when \mathcal{C} is chosen randomly and the first channel is used. We want to show this probability of error goes to 0.

In general if Z^n is i.i.d. samples from q the probability that it looks p typical is $\sim 2^{-nD(p||q)}$.

The first term in Eq. (10) goes to 0. The second term scales as $M2^{-nD(p_{XY}^{(1)}||p_X p_Y^{(1)})} = M2^{-nI_1}$ and the third term scales as $M2^{-nD(p_{XY}^{(2)}||p_X p_Y^{(1)})} = M2^{-nD(p_2||q_1)} \leq M2^{-nI_2}$. Provided that $M \leq 2^{n\min(I_1, I_2)}$, all of the terms go to 0. Since encoder is chosen randomly, for any $R < \min(I_1, I_2)$ there must exist a decoder with error probability arbitrarily close to 0 and with rate at least R .

PROBLEM 3.

(a)

$$H(N) - H(G) = \sum_k p_N(k) \log \frac{1}{p_N(k)} - \sum_k p_G(k) \log \frac{1}{p_G(k)} \quad (15)$$

Note that $\log p_N(k)$ is a first order polynomial in k . Since $\mathbb{E}[N] = \mathbb{E}[G]$,

$$= \sum_k p_G(k) \log \frac{1}{p_N(k)} - \sum_k p_G(k) \log \frac{1}{p_G(k)} \quad (16)$$

$$= D(p_G \| p_N). \quad (17)$$

- (b) Given G identify the random variable N with parameter q such that $\mathbb{E}[N] = \mathbb{E}[G]$. Then, $H(G) = H(N) - D(p_G \| p_N) \leq H(N) = f(\mathbb{E}[N]) = f(\mathbb{E}[G])$.
- (c) We claim that the optimal questioning strategy is $S = (1, 2, \dots, K)$. We will prove this by contradiction. Suppose that the optimal questioning strategy S is different. Then, $\exists i, j$ such that $p_i > p_j$ but “ $U = i?$ ” is asked before “ $U = j?$ ”. That is $S = (\dots, i, \dots, j, \dots)$ for $i > j$. Consider the strategy S' where the position of i and j are switched and everything else remains the same. With probability p_i S' will take δ more guesses compared to S . However, with probability p_j it will take δ less guesses compared to S . In average, S' will be shorter because $(p_i - p_j)\delta > 0$.
- (d) WLOG, we can still assume $p_1 \geq p_2 \geq \dots \geq p_K$. Otherwise reorder the elements. For every k , $\Pr(G \geq k) \geq p_{k+1} + p_{k+2} + \dots + p_K$, because whatever the guessing strategy is, $G > k$ if and only if one of the last $K - k$ guesses is true. The last $K - k$ guesses cannot have a probability lower than $p_{k+1} + p_{k+2} + \dots + p_K$. The strategy we found in (c) satisfy, for all k , the bounds with equality.
- (c,d) (alternative proof)

$$\mathbb{E}[G] = \sum_{k=1}^K p_G(k)k = \sum_{k=1}^K \Pr(G \geq k) \quad (18)$$

Therefore, $\min \mathbb{E}[G] = \min \sum_{k=1}^K \Pr(G \geq k) \geq \sum_{k=1}^K \min \Pr(G \geq k)$. For a fixed k the strategy which minimizes $\Pr(G \geq k)$ leaves the least probable $K - k$ letters to be guessed after the others. The guessing strategy which guesses in the order $1, 2, \dots, K$ achieves the lower bound for every k . Therefore, it minimizes $\mathbb{E}[G]$.

- (e) Note that for any fixed guessing strategy G is just a permutation of U therefore, $H(G) = H(U)$.
- (f) By part (b), $f(\mathbb{E}[G_n | U^{n-1} = u^{n-1}]) \geq H(p_{G_n | U^{n-1} = u^{n-1}}) = H(p_{U_n | U^{n-1} = u^{n-1}}) = H(U_n | U^{n-1} = u^{n-1})$. Now take average over U^{n-1} , $H(U_n | U^{n-1}) \leq \mathbb{E}[f(\mathbb{E}[G_n | U^{n-1}])] \leq f(\mathbb{E}[\mathbb{E}[G_n | U^{n-1}]]) = f(\mathbb{E}[G_n])$. Conclusion follows from the fact that for every n , $H \leq H(U_n | U^{n-1})$ for stationary processes.

PROBLEM 4.

(a) Let \mathcal{C} be a binary code. Suppose we have a bound $\text{bound}_0(n, d)$ which applies to all binary codes with minimum distance at least d .

Suppose $x = (x_1, x_2, \dots, x_n)$. We define $f_{n'}(x) = (x_1, x_2, \dots, x_{n-n'})$ and $f_{n'}(\mathcal{C}) = \{f_{n'}(x) : x \in \mathcal{C}\}$. Fix some $y \in f_{n'}(\mathcal{C})$ and look at the inverse image. These are the codewords that have the same $n - n'$ bit prefix and they are at least d apart from each other. Since the first $n - n'$ bits are the same the remaining n' bits have to be at least d apart as well. Therefore, the number of elements in the inverse image of y have to be less than or equal to $\text{bound}_0(n', d)$. This bound is true for every y . Since there are at most $2^{n-n'}$ elements in $f_{n'}(\mathcal{C})$, $M \leq 2^{n-n'} \text{bound}_0(n', d)$, for every $0 \leq n' \leq n$.

(b) Suppose $M \geq 2$ then their distance have to be at most n . Therefore, if $d > n$ we can have at most 1 element in the code. For $d \leq n$ infinity is also an upper bound because it is bigger than any natural number.

(c) Choose $n' = d - 1$. For this, $n', \text{bound}_0(n', d) = 1$. Therefore, $\text{bound}_1(n, d) \leq 2^{n-d+1}$. This is actually the minimum because $2^{n-n'}$ increases as one further decreases n' . This is the same as the Singleton bound.

(d)

$$\sum_{m=1}^M \sum_{m'=1}^M \mathbb{1}\{c_{m_i} \neq c_{m'i}\} = \sum_{m:c_{m_i}=1} \sum_{m'=1}^M \mathbb{1}\{c_{m_i} \neq c_{m'i}\} + \sum_{m:c_{m_i}=0} \sum_{m'=1}^M \mathbb{1}\{c_{m_i} \neq c_{m'i}\} \quad (19)$$

$$= \sum_{m:c_{m_i}=1} \sum_{m'=1}^M \mathbb{1}\{0 = c_{m'i}\} + \sum_{m:c_{m_i}=0} \sum_{m'=1}^M \mathbb{1}\{1 = c_{m'i}\} \quad (20)$$

$$= M_i(M - M_i) + (M - M_i)M_i \quad (21)$$

$$= 2M_i(M - M_i) \quad (22)$$

maximize the expression over M_1 to get,

$$\leq \frac{M^2}{2}. \quad (23)$$

(e)

$$n \frac{M^2}{2} \geq \sum_{i=1}^n \sum_{m=1}^M \sum_{m'=1}^M \mathbb{1}\{c_{m_i} \neq c_{m'i}\} \quad (24)$$

$$= \sum_{m=1}^M \sum_{m'=1}^M \sum_{i=1}^n \mathbb{1}\{c_{m_i} \neq c_{m'i}\} \quad (25)$$

$$= \sum_{m=1}^M \sum_{m'=1}^M d_H(c_m, c_{m'}) \quad (26)$$

$$\geq \sum_{(m,m'):m \neq m'} d_{\min}(\mathcal{C}) \quad (27)$$

$$= M(M - 1)d. \quad (28)$$

(f) Note that $2d = n$. The bound says $14 = 2d \leq \frac{nM}{M-1} = 14 \frac{M}{M-1}$. That is, $1 \leq M/(M-1)$. From this M is not bounded. Let us improve the bound via (a). The method works because the bound is non-increasing in d . Choosing $n' = 13$ minimizes the bound. It gives, $M \leq 2^{14-13} \frac{14}{14-13} = 28$. The Singleton Bound gives, $M \leq 2^{n-d+1} = 2^{14-7+1} = 256$. Sphere Packing Bound gives, $M \leq \lfloor 2^{14}/V_3 \rfloor = 34$. Therefore, the new bound strictly improves Singleton and Sphere packing bounds.