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PROBLEM 1.
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By KKT conditions, since py is a capacity achieving distribution,

{D<w<- )g2) = C(W), if pa(z) > 0
DW(-[z)]|g) < C(W), if pa(x) =0

Therefore, > pi(x)D(W(-)||g2) < C(W).

)
Using part (a) and part (b), I = Z pi(x)D (W([z) || 42) — D(a1lg2)
<> . pm(x)D ( (+|x) H q2) < C(W). If p; is capacity achieeving I1 = C(w) which
means we need equality in the ﬁrst 1nequahty above. This implies D(q1]|q2) =0 =
a1 = q2.

I(X;Y) = HY)—-HY|X) = HY) < 1. (HY|X) = 0 since the channel is
deterministic.) Any input distribution which imposes a uniform distribution in the
output achieves a capacity. Therefore, any input distribution which has p(0) = 1/2
achieve the capacity.



PROBLEM 2.

(a) The condition « suggests will be true with very low probability, because if W; is used
(Enc(m),y™) € Ty with exponentially decreasing probability (oc 277 (Gealliss Jand
therefore, Pr ((Enc(m),y") € T1 NT5) is even lower. Therefore, even the true message
will be decoded with low probability. As for 5 the true message will be typical with
high probability. We know that if W] is used, an unsent message-output pair will be
typical with respect to T7 with low probability. Hoping that it has no specific reason

to look typical as if it had been sent from W, the unsent message will not be decoded.

(b) Assume that the message is chosen uniformly and indepently from the codebook.

Then,
Pr(Error) = % Z Pr(Error | M = m) (5)
Due to symmetry,
= Pr(Error | M = 1) (6)
= Pr((Enc(1),Y") ¢ T UT; or Im # 1(Enc(m),Y") € Ty UT5) (7)
< Pr((Enc(1),Y") ¢ TyUTy) + > Pr((Enc(m),Y") € Ty UT) (8)
m#1
< Pr((Enc(1),Y") ¢ Ty) + > _ Pr((Enc(m),Y") € Ty) + Pr((Enc(m),Y™) € T)
m#1
(9)

Note that for any m # 1, Enc(1), Y, Enc(m) has the same distribution as (X™, Y™, X")

=Pr(X",Y" ¢ T))+ (M —1)Pr(X",Y" € T}) + (M — 1) Pr(X™, Y™ € T))
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(d) Let us construct a random codebook C using the probability distribution px.
It is enough to show that,

E[max(pe,1(C), pe2(C)] — 0



as n — oo, where the randomness is over the random codebook and p. ;(C) denotes
error probability under channel i given codebook C. Note that,

E[max(le(C),pe’z(C))] < E[pe,l (C)H + E[pe,Z(C)”

If we show that both of the terms in the right hand side go to 0 we are done. Let
us do the first term. The proof for the second term is similar. Note that the term
E[pe1(C)]] is the probability of error when C is chosen randomly and the first channel
is used. We want to show this probability of error goes to 0.

In general if Z™ is i.i.d. samples from ¢ the probability that it looks p typical is
~ 2~ nD(plla)

The first term in Eq. (10) goes to 0. The second term scales as Mo PRy lexp) —

M2~™1 and the third term scales as MQ’"D(pg?)Y”pxpgfl)) — M2 "Pwala) < pro—nla,
Provided that M < 2r™intil2) - a]] of the terms go to 0. Since encoder is chosen
randomly, for any R < min(/y, I3) there must exists a decoder with error probability
arbitrarily close to 0 and with rate at least R.



PROBLEM 3.

(a)
H(N) - H(G) =Y px(k) log 5 Z pa(k ( o (15)

Note that log py (k) is a first order polynomial in k. Since E[N| = E[G],

= pa(k) log ZPG’ ( ] (16)
k
= D(pcllpw). (17)

(b) Given G identify the random variable N with parameter ¢ such that E[N| = E[G].
Then, H(G) = H(N) — Dipcllpw) < H(N) = J(EIN]) = J(E[C]).

(c) We claim that the optimal questioning strategy is S = (1,2, ..., K). We will prove
this by contradiction. Suppose that the optimal questioning strategy S is different.
Then, Ji,j such that p; > p; but “U = i?” is asked before “U = j?”. That is
S =1(.4,..,],..) for i > j. Consider the strategy S’ where the position of i and j are
switched and everything else remains the same. With probability p; S” will take &
more guesses compared to S. However, with probability p; it will take ¢ less guesses
compared to S. In average, S’ will be shorter because (p; — p;j)d > 0.

(d) WLOG, we can still assume p; > py - -+ > pg. Otherwise reorder the elements. For
every k, Pr(G > k) > prs1 + pra2 + - - -px, because whatever the guessing strategy
is, G > k if and only if one of the last K — k guesses is true. The last K — k guesses
cannot have a probability lower than py.1 + prio + - - -px. The strategy we found in
(c) satisty, for all k, the bounds with equality.

(c,d) (alternative proof)

K K
E[G] =) pa(k)k =Y Pr(G>k) (18)
k=1 k=1
K K
Therefore, min E[G] = minZPr (G > k) Zmin Pr(G > k). For a fixed k the
k=1

strategy which minimizes Pr(G > k) leaves the least probable K — k letters to be
guessed after the others. The guessing strategy which guesses in the order 1,2, ..., K
achieves the lower bound for every k. Therefore, it minimizes E[G].

(e) Note that for any fixed guessing strategy G is just a permutation of U therefore,
H(G)=H(U).

(f) By part ( ), f(E[Gn|Un_1 = U(n_l)]) > H(pGn|Un—1:un—1) = H(pUn|Un—1:un—1) =
H(U,|U™ ' = u™1). Now take average over U"™' H(U,|U™') < E[f(E[G,|U"1])] <
f(E[E[G,|U"Y]) = f(E[G,]). Conclusion follows from the fact that for every n,

H < H(U,|U™") for stationary processes.



(d)

PROBLEM 4.

Let C be a binary code. Suppose we have a bound boundy(n, d) which applies to all
binary codes with minimum distance at least d.

Suppose x = (x1,Z2,...,2,). We define f,(z) = (z1,29,..0p_n) and [ (C) =
{fw(x) : x € C}. Fix some y € f(C) and look at the inverse image. These are
the codewords that have the same n —n’ bit prefix and they are at least d apart from
each other. Since the first n — n’ bits are the same the remaining n’ bits have to
be at least d apart as well. Therefore, the number of elements in the inverse image
of y have to be less than or equal to boundy(n’,d). This bound is true for every y.
Since there are at most 2"~ elements in f,/(C), M < 2"~ boundy(n’, d), for every
0<n <n.

Suppose M > 2 then their distance have to be at most n. Therefore, if d > n we
can have at most 1 element in the code. For d < n infinity is also an upper bound
because it is bigger than any natural number.

Choose n' = d —1. For this, n’, boundy(n’, d) = 1. Therefore, bound; (n, d) < 274+,
This is actually the minimum because 2" increases as one further decreases n'.
This is the same as the Singleton bound.

Z Z Hem, # i} = Z Z Hem, # cmi} + Z Z Hem, # cmi} (19)

m=1m'=1 MiCmy—1 m' =1 MiCmy—0 m' =1
M M
= > D) Ho=cuib+ >, > H{l=cui}  (20)
| MiCm;—0 m'=1
= M;(M — M;) + (M — M;)M; (21)
— OM,(M — M) (22)

maximize the expression over M; to get,
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< (23)

S S e # ) (25)
= Z Z Ay (Cm, Co) (26)

2 dmin (C) (27)

= M(M - 1)d. (28)



(f) Note that 2d = n. The bound says 14 = 2d < L = 14-M=. That is, 1 <

M/(M — 1). From this M is not bounded. Let us improve the bound via (a).
The method works because the bound is non-increasing in d. Choosing n’ = 13
minimizes the bound. It gives,M < 271314 = 28. The Singleton Bound gives,
M < 2n=d+l = 21=T+1 — 956, Sphere Packing Bound gives, M < [2!/V3]| = 34.

Therefore, the new bound strictly improves Singleton and Sphere packing bounds.



