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PROBLEM 1.
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We obtain the desired result as a special case when gy = Wy |x—s,.

(c) Using (b), and noting that D(Wy|x—z||[Wy|x=z,) < Cib(z), we find I(X;Y) <
C1Y o, px(x)b(z) = C1E[D(X)].

(d) Noting that D(:||-) > 0, we see that each term in the right hand side of (a) is a lower
bound to I(X;Y).

(e) For the given distribution note that py = Wy |x—g, + (1 — 6)Wy|x=s,- Using (d)
we can lower bound I(X;Y") by dD(Wy/|x=s, ||py). Noting that E[b(X)] = db(x,) the
result follows.

(f) By (c) we see that sup, I(X;Y)/E[b(X)] < Ci. Now choose x; be the x that
achieves the maximum that defines C4, so that C; = D(Wy |x=a, [|Wy|x=z,)/b(21).
Using (d) with 6 — 0 we see that the sup,, I(X;Y)/E[b(X)] > C.

PROBLEM 2. (a) The constraints that define ) fix k& of the coordinates of 3", allowing
n — k coordinates to be free. Thus |Y(f™,s")| = 2"7F.

(b) For each y™ € Y the probability that read(y") # w is 1 — 272, Since these events
are independent the probability of read(y”) # w for all 4" € Y is (1 — 27 "F)P =
(1 -2y,

(c) Using (b) and upper bounding 1 — 27"% by exp(—27"%) we see that the probability
in (b) is upper bounded by exp(—2""*27"%). Noting that k = ¢gn the result follows.



(d)

Given R < 1 — p, fix qo such that p < qo < 1 — R. Let A be the event that for all
y" € Y(F", S™), read(y") # w, and let B be the event at that K/n < go. We then
have

Pr(A) < Pr(AN B) + Pr(B°) < Pr(A|B) + Pr(B°).

By the law of large numbers K /n — p as n gets large. Thus Pr(B¢) — 0 since ¢y > p.
Moreover, by (c), Pr(A|B) < exp (— 2"!=F~®)) which also approaches 0 as n gets
large since gy < 1 — R. Consequently Pr(A) — 0 as n gets large.

Given the randomly constructed read() as above, define write(w,, f", s") as follows:
if there is a y" € Y(f", s") with read(y") = w, set write() = y", otherwise randomly
choose write(). Note that in the first case w, = w,. Thus Pr(Wn # W,) is upper
bounded by the probability we found in (d), which can be made less than € by choosing
n large enough.

No. Even if f™ we revealed to both the reader and writer there are only n— K memory
locations that they can use to store data. For R > 1 — p, by the law of large numbers
nRk < n — K is a small probability event, so there is a small probaiblity that nR bits
of data can be stored in n — K locations.

PROBLEM 3. (a) Blocklength of enc is 2n. Also, enc encodes k; + ks bits of information

(b)

()

(d)

to 2n channel symbols, so R = (k1 + k2)/2n = (Ry + R2)/2.

wy(x) = wy(x1) + wy(r; + x2). By the triangle inequality wy (x1) + wy(x + x2) >
wy(r1 + 21 + 12) = wy(xs).

If zo = 0, we clearly have wg(z) = 2wy (x1). Otherwise, by (b) we have wgy(x) >
wpg(x2). In either case the claim wy(z) > 2wy (z1)1(xe = 0) + wy(z2)L(ze # 0)
holds.

Recall that for linear encoders the minimum distance is equal to the minimum weight.
Note that the codewords of enc are of the form x above with x; a codeword of enc; for
¢ = 1,2. A non-zero codeword z of enc must that either x; # 0 or x # 0. Thus by
(c), we see that the minimum weight codeword of enc has weight at least min{2d;, d»},
and thus d > min{2d;,d>}. Moreover, with z; a minimum weight codeword of enc;
and xs a minimum weight codeword of ency, observe that both [z1, x1] and [0, 23] are
non-zero codewords of enc, thus d < min{2d;, ds}.

The encoder that corresponds to generator M; takes one bit and repeats it 2¢ times.
Thus it is of rate 1/2° and has minimum distance 2°. Consequently, n;, R; and d;
satisfy: miy1 = 2n; , Riyp = (R; +27%)/2 and d;,; = min{2d;,2'}, starting with
ny =2, Ry =1, d; = 1. We thus see that n; = 2, d; =271 and R; = (i + 1)/2".

PROBLEM 4. (a) Suppose a scheme that achieves (R, D) with R < R(D). The same

(b)

scheme must achieve R and FEllogd(X",Y")] < logD. Since logd(X",Y™) is an
additive distortion, we know from the standard converse that R > R(D). Hence, it
is a contradiction and R > R(D) must hold.

Let R(D) := inf, .ppogaxyy<p [(X;Y). We know R(D) is convex and R(D) =

~ ~ (%) ~

R(log(D)). Hence, R(AD1+ (1 —X)D3y) = R(log(AD1+ (1 —=X)D3)) < R(Alog(Dy) +
(%)

log((1=A)D3)) < AR(Dy) + (1= A)R(Ds). (x) follows from concavity of log(.) and

due to the fact that R(.) is non-increasing. (xx) follows from convexity of R(D).
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(c) Since > . 1(z; = z,y; = y) < npxy(z,y)(1 + €) for every e-typical (z",y") and
d(z,y) > 1 for all (z,y), da",y") = [Ld(zs,y:)7 < [l,, d(z,y)pPo @i =
exp (Ellogd(X,Y)](1+¢€)) = D'** for every e-typical (2", y").

(d) E[d(X™,Y™)] = E[dX™, Y™")[(X™,Y™") is not e-typical]] Pr((X",Y™) is not e-typical])
+ Eld(X™, Y™")[(X™,Y") is e-typical] Pr((X",Y™) is e-typical])
< dpmax Pr((X™, Y™) is not e-typical]) + E[d(X", Y™)|[(X™, Y") is e-typical]

From the course, we know € := dya Pr((X™, Y") is not e-typical]) — 0 if R > R(D).
Part (c) implies E[d(X™, Y™)|(X™ Y™) is e-typical] < D', Hence, E[d(X™, Y")] <
¢ + Dte,



