
1

Internet Analytics (COM-308)

Prof. Matthias Grossglauser

School of Computer and Communication

Sciences

▪ Performance criteria:
▪ Data volume

▪ Computational cost

▪ We have paid some attention to this:
▪ Examples: SGD vs “full” gradient descent; power method

for PageRank

▪ But: assumption that we always have access to all

the data!
▪ Allows iterative algorithms

▪ Many algorithms require “random access”

▪ Data streams:
▪ Relax these assumptions in different ways

▪ Tradeoff: compute simple quantities very efficiently
2

▪ Internet backbone router

▪ Order of magnitude:
▪ 100s of interfaces at 10s of

Gbps

▪ = several billion pkts/sec!

▪ …at expensive SRAM speeds!

▪ Traffic analysis app to

detect DDoS attack:
▪ What are the dominant

flows?

▪ How many different (unique)

source IP addresses in a

minute?

3

▪ Implantable medical devices:
▪ Resource-limited: memory,

computation, energy

▪ Rare/unpredictable read-outs

▪ Sensor reads:
▪ Storing full trace may not be

feasible

▪ Extract key statistics & maintain

over time

4

▪ Computing statistics with sub-linear memory

▪ Example:
▪ 𝑛 numbers: how many unique values (colors) 𝑘?

▪ How to solve with 𝜃(𝑛 log 𝑛) memory?
▪ Keep every value in some efficient data structure;

compare & count

▪ How to solve with o 𝑛 memory?
▪ Cannot solve exactly

▪ Streaming algorithms: ∞ data, finite memory
▪ Approximation

▪ (Pseudo-)randomization 5

𝑘 = 4

▪ Counting # of elements:
▪ 𝑂(log 𝑛) space

▪ Maximum value:
▪ 𝑂(1) space

▪ Average value:
▪ Sum / counter: 𝑂(log 𝑛) space

▪ Heavy hitters:
▪ Find the top values that repeat the most

▪ Table of all (values,counts) seen so far has size 𝑂(𝑛 log 𝑛)

▪ Number of distinct elements?
▪ I.e., do not double-count multiple occurrences

▪ Table of values so far: 𝑂(𝑛 log 𝑛)

6

▪ Find most frequent values in a stream

▪ Trivial solution: keep counters for every value,

sort at the end
▪ Cost: space Ω(𝑚) (𝑚: alphabet size)

▪ Threshold criterion 𝜃:
▪ Report every value 𝑎 that has occurred > 𝜃𝑛 times

▪ Case 𝜃 = 1/2: majority (at most one value)

▪ Trick: pairwise annihilation of different observed

values

7

May or may not be

majority color →

2nd pass to re-tally

▪ For 𝜃 < 1/2, need larger “annihilation set” 𝐾

▪ Algorithm:
▪ Annihilation set 𝐾 contains (value, count) tuples

▪ For every new sample 𝑥, update (or create) tuple in 𝐾

▪ When 𝐾 ≥ 1/𝜃 → decrease all counts by 1, and delete

those hitting 0

▪ Property:
▪ At the end, 𝐾 is a superset of values with frequency 𝜃𝑛

▪ Second pass needed to get actual counts

▪ Cost: 𝑂(log 𝑛 /𝜃) space, 𝑂 𝑛 complexity

8

1

9

1 1

1

1

2

1

2

1

1

1

1

1

1

1 2 2

1

1

10

1 1

1

1

2

1

2

1

1

1

1

1

1

1 2 2

1

correct: (4/9)

wrong: (2/9)

▪ Lemma:
▪ A value 𝑥 that occurs at least 𝜃𝑛 times in the stream is in

𝐾 at time 𝑛 (with count ≥ 1)

▪ Proof:
▪ Def: decrement action = decrement all nonzero counters

by one

▪ Each decrement action decreases the total count (sum of

all counters) by at least 1/𝜃

▪ Therefore, at most 𝜃𝑛 decrement actions over dataset

▪ Each individual value 𝑥 gets decremented by at most one

for each decrement action → at most 𝜃𝑛 decrements per

𝑥

▪ If 𝑥 occurs more than 𝜃𝑛 times, its counter cannot be 0
at time 𝑛

11

▪ Number of distinct elements?
▪ Table of values seen: 𝑂(𝑛 log 𝑛)

▪ Hash table

▪ Can we do better?

▪ No – if we need exact answer

▪ Approximation:
▪ Many streaming algorithms trade off small loss in

precision (approximation) with large gain in memory

requirement

12

𝑘 = 4

▪ Flajolet-Martin algorithm

▪ Intuition:
▪ Hash function ℎ(𝑥):

▪ Pseudorandom:

 Random: 𝑥 ≠ 𝑦 → ℎ 𝑥 and ℎ(𝑦) can be regarded as

independent uniform random variables

 Pseudo: 𝑥 = 𝑦 → ℎ 𝑥 = ℎ(𝑦)

▪ 𝑘 distinct values 𝑥1, … , 𝑥𝑘 → hashed values ℎ 𝑥1 , … , ℎ 𝑥𝑘

13

ℎ(𝑥1)ℎ(𝑥2)1 𝐻

▪ Normalize 𝐻 = 1

▪ What is 𝑦 = 𝐸[min
𝑖

ℎ(𝑥𝑖)]?

▪ 𝑘 + 1 intervals → 𝑦 = 𝑘 + 1 −1

▪ Now suppose we have 𝑛 values 𝑥1, … , 𝑥𝑛, but not

necessarily distinct

▪ What is 𝑦 = 𝐸[min
𝑖

ℎ 𝑥𝑖] now?

▪ Still 𝑦 = 𝑘 + 1 −1, where 𝑘 is # of distinct elements

▪ Therefore ෠𝑘 =
1

min
𝑖

ℎ 𝑥𝑖
− 1 is an estimator for # of

distinct elements in 𝑥1, … , 𝑥𝑛
14

min
𝑖

ℎ(𝑥𝑖)

▪ Improving the estimate:
▪ Obtain multiple independent estimates & average, by

using multiple hash functions:

▪ Assumption: ℎ1 𝑥 and ℎ2(𝑥) can be regarded as

independent RVs

15

ℎ1

ℎ2

ℎ3

෢𝑘1

෢𝑘2

෢𝑘3

෠𝑘

▪ Discretization of minimum estimator →

compression

▪ Binary representation:

▪ 𝑧(𝑥) = number of leading 0s (or trailing)

▪ Example: 0010101111000101011010 → 𝑧 = 2, ie, 𝑥 ∈
001000000 … , 001111111 …

▪ Maximum # of zeroes:

 𝑅 = 𝑧(min
𝑖

ℎ(𝑥𝑖)) = max
𝑖

𝑧(ℎ 𝑥𝑖)

▪ Estimate: ෠𝑘 = 2𝑅/0.77351

▪ Factor ensures that estimate is unbiased despite

discretization
16

4 3 2 1 0

▪ Combining {𝑅𝑗} into a single estimate for ෠𝑘:

▪ 2𝑅 has power-law distribution → median{2𝑅1 , … , 2𝑅𝐽} is
better than average

▪ (or average of medians over subgroups)

17

𝑥𝑖

001010011101011100101
010111100101101110011
001000101100111011100

2
1
2

ℎ𝑗 𝑥𝑖 𝑅𝑗

𝑥𝑖+1

001111101101011100101
000101101110011100100
100010110011101110011

2
3
0

▪ Given: Corpus of documents

▪ Efficient way to find pairwise similarity

▪ Applications:
▪ Web crawling: eliminate copies or similar version of

documents

▪ Filter search results: only show sufficiently different

docs

▪ Solutions:
▪ Cosine similarity or similar: too costly for some

applications

18

▪ How to compare two docs very efficiently?

▪ Approach 1: vector space model
▪ Two docs are similar if vectors of word frequencies are

similar

▪ Drawback: bag-of-words approach loses all structure

▪ Approach 2: use more local structure → shingles

(or n-grams)
▪ 𝑘-shingle: ordered sequence of 𝑘 consecutive words

▪ “bag of shingles” – large, sparse vocabulary

▪ Example: “And now for something

completely different” → 3-shingles:

“and now for”, “now for something”,

“for something completely”,…

19

▪ Two documents characterized by their sets of

shingles 𝐴 and 𝐵

▪ Similarity: Jaccard index

▪ 𝑠𝑖𝑚 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

▪ Problem:
▪ Vector-space representation: |𝑉|𝑘-sized vocabulary

▪ Sparse representation: most shingles are unique (for 𝑘

not too small) → 𝜃 𝑛 space, usually much better than

|𝑉|𝑘, but still too much for some applications

▪ Solution:
▪ Sketch: compressed version of vector of shingles

20

▪ Goal: compact representation of 𝐴, 𝐵 to estimate

𝑠𝑖𝑚(𝐴, 𝐵)

▪ Hash function ℎ . ∈ [1, 𝐻]: maps shingle to integer
▪ Assume 𝐻 is large enough (e.g., 264) to avoid collisions

▪ Def: sketch 𝑠 𝐴 = min
𝑎∈𝐴

ℎ(𝑎)

▪ Lemma: 𝑃 𝑠 𝐴 = 𝑠 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

▪ Proof:
▪ Hash function → Each element 𝑥 in 𝐴 ∪ 𝐵 has same prob.

of being min

▪ No collision assumption → 𝑃 𝑠 𝐴 = 𝑠 𝐵

= 𝑃 random 𝑥 ∈ 𝐴 ∪ 𝐵 is in 𝐴 ∩ 𝐵
= |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵| 21

𝐴 𝐵

▪ To reduce variance: multiple hash functions (e.g.,

100-1000)

▪ 𝑠 𝐴 = (min ℎ1 𝐴 , min ℎ2 𝐴 , … , min ℎ𝐽(𝐴))

▪ ෢𝑠𝑖𝑚 𝐴, 𝐵 =
{𝑠:ℎ𝑗 𝐴 =ℎ𝑗(𝐵)}

𝐽
▪ Unbiased

▪ Doc sketch comparison:
▪ A few hundred integer comparison operations → very

efficient

22

17 204 94 144 78 12 204 42𝑠(𝐴)

87 204 185 91 78 12 84 42𝑠(𝐵) …

…

▪ So far: counts, set similarity

▪ Another general problem: high-dimensional data

𝑥𝑖 ∈ ℝ𝑑, with 𝑑 large
▪ Examples: images; time series (financial, sensors,…)

▪ Euclidean distance 𝑥𝑖 − 𝑥𝑗

▪ Often, one needs nearest-neighbor queries:
▪ For a given 𝑥, find 𝑥𝑖 minimizing 𝑥𝑖 − 𝑥

▪ Examples: find most similar images; find user with

similar pref vector in recommender system

▪ Large 𝑑 and 𝑛: very costly computation

▪ How can we bring down dimensionality?

23

▪ Johnson-Lindenstrauss Lemma:

▪ Given: 𝑛 points 𝑥𝑖 ∈ ℝ𝑑, error tolerance 0 < 𝜖 < 1

▪ There is a (linear) function 𝑓: ℝ𝑑 → ℝ𝑑′
, such that

▪ 1 − 𝜖 𝑥𝑖 − 𝑥𝑗
2

≤ 𝑓 𝑥𝑖 − 𝑓 𝑥𝑗
2

≤ 1 + 𝜖 𝑥𝑖 − 𝑥𝑗
2

▪ for 𝑑′ > 8 ln(𝑛)/𝜖2

▪ Numerical example:
▪ 𝑛 =1000 images of 𝑑 =1m pixels each; suppose 𝜖 = 0.2

▪ 𝑑′ ≅ 1400

24

Does not depend on 𝑑

Very benign growth in 𝑛

▪ Techniques: project into a random low-dim

subspace

25

random subspace

(plus rescaling)

𝑥𝑖 − 𝑥𝑗

▪ Intuition: why can we project into a space of dim

𝑑′ independently of original dim 𝑑?
▪ High dimension: almost everything is far away

▪ When projecting into 𝑑′ -dim random subspace:

▪ For 𝑥𝑖 − 𝑥𝑗 small → it stays small

▪ For 𝑥𝑖 − 𝑥𝑗 large → for distance to collapse, 𝑑′

different dimensions would have to “miss” the

difference

▪ Probability of this happening drops very quickly with 𝑑′

▪ ln 𝑛 factor: price to pay for this to hold for 𝑛2

different pairs

26

▪ Very efficient way of maintaining distances

between large collection of objects

▪ Version:
▪ Random vectors (components restricted to {-1,+1})

▪ Example application:
▪ Autonomous security camera taking pictures

▪ Cannot transmit all pictures, but want to answer queries

of the type “when did things look different?”, or cluster

similar scenes

27

28

𝑛: volume
𝑑

:
d
im

e
n
si

o
n

- (1) Heavy-hitter

- (2) Flajolet-Martin sketch

- (3) Doc shingle sketch

- (4) random

projection

▪ “Big Data” challenges: volume and curse of

dimensionality

▪ [A. Rajaraman, J. D. Ullman: Mining of Massive

Datasets, 2012 (chapter 4)]

▪ [S. Muthukrishnan: Data Streams – Algorithms and

Applications, Foundations and Trends in

Theoretical CS, 1:2, 2005]

29

	Slide 1: Data Streams
	Slide 2: Overview
	Slide 3: Motivating example (1)
	Slide 4: Motivating example (2)
	Slide 5: Data stream model
	Slide 6: Estimates with sublinear memory
	Slide 7: (1): Heavy hitters
	Slide 8: Heavy hitters: algorithm
	Slide 9: Heavy hitters: example (bold italic theta equals bold 1 over bold 3)
	Slide 10: Heavy hitters: example (bold italic theta equals bold 1 over bold 3)
	Slide 11: Heavy hitters: proof
	Slide 12: (2) Counting distinct elements
	Slide 13: Approximate count-distinct
	Slide 14: Count-distinct: single hash function
	Slide 15: Count-distinct: multiple hash functions
	Slide 16: Flajolet-Martin algorithm
	Slide 17: FM algorithm: implementation
	Slide 18: (3) Document similarity
	Slide 19: Document similarity: sketch
	Slide 20: Document similarity: shingles
	Slide 21: Document sketch
	Slide 22: Document sketch
	Slide 23: (4) Distances and nearest-neighbor
	Slide 24: Randomized dim reduction
	Slide 25: Random projection
	Slide 26: Random projection
	Slide 27: Dim reduction with random projections
	Slide 28: Summary
	Slide 29: References

