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Problem 1.

(a) I(U1;Y1, Y2) + I(U2;Y1, Y2, U1) = I(U1;Y1, Y2) + I(U2;Y1, Y2|U1) = I(U1, U2;Y1, Y2)

= I(X1⊕X2, X2;Y1, Y2) = I(X1, X2;Y1, Y2) = I(X1;Y1)+I(X2;Y2) = I(W1)+I(W2).

(b) I(W+) = I(X2;Y1, Y2, U1) ≥ I(X2, Y2) = I(W2). From part (a) we know I(W−) +
I(W+) = I(W1) + I(W2). Hence it must be true that I(W−) ≤ I(W1).

(c) Observe that if we exchange W1 and W2, Y1 and Y2 will be swapped. Hence, I(W−) =
I(U1;Y1, Y2) remains unchanged. From (b) we know I(W−) ≤ I(W1) and by exchang-
ing W1 and W2, we know I(W−) ≤ I(W2). Therefore I(W−) ≤ min{I(W1), I(W2)}
and I(W+) ≥ max{I(W1), I(W2)} follows from (a).

(d) I(W−) = I(U1;Y1Y2) = H(Y1Y2)−H(Y1Y2|U1). H(Y1Y2) = H(Y1) +H(Y2) = h2(ε) +
(1 − ε) + 1. H(Y1Y2|U1 = 0) = H(Y1Y2|U1 = 1) = 1 + h2(ε) + (1 − ε)h2(p). Then,
I(W−) = (1− ε)(1− h2(p)). I(W+) = I(W1) + I(W2)− I(W−) = 1− εh2(p).

Problem 2.

(a) I(XY ;U) ≥ I(X;U) ≥ I(X;Y ) since X − U − Y is a Markov Chain. Since this is
true for all pU |XY : X − U − Y , K(X;Y ) ≥ I(X;Y ).

(b) Let V = f(U) with f(u) = u except f(u1) = u2. Since pX|U(.|u1) = pX|U(.|u2),
we have the Markov Chain X − V − Y . But since V is a function of U , we have
I(XY ;V ) ≤ I(XY ;U). Also |V| < |U|.

(c) Suppose U is a minimizer and there exists u1 6= u2 such that pX|U(.|u1) = pX|U(.|u2)
and pY |U(.|u1) = pY |U(.|u2). Construct V as in (b) and observe I(XY ;U) = I(XY ;V ).
Repeatedly apply (b) until whenever u1 6= u2 either pX|U(.|u1) 6= pX|U(.|u2) or
pY |U(.|u1) 6= pY |U(.|u2).

(d) First, observe that for any u, either pX|U(1|u) = 0 or pY |U(0|u) = 0. If there exists
u1 6= u2 such that pX|U(1|u1) = pX|U(1|u2) = 0, by using (b) we can merge u1 and u2
to decrease I(XY ;U). Hence there must exist at most one u such that pX|U(1|u) = 0.
With a similar argument, we argue that there must exist at most one u such that
pY |U(0|u) = 0. Hence, we can choose |U | at most 2.

(e) Let p := Pr(U = 1) and q := 1 − p. With the choice of U in part (d), we have
H(X|U) = ph2(

1
3p

) and H(Y |U) = qh2(
1
3q

). Minimizing I(XY ;U) is equivalent

to maximizing H(X|U) + H(Y |U) = ph2(
1
3p

) + qh2(
1
3q

) ≤ h2(
2
3
). The inequality

follows by concavity of h2(.) and is attained when p = q = 1/2. Hence, K(X;Y ) =
H(XY )− h2(23) = 2/3.

Problem 3.



(a) Since Bn is a lower-triangular matrix with positive diagonal entries, its inverse B−1n

exists and is lower-triangular. Consider the transform Zn = B−1n (Xn − µn), where

µn :=
[
E[X1], . . . , E[Xn]

]T
and observe E[Zi] = 0 for all 1 ≤ i ≤ n and the covariance

matrix of Zn is B−1n Kn(B−1n )T = In. Finally, since B−1n is lower-triangular, we can
relate aij = bij, j ≤ i and mj = E[Xj].

(b)

− log fn(Xn) =
1

2
log((2π)n|Kn|) +

log(e)

2
(Xn − µn)TK−1n (Xn − µn)

=
1

2
log((2π)n|Kn|) +

log(e)

2
(Zn)TZn =

1

2
log((2π)n|Kn|) +

1

2

n∑
i=1

Z2
i

h(Xn) = E[− log fn(Xn)] =
1

2
log((2π)n|Kn|) +

log(e)

2

n∑
i=1

E[Z2
i ]

Hence,

1

n

[
− log fn(Xn)− h(Xn)

]
=

log(e)

2n

n∑
i=1

(Z2
i − E[Z2

i ]) =
log(e)

2n

n∑
i=1

(Z2
i − 1)

(c) From Strong Law of Large Numbers, we know that 1
n

∑n
i=1 Z

2
i → 1 with probability

1. Thus, 1
n

∑n
i=1(Z

2
i − 1)→ 0 with probability 1.

(d) No. X1 = Z1 ∼ N(0, 1) and X2 = Z1 + 2Z2 ∼ N(0, 5).

(e) From part (b), we know 1
n
h(Xn) = 1

2n
log((2π)n|Kn|)+ log(e)

2
= 1

2
log(2π)+ 1

2n
log(|Kn|)+

log(e)
2

. Therefore, we only need to check if limn
1
2n

log(|Kn|) exists. Observe that
|Kn| = |Bn||BT

n | = (n!)2, hence limn
1
2n

log(|Kn|) = limn
1
n

∑n
i=1 log n = ∞, which

implies 1
n
h(Xn)→∞.

(f) Yes. Observe that Xi’s are Gaussian and Kn is uniquely factorized as Kn = BnB
T
n

where Bn is a lower triangular matrix with positive diagonal entries and with its ijth
entry being j if j ≤ i and 0 otherwise. Thus parts a,b,c can be repeated for this case.

Problem 4.

(a) 1
n
H(Un|Ûn) ≤ 1

n

∑
iH(Ui|Ûn) ≤ 1

n

∑
iH(Ui|Ûi)

(1)

≤ 1
n

∑
i h2(P (Ui 6= Ûi))

(2)

≤ h2(qn)
where (1) follows from Fano’s inequality and (2) follows from convexity of h2(.).

(b) I(Un; Ûn)
(1)

≤ I(Un;Wn, V
n) = I(Un;V n) + I(Un;Wn|V n)

(2)

≤ I(Un;V n) + H(Wn) =
n(1− p) +H(Wn) where (1) follows from Data Processing inequality and (2) follows
from the fact that I(X;Y ) ≤ H(X).

(c) From (b) we have = 1− 1
n
H(Un|Ûn) = 1

n
I(Un; Ûn) ≤ (1− p) + 1

n
H(Wn) ≤ (1− p) +

1
n

log |Wn|. Hence, 1
n

log |Wn| ≥ p− 1
n
H(Un|Ûn) ≤ p− h2(qn).

(d) Given V n = vn, define the set C(vn) = {un : ui = vi whenever vi is unerased}. Ob-
serve that any un ∈ C(vn) is equally likely. Hence, let Bob choose one of them. Note
that any other decision rule will have an error probability at least as this method’s.
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(e) Suppose Wn(un) are chosen uniformly at random. Then,

Pr(Ûn 6= Un|K = k) ≤ Pr(∃un ∈ C(V n) : Wn(un) = Wn(Un)|K = k)

≤ E[|C(V n)||K = k]

2nR
= 2k−nR

since |C(V n)| = 2k given K = k. Pick r ∈ (p,R) and write

Pr(Ûn 6= Un) = Pr(Ûn 6= Un|K > nr) Pr(K > nr)+Pr(Ûn 6= Un|K ≤ nr) Pr(K ≤ nr)

≤ Pr(K > nr) + Pr(Ûn 6= Un|K ≤ nr) Pr(K ≤ nr)

≤ Pr(K > nr) + Pr(Ûn 6= Un|K ≤ nr).

Since K =
∑n

i=1Ei where Ei are erasures that occur with probability p, we know

that K
n
→ p with probability 1, hence Pr(K > nr) → 0. Also note that Pr(Ûn 6=

Un|K ≤ nr) ≤ 2n(r−R), hence goes to 0 as well.

This concludes that the average error probability over the ensemble of labelings is
small, hence there exists a labeling such that the error probability is small.
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