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Problem 1.

(a) I(X;Y ) =
∑
x,y

pXY (xy) log
pXY (xy)

pX(x)pY (y)

=
∑
xy

pX(x)W (y|x) log
W (y|x)

pY (y)

=
∑
x

pX(x)D(WY |X=x‖pY ).

(b) For any distribution qY on Y∑
x

pX(x)D(WY |X=x‖qY )− I(X;Y ) =
∑
x,y

pXY (x, y) log
pY (y)

qY (y)

=
∑
y

pY (y) log
pY (y)

qY (y)

= D(pY ‖qY )

≥ 0.

We obtain the desired result as a special case when qY = WY |X=x0 .

(c) Using (b), and noting that D(WY |X=x‖WY |X=x0) ≤ C1b(x), we find I(X;Y ) ≤
C1

∑
x pX(x)b(x) = C1E[b(X)].

(d) Noting that D(·‖·) ≥ 0, we see that each term in the right hand side of (a) is a lower
bound to I(X;Y ).

(e) For the given distribution note that pY = δWY |X=x1 + (1 − δ)WY |X=x0 . Using (d)
we can lower bound I(X;Y ) by δD(WY |X=x1‖pY ). Noting that E[b(X)] = δb(x1) the
result follows.

(f) By (c) we see that suppX I(X;Y )/E[b(X)] ≤ C1. Now choose x1 be the x that
achieves the maximum that defines C1, so that C1 = D(WY |X=x1‖WY |X=x0)/b(x1).
Using (d) with δ → 0 we see that the suppX I(X;Y )/E[b(X)] ≥ C1.

Problem 2. (a) The constraints that define Y fix k of the coordinates of yn, allowing
n− k coordinates to be free. Thus |Y(fn, sn)| = 2n−k.

(b) For each yn ∈ Y the probability that read(yn) 6= w is 1 − 2−nR. Since these events
are independent the probability of read(yn) 6= w for all yn ∈ Y is (1 − 2−nR)|Y| =
(1− 2−nR)2

n−k
.

(c) Using (b) and upper bounding 1 − 2−nR by exp(−2−nR) we see that the probability
in (b) is upper bounded by exp(−2n−k2−nR). Noting that k = qn the result follows.



(d) Given R < 1 − p, fix q0 such that p < q0 < 1 − R. Let A be the event that for all
yn ∈ Y(F n, Sn), read(yn) 6= w, and let B be the event at that K/n < q0. We then
have

Pr(A) ≤ Pr(A ∩B) + Pr(Bc) ≤ Pr(A|B) + Pr(Bc).

By the law of large numbers K/n→ p as n gets large. Thus Pr(Bc)→ 0 since q0 > p.
Moreover, by (c), Pr(A|B) ≤ exp

(
− 2n(1−R−q0)

)
which also approaches 0 as n gets

large since q0 < 1−R. Consequently Pr(A)→ 0 as n gets large.

(e) Given the randomly constructed read() as above, define write(wn, f
n, sn) as follows:

if there is a yn ∈ Y(fn, sn) with read(yn) = w, set write() = yn, otherwise randomly
choose write(). Note that in the first case ŵn = wn. Thus Pr(Ŵn 6= Wn) is upper
bounded by the probability we found in (d), which can be made less than ε by choosing
n large enough.

(f) No. Even if fn we revealed to both the reader and writer there are only n−K memory
locations that they can use to store data. For R > 1− p, by the law of large numbers
nR ≤ n−K is a small probability event, so there is a small probaiblity that nR bits
of data can be stored in n−K locations.

Problem 3. (a) Blocklength of enc is 2n. Also, enc encodes k1 + k2 bits of information
to 2n channel symbols, so R = (k1 + k2)/2n = (R1 +R2)/2.

(b) wH(x) = wH(x1) +wH(x1 + x2). By the triangle inequality wH(x1) +wH(x1 + x2) ≥
wH(x1 + x1 + x2) = wH(x2).

(c) If x2 = 0, we clearly have wH(x) = 2wH(x1). Otherwise, by (b) we have wH(x) ≥
wH(x2). In either case the claim wH(x) ≥ 2wH(x1)1(x2 = 0) + wH(x2)1(x2 6= 0)
holds.

(d) Recall that for linear encoders the minimum distance is equal to the minimum weight.
Note that the codewords of enc are of the form x above with xi a codeword of enci for
i = 1, 2. A non-zero codeword x of enc must that either x1 6= 0 or x2 6= 0. Thus by
(c), we see that the minimum weight codeword of enc has weight at least min{2d1, d2},
and thus d ≥ min{2d1, d2}. Moreover, with x1 a minimum weight codeword of enc1
and x2 a minimum weight codeword of enc2, observe that both [x1, x1] and [0, x2] are
non-zero codewords of enc, thus d ≤ min{2d1, d2}.

(e) The encoder that corresponds to generator Mi takes one bit and repeats it 2i times.
Thus it is of rate 1/2i and has minimum distance 2i. Consequently, ni, Ri and di
satisfy: ni+1 = 2ni , Ri+1 = (Ri + 2−i)/2 and di+1 = min{2di, 2i}, starting with
n1 = 2, R1 = 1, d1 = 1. We thus see that ni = 2i, di = 2i−1, and Ri = (i+ 1)/2i.

Problem 4. (a) Suppose a scheme that achieves (R,D) with R < R(D). The same
scheme must achieve R and E[log d(Xn, Y n)] ≤ logD. Since log d(Xn, Y n) is an
additive distortion, we know from the standard converse that R ≥ R(D). Hence, it
is a contradiction and R ≥ R(D) must hold.

(b) Let R̃(D) := infpy|x:E[log d(X,Y )]≤D I(X;Y ). We know R̃(D) is convex and R(D) =

R̃(log(D)). Hence, R(λD1 + (1−λ)D2) = R̃(log(λD1 + (1−λ)D2))
(∗)
≤ R̃(λ log(D1) +

log((1− λ)D2))
(∗∗)
≤ λR(D1) + (1− λ)R(D2). (∗) follows from concavity of log(.) and

due to the fact that R̃(.) is non-increasing. (∗∗) follows from convexity of R̃(D).
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(c) Since
∑

i 1(xi = x, yi = y) ≤ npXY (x, y)(1 + ε) for every ε-typical (xn, yn) and

d(x, y) ≥ 1 for all (x, y), d(xn, yn) =
∏

i d(xi, yi)
1
n ≤

∏
x,y d(x, y)pXY (x,y)(1+ε) =

exp
(
E[log d(X, Y )](1 + ε)

)
= D1+ε for every ε-typical (xn, yn).

(d) E[d(Xn, Y n)] = E[d(Xn, Y n)|(Xn, Y n) is not ε-typical]] Pr((Xn, Y n) is not ε-typical])

+ E[d(Xn, Y n)|(Xn, Y n) is ε-typical] Pr((Xn, Y n) is ε-typical])

≤ dmax Pr((Xn, Y n) is not ε-typical]) + E[d(Xn, Y n)|(Xn, Y n) is ε-typical]

From the course, we know ε′ := dmax Pr((Xn, Y n) is not ε-typical])→ 0 if R > R(D).
Part (c) implies E[d(Xn, Y n)|(Xn, Y n) is ε-typical] ≤ D1+ε. Hence, E[d(Xn, Y n)] ≤
ε′ +D1+ε.
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