COM-308 - Internet Analytics - EPFL - Spring 2025

Sadegh Khorasani, Oscar Villemaud & Matthias Grossglauser

G. Embedding and Recommending

Objectives

In this lab, you will be able to get hands-on experience with popular methods for the following
tasks:

1. dimensionality reduction,
2. recommender systems, and
3. clustering.

In the process, you will also be exposed to some challenges that arise when dealing with large,
real-world, noisy data:

» some of the algorithms are computationally demanding for the size of datasets that you
will handle, and you will need to distribute the processing using Spark.

* real-world data is sometimes messy, and results need to be interpreted carefully. Use your
judgment, don’t jump to conclusions, and keep in mind that you can always preprocess the
data (removing outliers, normalizing values) if needed.

We expect you to be curious and proactive—we intentionally keep this handout short and
want you to look up for the appropriate resources online when needed (e.g., on using Spark and
various Python libraries). Do not hesitate to make use of the TAs, whether to ask questions or
to double-check your code and analyses.

Finally, we expect you to take this lab almost as a small project. There is no single right way
to solve the questions in this lab, and you should feel free to come up with creative approaches.

Deliverables

Just like in the previous lab, we expect you to hand in an HTML export of the three Jupyter
notebooks containing the result of your analyses,

* lab3-dimred.ipynb
* lab3-recsys.ipynb
e lab3-cluster.ipynb

as well as any supplementary file that might be necessary to run your analyses (e.g., Python
modules). Keep in mind the four criteria that we use for grading:

1. general correctness of the analyses,

2. code readability and clarity,

3. presentation of the notebook and the figures, and
4. bonus points for creativity.

Dataset

The dataset used throughout this Iab comes from a movie recommender system, MovieLens
(https://movielens.org/). Information about the dataset can be found online'. It consists of
four files, available on icclusterO31.iccluster.epfl.ch in the folder /home/ix/ix-data/ml-20m,
you should put it in your home directory of HDFS for the next exercises.

ISee: http://files. grouplens.org/datasets/movielens/ml-20m-README. html. Note that we slightly
changed the format of the dataset to make it easier for you to process.

https://movielens.org/
http://files.grouplens.org/datasets/movielens/ml-20m-README.html

3.1

2 3. Embedding and Recommending

movies.txt Each line describes a movie by amovieId a title and a list of genres.

genome-tags.txt Each line describes a tag by a tagId and a tag,.

genome-scores.txt Each line gives a score (relevance) for a movie / tag pair (movieId and
tagld).

ratings.txt Each line gives a rating for a userId /movieId pair, as well as a timestamp.

It is useful to spend some time getting acquainted with the dataset.

* How many different movies are there? How many tags, tag scores, movie ratings?
* How many movies have at least one tag?

* How many different movie genres are there?

* What are the shortest and longest movie titles? Tag names?

Note: the answer to these questions is not needed for the hand-in.

Dimensionality reduction

Using the files genome-tags.txt and genome-scores.txt, a subset of the movies can be
expressed in a high-dimensional “tag space”. The goal of this part is to embed the movies in a
low-dimensional “concept space” based on these tags, using principal component analysis. We
would also compare this with a non-linear embedding technique called t-distributed Stochastic
Neighbour Embedding (t-SNE).

Note: there are many ways to compute the eigenvalue decomposition, for example you might
want to use numpy.linalg.eigh.

Exercise 3.1
Construct an M X N data matrix, where M is the number of tags and N the number of movies.
Do not include movies which do not have any tag.

* Plot the variance of each dimension (represented by tags) across all movies.
* Plot the eigenvalues of the M x M covariance matrix.
* Explain the implications for dimensionality reduction.

For example, how many principal directions do you need to capture 2/3 of the variability in

the data? n

Exercise 3.2 Concept space
For the five first principal directions, find the 10 tags that have the highest and lowest
coordinates in that direction.

* What concepts would you use to describe these dimensions?

Create a Python dict which maps every tag (name) to its coordinates in the 5 first principal
directions and save it to disk. This will be used later for the clustering exercise. "

We have prepared a short list of movies in the pickle selected-movies.pickle’. Each
movie is described by its movie ID, title, and Rotten Tomatoes score’

ZNote that the file uses the UTF-8 encoding. See snippets . ipynb for instructions on how to read such pickles.
3This score corresponds to the percentage of newspaper reviews that rate the movie favorably. See https:
//www.rottentomatoes.com/

https://www.rottentomatoes.com/
https://www.rottentomatoes.com/

3.2 Recommender systems 3

Exercise 3.3 Movie visualization
Project the movies of selected-movies.pickle on the first two principal directions.

* Create an interactive plot that displays the 2D-projection of the movies using bokeh
and its hover tool. Color the nodes by their Rotten Tomatoes score.

* Based on your knowledge of these movies and information that you can get from the
web, explain the coordinates of a few of the movies.

* How do the PCA directions correlate with the Rotten Tomatoes score?

Try projecting the movies on subsequent principal directions. Does it make sense based on
your knowledge of these movies? (Not needed for the hand-in). n

Exercise 3.4 Movie visualization using t-SNE vs. PCA

Here we will project all the movies in the data matrix (not just
those in selected-movies.pickle) to 2 dimensions using PCA and t-SNE and compare
the results.

First project all the movies on the first 50 principal directions. You can then apply the
t-SNE method to further embed these 50 dimensional vectors in 2 dimensions. You can use
sklearn.manifold.TSNE with the init parameter set to ‘pca’ and all other parameters
being the default values.

 Create an interactive plot that displays the t-SNE 2D-projection of all the movies using
bokeh and its hover tool. The hover tool should display the top 5 tags with the highest
score for a movie.

* Create another similar interactive plot that displays the PCA 2D-projection of all the
movies (projections on the first 2 principal directions).

» What differences do you observe between the t-SNE plot and the PCA plot? In particular,
in which of the plots do you see more interpretable clusters of movies? Can you explain
why?

If the cloud of points is too dense for easy interpretation you can try plotting a random sample
of 1000 movies instead. u

Recommender systems

We now turn our attention to the task of recommending movies to users. We focus exclusively
on the collaborative filtering approach, i.e., extracting knowledge from the user / movie rating
matrix. This data is given in the ratings.txt file.

Important note: never load raw rating data in memory. Always use Spark RDD transforma-
tions to aggregate the data over users or movies before calling collect ().

Exercise 3.5 Basic statistics
First, we will look at basic statistics on this dataset.

* Plot the number of ratings for each user.
* Plot the number of ratings for each item.

Is the number of ratings balanced uniformly across users and movies? "

To make the exercise more interesting, we are providing a script, rate-movies. py that you
can use to create a personalized taste profile. Simply execute the script and rate a few movies.

3.2.1

4 3. Embedding and Recommending

Exercise 3.6 Partitioning the dataset
In order to tune hyperparameters and evaluate the recommender system’s performance, we
will split the data into a training and a validation set.

* Append your personal ratings to the MovieLens dataset RDD.
* Partition the data into two sets: ~ 80% for training, and ~ 20% for validation.

Hint: A convenient way to split the data is to filter on the last digit of the rating’s timestamp

Baseline recommender system

First, we will consider the following simple model. Let N be the total number of ratings, and N,
and N,, be the number of ratings for user # and movie m, respectively. We predict the rating of
user u for movie m as

Fum = U+ 0t + B (3.1
where
u= % Z Tum global average rating,
u;m
oy = N% Z(rum —u) user bias,
B = NL,,, %(I’um —oy— M) remaining item bias.

u

Exercise 3.7 Baseline model
You will first implement a recommender system based on model (3.1).

» Compute the global mean p, the user biases {a, } and the item biases {f,,} using a
sequence of RDD transformations on the training set.

* How many parameters does this model have?

* Predict the rating of every user / movie pair in the validation set.

Note: some users / movies do not have any ratings. Use sensible default values for o, and f3,,,.

To evaluate the recommender system, we will use the average of each user’s root mean
square error over the validation set. Letting U be the number of users,

1] -
error = - ; \/Nu ;(rum — Tum))? (3.2)

Exercise 3.8 Evaluation
Implement a function error () that takes an RDD containing (userId, movield, rating)
triplets and computes the error (3.2) with respect to the validation set.

* Use this function to evaluate the baseline predictions that you computed previously.

You should obtain an error of approximately 0.867. "

3.2.2

3.3

3.3 Clustering 5

Matrix-factorization model

We now consider a more powerful class of models based on factorizing the rating matrix.
Spark provides the function pyspark.mllib.recommendation.ALS() to learn such models.
A typical loop will consist of:

1. learning a model with ALS()
2. predicting ratings on the validation set using model .predictAl1()
3. evaluating the predictions using error ()

Exercise 3.9 Regularization
Decide on a rank for your model, e.g., between 5 and 25. What is the trade-off between
choosing a lower and a higher rank?

» Set the regularization parameter lambda_ to 10~*. How accurate are the predicted
ratings? Can you explain the phenomenon?

* Now set lambda_ to 10.0. What happens to the predicted ratings, and why?

* Find the value of 1ambda_ that minimizes the validation error.

What improvement do you get over the error of the baseline recommender system? "

Exercise 3.10 Recommendation
Create a Python dict that maps from movie IDs to movie titles based on the file movies. txt.

* Recommend 10 movies for user 123 using model . recommendProducts (). What kind
of movies does the model think the user will like?
* Recommend 10 movies to yourself (user ID: 138494).

What do you think of your recommendations? :-) "

The matrix factorization model can also be intepreted as embedding users and items in a
low-dimensional space.

Exercise 3.11 Visualisation
Learn a rank-2 matrix-factorization model using ALS ().

 Extract the features for all the movies in selected-movies.pickle.

* Create an interactive plot that embeds the movies along the 2 directions defined by the
factorization.

* Describe what you observe. Can you give a name to the dimensions? Do you recognize
cluster of movies that are alike?

Note: you can reuse some of the code that you wrote for Exercise 3.3. "

Clustering

To conclude this lab, we will turn to clustering algorithms in order of surface additional structure
in the MovieLens data.

1. First, you will use k-means on the low-dimensional embedding of tags that your extracted
earlier.

2. Second, you will implement a variant of k-means that enables the use of non-Euclidean
distances, and you will cluster movies based on genres.

6 3. Embedding and Recommending

For the first part, you can either implement k-means yourself or use an existing implementa-
tion (e.g. in scikit.cluster).

Exercise 3.12 Clustering tags
Load the tag embedding that you created at the end of Exercise 3.2.

* Cluster the data using the k-means clustering algorithm. Try k € {2,...,5}.
* Visualize the clusters using an interactive bokeh plot.
* Try projecting on different principal directions.

Which principal directions separate the clusters well? "

Now, we consider the task of clustering the space of movies based on the set of genres
associated to each movie. For this, we will use an alternative distance based on the Jaccard index,
defined for two sets A and B as

_ |ANB|

J(A,B) = AUB]

From the Jaccard index one can define a distance as d(A,B) = 1 —J(A,B). Compared to a
Euclidean space equipped with the standard ¢>-distance, two challenges arise:

1. there is no more a clear concept of center of a set of points, and
2. visualizing the space becomes difficult.

To overcome the first challenge, we adapt the M-step of the k-means algorithm: instead of
computing cluster centers, we pick a representative point that belongs to the cluster and that
minimizes the distance to all other points. The resulting method is described in Algorithm 3.1.

Algorithm 3.1 k-medioids
Require: set of points X, distance function d : X — X, number of clusters k&
fori=1,...,kdo > Initialize medioids.
m; < random(X)

repeat
C,....Ch+— o
for x € X do > Assign points to clusters.
i +— argmin;{d(m;,x)}
C+CU {X}
fori=1,...,kdo > Recompute medioids.

m; <— arg mianC,- {ZyGCi d(x7 y) }

until convergence

Exercise 3.13 Clustering movies
Create a dict that maps movie IDs to set of genres from the data in movies.txt.

* Implement the k-medioids algorithm with the Jaccard distance.

* Cluster the set of movies in the file most-rated.pickle, using k = 2.

* Find a good way to visualize the results of the clustering. For example, you could try
to visually represent the frequency of the genres in each of the clusters.

How do you intepret the two clusters? "

	Embedding and Recommending
	Dimensionality reduction
	Recommender systems
	Baseline recommender system
	Matrix-factorization model

	Clustering

