Data Streams

Internet Analytics (COM-308)
Prof. Matthias Grossglauser

School of Computer and Communication
Sciences

=P-L

Overview

Performance criteria:
= Data volume
= Computational cost

We have paid some attention to this:

= Examples: SGD vs “full” gradient descent; power method
for PageRank

But: assumption that we always have access to all

the data!

= Allows iterative algorithms

= Many algorithms require “random access”

Data streams:

= Relax these assumptions in different ways

= Tradeoff: compute simple quantities very efficiently

Motivating example (1)

= |Internet backbone router

= Order of magnitude:
= 100s of interfaces at 10s of
Gbps
= = several billion pkts/sec!
= ...at expensive SRAM speeds!

= Traffic analysis app to
detect DDoS attack:
= What are the dominant
flows?

= How many different (unique)
source IP addresses in a
minute?

Motivating example (2)

= Implantable medical devices:

= Resource-limited: memory,
computation, energy

= Rare/unpredictable read-outs

= Sensor reads:

= Storing full trace may not be
feasible

= Extract key statistics & maintain
over time

Data stream model

= Computing statistics with sub-linear memory

= Example:
= n numbers: how many unique values (colors) k?

k=4

= How to solve with 8(n logn) memory?

= Keep every value in some efficient data structure;
compare & count

= How to solve with o(n) memory?
= Cannot solve exactly

= Streaming algorithms: oo data, finite memory
= Approximation
= (Pseudo-)randomization

Estimates with sublinear memory

= Counting # of elements:

= O(logn) space

Maximum value:

= 0(1) space

Average value:

= Sum / counter: O(logn) space

Heavy hitters:
= Find the top values that repeat the most
= Table of all (values,counts) seen so far has size O(nlogn)

Number of distinct elements?
= |.e., do not double-count multiple occurrences
= Table of values so far: O(nlogn)

(1): Heavy hitters

= Find most frequent values in a stream

= Trivial solution: keep counters for every value,
sort at the end
= Cost: space Q(m) (m: alphabet size)

= Threshold criterion 09:
= Report every value a that has occurred > 6n times

= Case 6 = 1/2: majority (at most one value)

= Trick: pairwise annihilation of different observed

values May or may not be
majority color -

OCOOOOOO 6 2nd pass to re-tally

Heavy hitters: algorithm

For 6 < 1/2, need larger “annihilation set” K
Algorithm:

= Annihilation set K contains (value, count) tuples

= For every new sample x, update (or create) tuple in K

= When |K| = 1/6 - decrease all counts by 1, and delete
those hitting 0

Property:

= At the end, K is a superset of values with frequency 6n

= Second pass needed to get actual counts

Cost: O(logn /0) space, O(n) complexity

Heavy hitters: example (6 = 1/3)

Heavy hitters: example (6 = 1/3)

/correct: (4/9)

\wrong: (2/9)

T 1 1 1 1 1
T2z
1 1

1

Heavy hitters: proof

Lemma:;
= A value x that occurs at least 8n times in the stream is in

K at time n (with count > 1)

Proof:

Def: decrement action = decrement all nonzero counters
by one

Each decrement action decreases the total count (sum of
all counters) by at least 1/6

Therefore, at most 6n decrement actions over dataset
Each individual value x gets decremented by at most one
for each decrement action - at most On decrements per
X

If x occurs more than 6n times, its counter cannot be 0
at time n

11

(2) Counting distinct elements
k=4

= Number of distinct elements?
= Table of values seen: O(nlogn)
= Hash table
= Can we do better?
= No - if we need exact answer

= Approximation:
= Many streaming algorithms trade off small loss in
precision (approximation) with large gain in memory
requirement

12

Approximate count-distinct

= Flajolet-Martin algorithm

= |ntuition:
= Hash function h(x):
= Pseudorandom:

- Random: x #+ y = h(x) and h(y) can be regarded as
independent uniform random variables

* Pseudo: x =y 2 h(x) = h(y)
= k distinct values x4, ..., x;, = hashed values h(x;), ..., h(x;)

1 h(x;) h(xq) H

13

Count-distinct: single hash function

miin h(x;)
= Normalize H =1
- What is y = E[min h(x;)]?
- k + 1 intervals %l y=(k+1D™

= Now suppose we have n values x4, ..., x,,, but not
necessarily distinct

= What is y = E[min h(x;)] now?
l
= Still y = (k + 1)71, where k is # of distinct elements

» Therefore k = — ! — 1 is an estimator for # of
miln h(x;)

distinct elements in x4, ..., x,

14

Count-distinct: multiple hash functions

= Improving the estimate:

= Obtain multiple independent estimates & average, by
using multiple hash functions:

= Assumption: h;(x) and h,(x) can be regarded as
independent RVs

YRS I B I | R B R B2
e L) B B R B B el

CHE R R D R
¥

N

k

Flajolet-Martin algorithm

Discretization of minimum estimator =
compression

Binary representation:

z(x) = number of leading Os (or trailing)

Example: 0010101111000101011010 - z = 2, ie, x €
{001000000...,001111111 ...}

43 2 1 0

Maximum # of zeroes:
R = z(min h(x;)) = max z(h(x;))
l l

Estimate: k = 28/0.77351

Factor ensures that estimate is unbiased despite
discretization

16

FM algorithm: implementation

001010011101011100101 2
X; 0> 010111100101101110011 s 1
001000101100111011100 2
001111101101011100101 2
Xiy1 000101101110011100100 o 3
100010110011101110011 0

= Combining {R;} into a single estimate for k:

= 2R has power-law distribution & median{2*s, ..., 2R/} is
better than average
= (or average of medians over subgroups)

17

(3) Document similarity

= Given: Corpus of documents
= Efficient way to find pairwise similarity

= Applications:
= Web crawling: eliminate copies or similar version of
documents
= Filter search results: only show sufficiently different
docs

= Solutions:

= Cosine similarity or similar: too costly for some
applications

18

Document similarity: sketch

= How to compare two docs very efficiently?

= Approach 1: vector space model
= Two docs are similar if vectors of word frequencies are
similar
= Drawback: bag-of-words approach loses all structure
= Approach 2: use more local structure - shingles
(or n-grams)
= k-shingle: ordered sequence of k consecutive words

= “bag of shingles” - large, sparse vocabulary

= Example: “And now for something
completely different” - 3-shingles:
“and now for”, “now for something”,
“for something completely”,...

Document similarity: shingles

Two documents characterized by their sets of
shingles A and B

Similarity: Jaccard index

. |ANB|
» sim(4,B) = 105

Problem:

= Vector-space representation: |V|*-sized vocabulary

= Sparse representation: most shingles are unique (for k
not too small) > 6(n) space, usually much better than
IV|¥, but still too much for some applications

Solution:
= Sketch: compressed version of vector of shingles

20

Document sketch

Goal: compact representation of A, B to estimate
sim(A, B)

Hash function h(.) € [1, H]: maps shingle to integer
= Assume H is large enough (e.g., 2%%) to avoid collisions
Def: sketch s(4) = rglei[rll h(a)

- Lemma: P(S(A) = S(B)) =

= Proof:
= Hash function - Each element x in A U B has same prob.
of being min
- No collision assumption = P(s(4) = s(B))
= P(randomx € AUB isinANB) ¢ i

o (o]

= |ANB|/|AU B| »

|ANB]|
|AUB]|

(o]

Document sketch

To reduce variance: multiple hash functions (e.g.,
100-1000)

s(A) = (min hy (A), min h,(A4), ..., min h; (4))

. STn(A.B) = |{s:n;(A)=h;(B)}|

J
= Unbiased

Doc sketch comparison:

= A few hundred integer comparison operations - very
efficient

s(A) 17 204 94 144 78 12 204 42

s(B) 87 204 185 91 78 12 84 42

(4) Distances and nearest-neighbor

= So far: counts, set similarity

= Another general problem: high-dimensional data
x; € R4, with d large
= Examples: images; time series (financial, sensors,...)

- Euclidean distance ||x; — x;||
= Often, one needs nearest-neighbor queries:
= For a given x, find x; minimizing |[x; — x||

= Examples: find most similar images; find user with
similar pref vector in recommender system

= Large d and n: very costly computation
= How can we bring down dimensionality?

23

Randomized dim reduction

= Johnson-Lindenstrauss Lemma:
= Given: n points x; € R%, error tolerance 0 < e < 1

- There is a (linear) function f: R? - R4, such that
+ (=9~ 5] < IF) = F@)I" < A+ llxi — x|

- for d’ > 8In(n)/e? € Does not depend on d

\Very benign growth in n

= Numerical example:

= n =1000 images of d =1m pixels each; suppose € = 0.2
= d' = 1400

24

Random projection

= Techniques: project into a random low-dim
subspace

random subspace
(plus rescaling)

-

25

Random projection

= Intuition: why can we project into a space of dim
d' independently of original dim d?
= High dimension: almost everything is far away
= When projecting into d’ -dim random subspace:

= For ||x; — x;|| small - it stays small

« For ||x; — x;|| large > for distance to collapse, d’

different dimensions would have to “miss” the
difference

« Probability of this happening drops very quickly with d’

= In(n) factor: price to pay for this to hold for n?
different pairs

26

Dim reduction with random projections

= Very efficient way of maintaining distances
between large collection of objects

= Version:
= Random vectors (components restricted to {-1,+1})
= Example application:

= Autonomous security camera taking pictures

= Cannot transmit all pictures, but want to answer queries
of the type “when did things look different?”, or cluster
similar scenes

27

Summary

= “Big Data” challenges: volume and curse of
dimensionality

n: volume
€t

c

O

C

GE) - (4) random
= projection
Y

- (1) Heavy-hitter
- (2) Flajolet-Martin sketch
- (3) Doc shingle sketch

28

References

= [A. Rajaraman, J. D. Ullman: Mining of Massive
Datasets, 2012 (chapter 4)]

= [S. Muthukrishnan: Data Streams - Algorithms and
Applications, Foundations and Trends in
Theoretical CS, 1:2, 2005]

29

	Slide 1: Data Streams
	Slide 2: Overview
	Slide 3: Motivating example (1)
	Slide 4: Motivating example (2)
	Slide 5: Data stream model
	Slide 6: Estimates with sublinear memory
	Slide 7: (1): Heavy hitters
	Slide 8: Heavy hitters: algorithm
	Slide 9: Heavy hitters: example (bold italic theta equals bold 1 over bold 3)
	Slide 10: Heavy hitters: example (bold italic theta equals bold 1 over bold 3)
	Slide 11: Heavy hitters: proof
	Slide 12: (2) Counting distinct elements
	Slide 13: Approximate count-distinct
	Slide 14: Count-distinct: single hash function
	Slide 15: Count-distinct: multiple hash functions
	Slide 16: Flajolet-Martin algorithm
	Slide 17: FM algorithm: implementation
	Slide 18: (3) Document similarity
	Slide 19: Document similarity: sketch
	Slide 20: Document similarity: shingles
	Slide 21: Document sketch
	Slide 22: Document sketch
	Slide 23: (4) Distances and nearest-neighbor
	Slide 24: Randomized dim reduction
	Slide 25: Random projection
	Slide 26: Random projection
	Slide 27: Dim reduction with random projections
	Slide 28: Summary
	Slide 29: References

