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2. Networks: structure, evolution, processes

Objectives
Graphs are at the root of many modern applications and you are certainly using many in your
everyday life. Common examples of networks include social networks used for advertising and
recommendation systems, or the web graph searched millions of times a day whenever anyone
searches on the web. The goals of this lab are the following:

1. You will first extract and gain insights on the properties of large networks.
2. You will also explore sampling methods to estimate some of these properties when you

don’t have access to the whole graph topology. These methods are often used for crawling
social networks.

3. You will then simulate stochastic processes over networks and develop methods to control
how they propagate.

4. You will finally explore a powerful method to rank nodes in a network: the PageRank
algorithm.

Deliverables
Four template notebooks

ix−lab2−notebook−<1−4>.ipynb

are provided to you in the assignment/ folder with a predefined structure for each part of the lab.
The four notebooks should be submitted to Moodle in HTML format before the deadline
(in ~4 weeks, the precise date will be communicated on Moodle). You can easily export your
notebooks in HTML using the menu command:

File > Save and Export Notebook As > HTML

Your final notebooks should contain:
• the code to solve the exercises,
• the corresponding output figures,
• your interpretations and justifications written in markdown cells.

Also, note that:
• Only one submission per group is required.
• You are allowed to use any Python library, as long as it is not explicitly mentioned

otherwise. Lab 1 can give you an idea of useful libraries.
• Please properly comment your code. Code readability will be considered for grading.
• To avoid long cells of code in the notebook, you can embed long python functions and

classes in a separate Python module. Take lab 1 with its modules in modules/ as an
example. Don’t forget to hand in your module if that is the case.

• In some exercises, you are required to come up with your own methods to solve various
problems. Be creative and clearly motivate and explain your methods. Creativity and
clarity will be considered for grading.
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2.1 Exploration of real networks

In this section, we will explore the structure of two real (but anonymized) networks:

network1.csv
network2.csv

located in the data/ folder. Both files are comma-separated edge lists where each line corre-
sponds to an edge of the graph. For example, the line

i,j

indicates that there is an edge between node i and node j in the graph. Additionally, all lines
starting with a hash, #, should be ignored. They are comments providing information about the
dataset (if the graph is directed, ...).

Exercise 2.1
Your first task is to explore network1 and analyze its properties.

1. Load the graph in your favorite data structure.
2. How many nodes and edges does the graph contain? ■

Exercise 2.2 Node degree distribution
A convenient way to start exploring the structure of a graph is through its node degree
distribution. Compute the node degree distribution of network1 and visualize it.

1. What kind of plot do you think is useful for this task?
2. Can you list some of the properties of the degree distribution?
3. Is it close to a well-known probability distribution? If so, provide an estimation of its

parameter(s)? ■

Exercise 2.3 Giant component
Real networks are generally not connected, but one connected component, i.e., the giant
component, is usually much larger than the others.

1. Count the number of connected components in network1.
2. Is there a giant component ? If so, what is its size? ■

Exercise 2.4 Short paths & Small-worlds
In his book “Six Degrees” (2006), Duncan Watts explains the small-world effect by the now
famous claim that every human on our planet is connected by an average of only “six degrees
of separation”. Do you think that network1 is a small-world? Justify your answer.

Hint:
• What is the distribution of path lengths between any two nodes in the network?
• How fast is the network growing? I.e. what is the average number of nodes reachable

within a distance r (in number of hops) of any other node in the network? ■

Exercise 2.5 Network comparison
You will now focus on a second real network network2.csv located in the data/ folder.

1. Using the properties computed in Exercises 2.1, 2.2, 2.3 and 2.4 explore the structure
of this network.

2. How does this network differ from the previous one? ■
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Exercise 2.6 Network identification
Among the two networks you analyzed:

• One of them is the network of roads around the city of New-York, i.e., nodes are
intersections and edges are roads between them.

• The other one corresponds to a subgraph of routers comprising the Internet, i.e., nodes
are routers and edges are physical links between them.

Can you guess which one is which? Justify your answer. ■

2.2 Network sampling
All the metrics analyzed in the previous section are straightforward to compute when we have
full access to the network. However, this is hardly the case in practice. In the following part, we
will explore a method to estimate some of these properties on large networks using sampling.
This method is often used to analyze social networks.

2.2.1 Age of Facebook users
You are curious about the age distribution of the users on Facebook. As you cannot have this
information directly from Facebook itself, you decide to write a small program that allows you
to crawl the network. Fortunately, Facebook provides an API1 to extract information about a
node in the network through HTTP requests of the form:

http://iccluster031.iccluster.epfl.ch:5050/v1.0/facebook?user=<id>

where <id> is the id of the user you are looking for. If the id is valid, then such a request returns
a json file formatted as follows:

{
"age": 24,
"friends": ["id1", "id2", "id3", ...]

}

Exercise 2.7 Random walk on the Facebook network
Crawl the Facebook graph to estimate the average age of users in the social network using the
random walk approach of Algorithm 2.1, starting from node

"a5771bce93e200c36f7cd9dfd0e5deaa".

What is your estimation of the average age of a Facebook user? How many users did you
visit to get this estimation?

Hint: Refer to the helper notebook ix−lab2−helper.ipynb to get an example code illustrat-
ing how to query the API. ■

1While the real Facebook does provide HTTP APIs, the one we are using for this lab is fictitious and the underlying
social graph was created from scratch.
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Algorithm 2.1 Random walker on Facebook
Require: source node s, number of nodes N

u← s
i = 0
while i < N do

Get the age the node u
Select node v uniformly at random from the neighborhood of u
u← v
i← i+1

end while

Exercise 2.8
A study whose title is “Facebook, by Facebook” is released, and it reveals that the average
age is 45.

1. How close is your estimation to the true average age?
2. In case there is a discrepancy, how do you explain it?
3. Implement a modification of the algorithm in order to have a more accurate estimate

of average age. Your solution should require neither additional seeds nor more users
crawled. What is your new estimation of the average age of a Facebook user?

Hint: You may want to visualize the results over time to make debugging easier, and help you
get some additional insights. ■

2.3 Epidemics
In the following part, we will explore how classical epidemic processes propagate over complex
networks. In particular, we will simulate stochastic SIR epidemics. For this task, we will use a
modified version of the New York City road network

nyc_augmented_network.json

located in the data/ folder. This graph is augmented with geographical metadata and is stored
as a json formatted file with the following schema:

{
"directed": false,
"multigraph": false,
"links": [{"source": 0, "target": 26480}, ... ],
"nodes": [{"id": 0, "coordinates": [−73887234, 40714842]}, ...]

}

In particular, "links" is the list of directed edges and "nodes" is the list of nodes. Each node
has a unique "id" and a tuple of "coordinates" corresponding respectively to its longitude and
latitude. We will use these metadata for visualization.

A continuous-time stochastic SIR epidemic is a stochastic process spreading over a network
as follows:

• All nodes are in one of three states:
– Susceptible when they are healthy but not immune, so they can catch the disease.
– Infectious when they are sick, so they can spread the disease to their neighbors.
– Recovered when they are healed (or dead) and immune. They are not infectious and

cannot be re-infected. Once a node in this state, it always stays in this state.

https://en.wikipedia.org/wiki/Epidemic_model#The_SIR_model
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• At the beginning, all nodes are susceptible except one infectious source node.
• Infectious nodes infect each one of their neighbors with an exponentially-distributed

random delay of rate β (i.e., in 1/β days on average).
• Infectious nodes recover from the disease with an exponentially-distributed random delay

of rate γ (i.e., in 1/γ days on average). Recovered nodes always remain recovered.

Simulating continuous-time stochastic SIR epidemics is quite tricky. Therefore, we provide
you with a Python class SimulationSIR in the module epidemics_helper. You can find more
details on how to use SimulationSIR in the notebook ix−lab2−helper.ipynb.

Exercise 2.9 Simulate an epidemic outbreak
An outbreak of a new strand of the SARS-CoV-2 virus, causing the COVID-19 disease, just
started to spread in New York. Experts report that the epidemic is highly infectious (with an
infection rate β = 10.0) and takes quite a long time to recover (with a recovery rate γ = 0.1).

1. The first infection was observed at node 23654. Simulate the COVID-19 epidemic with
the aforementioned parameters for 100 days.

2. Plot the evolution of the epidemic over time. In particular, plot the percentage of
susceptible, infected and recovered nodes over time.

3. How long until 60% of the population is infected (at the same time)? recovered?
4. Use the coordinates of the nodes to visualize the graph. Show susceptible, infected and

recovered nodes in different colors to differentiate them. How does the graph look like
on day 1? day 3? day 30? ■

2.3.1 Stop the apocalypse!

The World Health Organization predicts that this COVID-19 strand will become pandemic within
a few weeks if we do not act now to stop it. Your task is to design an intervention strategy to
prevent the apocalypse by limiting the total number of infected people. Some experts claim that
the best intervention strategy is to block roads, i.e., remove edges in the network.

Exercise 2.10 Strategy 1
The naive approach consists of removing edges at random.

• Implement this strategy with a budget of 1000 edges to remove.
• Simulate the epidemic multiple times with the same parameters, i.e. β = 10.0 and

γ = 0.1, starting from randomly selected source nodes.
• Is this strategy effective?
• On average, how many people are in a healthy, infected, recovered state on day 30?
• What happens if you increase the budget (e.g., to 10000 edges)? ■

Exercise 2.11 Strategy 2
Now, instead of removing edges at random, we ask you to come up with a more effective
strategy. You are only allowed to remove edges in order to slow down the epidemic, but you
should remove them in a more clever way using properties of the graph.

• Clearly explain your strategy.
• Implement it.
• Simulate the epidemic multiple times with the same parameters, i.e. β = 10.0 and

γ = 0.1, starting from randomly selected source nodes.
• Is your strategy more effective?

In our reference implementation, we manage to keep 70% of healthy nodes on average on
day 30 by removing 2500 edges. How does your strategy compare? ■
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2.4 PageRank

In the previous part, you had to rank the edges of the network to prevent the spread of an
epidemic. In many other applications, it is required to rank the nodes of very large networks, e.g.
webpage ranking for a search engine.

In this part of the lab, we will implement the well-known ranking algorithm PageRank, one
of the key ingredients that made the Google search engine so successful. We represent the Web
as a graph where webpages (nodes) are connected through hyperlinks (directed edges). In the
data/ folder we provide you with three different "webs" on which you will run PageRank. Two
of them are simple, artificial toy examples (components.graph, absorbing.graph). The last
one, wikipedia.graph, has been extracted from a small version of the English Wikipedia. The
titles of the Wikipedia pages are given in the tab-separated file wikipedia_titles.tsv. Each
graph is stored as an adjacency list. For example, absorbing.graph:

0 1 4
1
2 3
3 0 1 2
4 1

2.4.1 Random surfer model

In this section we will code our first implementation of PageRank, closely following the random
surfer model. In this model, a “surfer” starts by choosing a webpage uniformly at random from
the list of all pages; then, she selects a hyperlink on the current page uniformly at random and
continues to the next webpage. The surfer continues this process of selecting links at random
from successive webpages.

Each time a page is visited, we increase this page’s counter. The PageRank score of the
webpage is then defined as the normalized number of times that webpage is visited during this
random surfing, i.e. it represents the probability that a random surfer happens to be on this page
at any moment in time.

Exercise 2.12
Implement the random surfer model and run it on components.graph and absorbing.graph.
What happens? What do you think is causing this behavior? ■

Exercise 2.13
To overcome these issues, two ideas were proposed by the inventors of PageRank (Larry Page
and Sergey Brin, co-founders of the Google search engine).

1. When we reach a dangling node (i.e. a node with no outgoing link), the surfer starts
from a new node chosen uniformly at random.

2. At each iteration, with small probability (called the damping factor), we start surfing
from a new node chosen uniformly at random. This is called a random restart. We will
use a damping factor of 0.15.

Implement this modified version of the random surfer model and run it on the two graphs
components.graph and absorbing.graph. Do you think that the PageRank scores make
intuitive sense? ■

2.4.2 Power iteration method

The problem with our algorithm so far is that it is very slow to converge and needs a huge number
of iterations for big graphs such as wikipedia.graph. To overcome this limitation we will use
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the power iteration method, which we explain in this section.
Let W (V,E) be the web graph, with N = |V | nodes, and let ou be the outdegree of node u

(i.e. the number of outgoing links.) The transition matrix of the Markov chain describing the
random walk on the web graph, H, can be written as

Hu,v =

{
1/ou (u,v) ∈ E,

0 otherwise.

If our random surfer arrives at a dangling node, we want it to continue surfing from a new
webpage chosen uniformly at random. We define w as the indicator vector of dangling nodes.
The new transition matrix is then defined as

Ĥ = H +
1
N
(w ·1T ).

Graphs with absorbing nodes are not the only classes of graphs which need special care. For
example, assume we have a graph with two connected components. A random surfer can walk
only in one of the two components: the one where the surfing started. To solve this, we use
random restarts. At every iteration, flip a coin, with probability θ walk on Ĥ and with probability
1−θ jump to a new random webpage. The final transition matrix G, called the Google matrix,
is thus defined as

G = θ Ĥ +(1−θ)
1 ·1T

N
. (2.1)

Finding the PageRank is then equivalent to find the (unique) distribution π that satisfies

π
T = π

T G.

One way to solve this equation is the power iteration method. Given an initial vector π(0) (usually
1/N for all elements) the power iteration method successively computes the matrix multiplication
operations

π
(k) = π

(k−1)G, k = 1,2, . . . (2.2)

until convergence.

Exercise 2.14 Power Iteration method
1. Implement the power iteration method as described above.
2. Apply it to the wikipedia.graph.
3. What are the top 10 pages with the highest PageRank score? ■

2.4.3 Gaming the system
In this final part of the lab, we are interested in coming up with a strategy to increase the
PageRank of a certain page by adding edges to the graph.

Exercise 2.15
Can you come up with an algorithm to maximize the page rank of the page History of
mathematics by adding at most 300 edges.

1. What is the original PageRank score of the page?
2. Clearly explain your strategy and implement it.
3. What PageRank score do you manage to obtain? ■
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