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School of Computer and Communication Sciences

Handout 36 Information Theory and Coding
Final exam solutions Feb. 8, 2022

Problem 1.

(a) I1 =
∑
x,y

p1(x)W (y|x) log
(
p1(x)W (y|x)
p1(x)q1(y)

)
=
∑
x

p1(x)
∑
y

W (y|x) log
(
W (y|x)
q1(y)

)
=
∑
x

p1(x)D
(
W (·|x)

∥∥ q1
)
.

Also note that,

I1 =
∑
x

p1(x)
∑
y

W (y|x) log
(
W (y|x)
q1(y)

)
(1)

=
∑
x

p1(x)
∑
y

W (y|x) log
(
W (y|x)
q2(y)

q2(y)

q1(y)

)
(2)

=
∑
x

p1(x)
∑
y

W (y|x) log
(
W (y|x)
q2(y)

)
−
∑
y

q1(x) log

(
q1(y)

q2(y)

)
(3)

=
∑
x

p1(x)D
(
W (·|x)

∥∥ q2
)
−D(q1∥q2) (4)

(b) By KKT conditions, since p2 is a capacity achieving distribution,{
D(W (·|x)∥q2) = C(W ), if p2(x) > 0

D(W (·|x)∥q2) ≤ C(W ), if p2(x) = 0

Therefore,
∑

x p1(x)D(W (·)∥q2) ≤ C(W ).

(c) Using part (a) and part (b), I1 =
∑

x p1(x)D
(
W (·|x)

∥∥ q2
)
−D(q1∥q2)

≤
∑

x p1(x)D
(
W (·|x)

∥∥ q2
)
≤ C(W ). If p1 is capacity achieeving I1 = C(w) which

means we need equality in the first inequality above. This implies D(q1∥q2) = 0 =⇒
q1 = q2.

(d) I(X;Y ) = H(Y ) − H(Y |X) = H(Y ) ≤ 1. (H(Y |X) = 0 since the channel is
deterministic.) Any input distribution which imposes a uniform distribution in the
output achieves a capacity. Therefore, any input distribution which has p(0) = 1/2
achieve the capacity.



Problem 2.

(a) The condition α suggests will be true with very low probability, because if W1 is used

(Enc(m), yn) ∈ T2 with exponentially decreasing probability (∝ 2−nD(p
(2)
XY )∥p(1)XY ))and

therefore, Pr ((Enc(m), yn) ∈ T1 ∩ T2) is even lower. Therefore, even the true message
will be decoded with low probability. As for β the true message will be typical with
high probability. We know that if W1 is used, an unsent message-output pair will be
typical with respect to T1 with low probability. Hoping that it has no specific reason
to look typical as if it had been sent from W2 the unsent message will not be decoded.

(b) Assume that the message is chosen uniformly and indepently from the codebook.
Then,

Pr(Error) =
1

M

M∑
m=1

Pr(Error
∣∣M = m) (5)

Due to symmetry,

= Pr(Error
∣∣M = 1) (6)

= Pr((Enc(1), Y n) /∈ T1 ∪ T2 or ∃m ̸= 1(Enc(m), Y n) ∈ T1 ∪ T2) (7)

≤ Pr((Enc(1), Y n) /∈ T1 ∪ T2) +
∑
m ̸=1

Pr((Enc(m), Y n) ∈ T1 ∪ T2) (8)

≤ Pr((Enc(1), Y n) /∈ T1) +
∑
m ̸=1

Pr((Enc(m), Y n) ∈ T1) + Pr((Enc(m), Y n) ∈ T2)

(9)

Note that for anym ̸= 1, Enc(1), Y n,Enc(m) has the same distribution as (Xn, Y n, X̃n)

= Pr(Xn, Y n /∈ T1) + (M − 1) Pr(X̃n, Y n ∈ T1) + (M − 1) Pr(X̃n, Y n ∈ T2)
(10)

(c)

D(p2∥q1) = EpXW2

[
log

(
pXW2

pXp
(1)
Y (y)

)]
(11)

= EpXW2

[
log

(
pXW2

pXp
(2)
Y (y)

)]
+D(p

(2)
Y ∥p(1)Y ) (12)

≥ EpXW2

[
log

(
pXW2

pXp
(2)
Y (y)

)]
(13)

= I2 (14)

(d) Let us construct a random codebook C using the probability distribution pX .
It is enough to show that,

E[max(pe,1(C), pe,2(C)] → 0
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as n → ∞, where the randomness is over the random codebook and pe,i(C) denotes
error probability under channel i given codebook C. Note that,

E[max(pe,1(C), pe,2(C))] ≤ E[pe,1(C)]] + E[pe,2(C)]]

If we show that both of the terms in the right hand side go to 0 we are done. Let
us do the first term. The proof for the second term is similar. Note that the term
E[pe,1(C)]] is the probability of error when C is chosen randomly and the first channel
is used. We want to show this probability of error goes to 0.
In general if Zn is i.i.d. samples from q the probability that it looks p typical is
∼ 2−nD(p∥q).
The first term in Eq. (10) goes to 0. The second term scales as M2−nD(p

(1)
XY ∥pXp

(1)
Y ) =

M2−nI1 and the third term scales as M2−nD(p
(2)
XY ∥pXp

(1)
Y ) = M2−nD(p2∥q1) ≤ M2−nI2 .

Provided that M ≤ 2nmin(I1,I2), all of the terms go to 0. Since encoder is chosen
randomly, for any R < min(I1, I2) there must exists a decoder with error probability
arbitrarily close to 0 and with rate at least R.
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Problem 3.

(a)

H(N)−H(G) =
∑
k

pN(k) log
1

pN(k)
−
∑
k

pG(k) log
1

pG(k)
(15)

Note that log pN(k) is a first order polynomial in k. Since E[N ] = E[G],

=
∑
k

pG(k) log
1

pN(k)
−
∑
k

pG(k) log
1

pG(k)
(16)

= D(pG∥pN). (17)

(b) Given G identify the random variable N with parameter q such that E[N ] = E[G].
Then, H(G) = H(N)−D(pG∥pN) ≤ H(N) = f(E[N ]) = f(E[G]).

(c) We claim that the optimal questioning strategy is S = (1, 2, ..., K). We will prove
this by contradiction. Suppose that the optimal questioning strategy S is different.
Then, ∃i, j such that pi > pj but “U = i?” is asked before “U = j?”. That is
S = (..i, ..., j, ..) for i > j. Consider the strategy S ′ where the position of i and j are
switched and everything else remains the same. With probability pi S

′ will take δ
more guesses compared to S. However, with probability pj it will take δ less guesses
compared to S. In average, S ′ will be shorter because (pi − pj)δ > 0.

(d) WLOG, we can still assume p1 ≥ p2 · ·· ≥ pK . Otherwise reorder the elements. For
every k, Pr(G ≥ k) ≥ pk+1 + pk+2 + · · ·pK , because whatever the guessing strategy
is, G > k if and only if one of the last K − k guesses is true. The last K − k guesses
cannot have a probability lower than pk+1 + pk+2 + · · ·pK . The strategy we found in
(c) satisfy, for all k, the bounds with equality.

(c,d) (alternative proof)

E[G] =
K∑
k=1

pG(k)k =
K∑
k=1

Pr(G ≥ k) (18)

Therefore, minE[G] = min
K∑
k=1

Pr(G ≥ k) ≥
K∑
k=1

minPr(G ≥ k). For a fixed k the

strategy which minimizes Pr(G ≥ k) leaves the least probable K − k letters to be
guessed after the others. The guessing strategy which guesses in the order 1, 2, ..., K
achieves the lower bound for every k. Therefore, it minimizes E[G].

(e) Note that for any fixed guessing strategy G is just a permutation of U therefore,
H(G) = H(U).

(f) By part (b), f(E[Gn|Un−1 = u(n−1)]) ≥ H(pGn|Un−1=un−1) = H(pUn|Un−1=un−1) =
H(Un|Un−1 = un−1). Now take average over Un−1,H(Un|Un−1) ≤ E[f(E[Gn|Un−1])] ≤
f(E[E[Gn|Un−1]]) = f(E[Gn]). Conclusion follows from the fact that for every n,
H ≤ H(Un|Un−1) for stationary processes.
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Problem 4.

(a) Let C be a binary code. Suppose we have a bound bound0(n, d) which applies to all
binary codes with minimum distance at least d.

Suppose x = (x1, x2, ..., xn). We define fn′(x) = (x1, x2, ...xn−n′) and fn′(C) =
{fn′(x) : x ∈ C}. Fix some y ∈ fn′(C) and look at the inverse image. These are
the codewords that have the same n−n′ bit prefix and they are at least d apart from
each other. Since the first n − n′ bits are the same the remaining n′ bits have to
be at least d apart as well. Therefore, the number of elements in the inverse image
of y have to be less than or equal to bound0(n

′, d). This bound is true for every y.
Since there are at most 2n−n′

elements in fn′(C), M ≤ 2n−n′
bound0(n

′, d), for every
0 ≤ n′ ≤ n.

(b) Suppose M ≥ 2 then their distance have to be at most n. Therefore, if d > n we
can have at most 1 element in the code. For d ≤ n infinity is also an upper bound
because it is bigger than any natural number.

(c) Choose n′ = d−1. For this, n′, bound0(n
′, d) = 1. Therefore, bound1(n, d) ≤ 2n−d+1.

This is actually the minimum because 2n−n′
increases as one further decreases n′.

This is the same as the Singleton bound.

(d)

M∑
m=1

M∑
m′=1

1{cmi
̸= cm′i} =

∑
m:cmi=1

M∑
m′=1

1{cmi
̸= cm′i}+

∑
m:cmi=0

M∑
m′=1

1{cmi
̸= cm′i} (19)

=
∑

m:cmi=1

M∑
m′=1

1{0 = cm′i}+
∑

m:cmi=0

M∑
m′=1

1{1 = cm′i} (20)

= Mi(M −Mi) + (M −Mi)Mi (21)

= 2Mi(M −Mi) (22)

maximize the expression over M1 to get,

≤ M2

2
. (23)

(e)

n
M2

2
≥

n∑
i=1

M∑
m=1

M∑
m′=1

1{cmi
̸= cm′i} (24)

=
M∑

m=1

M∑
m′=1

n∑
i=1

1{cmi
̸= cm′i} (25)

=
M∑

m=1

M∑
m′=1

dH(cm, cm′) (26)

≥
∑

(m,m′):m̸=m′

dmin(C) (27)

= M(M − 1)d. (28)

5



(f) Note that 2d = n. The bound says 14 = 2d ≤ nM
M−1

= 14 M
M−1

. That is, 1 ≤
M/(M − 1). From this M is not bounded. Let us improve the bound via (a).
The method works because the bound is non-increasing in d. Choosing n′ = 13
minimizes the bound. It gives,M ≤ 214−13 14

14−13
= 28. The Singleton Bound gives,

M ≤ 2n−d+1 = 214−7+1 = 256. Sphere Packing Bound gives, M ≤ ⌊214/V3⌋ = 34.
Therefore, the new bound strictly improves Singleton and Sphere packing bounds.

6


