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▪ Performance criteria:
▪ Data volume

▪ Computational cost

▪ We have paid some attention to this:
▪ Examples: SGD vs “full” gradient descent; power method 

for PageRank

▪ But: assumption that we always have access to all 

the data!
▪ Allows iterative algorithms

▪ Many algorithms require “random access”

▪ Data streams:
▪ Relax these assumptions in different ways

▪ Tradeoff: compute simple quantities very efficiently
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▪ Internet backbone router

▪ Order of magnitude:
▪ 100s of interfaces at 10s of 

Gbps

▪ = several billion pkts/sec!

▪ …at expensive SRAM speeds!

▪ Traffic analysis app to 

detect DDoS attack:
▪ What are the dominant 

flows?

▪ How many different (unique) 

source IP addresses in a 

minute?
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▪ Implantable medical devices:
▪ Resource-limited: memory, 

computation, energy

▪ Rare/unpredictable read-outs

▪ Sensor reads:
▪ Storing full trace may not be 

feasible

▪ Extract key statistics & maintain 

over time
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▪ Computing statistics with sub-linear memory

▪ Example:
▪ 𝑛 numbers: how many unique values (colors) 𝑘?

▪ How to solve with 𝜃(𝑛 log 𝑛 ) memory?
▪ Keep every value in some efficient data structure; 

compare & count

▪ How to solve with o 𝑛  memory?
▪ Cannot solve exactly

▪ Streaming algorithms: ∞ data, finite memory
▪ Approximation

▪ (Pseudo-)randomization 5
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▪ Counting # of elements:
▪ 𝑂(log 𝑛) space

▪ Maximum value:
▪ 𝑂(1) space

▪ Average value:
▪ Sum / counter: 𝑂(log 𝑛) space

▪ Heavy hitters:
▪ Find the top values that repeat the most

▪ Table of all (values,counts) seen so far has size 𝑂(𝑛 log 𝑛)

▪ Number of distinct elements?
▪ I.e., do not double-count multiple occurrences

▪ Table of values so far: 𝑂(𝑛 log 𝑛)
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▪ Find most frequent values in a stream

▪ Trivial solution: keep counters for every value, 

sort at the end
▪ Cost: space Ω(𝑚) (𝑚: alphabet size)

▪ Threshold criterion 𝜃:
▪ Report every value 𝑎 that has occurred > 𝜃𝑛 times

▪ Case 𝜃 = 1/2: majority (at most one value)

▪ Trick: pairwise annihilation of different observed 

values
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▪ For 𝜃 < 1/2, need larger “annihilation set” 𝐾

▪ Algorithm:
▪ Annihilation set 𝐾 contains (value, count) tuples

▪ For every new sample 𝑥, update (or create) tuple in 𝐾

▪ When 𝐾 ≥ 1/𝜃 → decrease all counts by 1, and delete 

those hitting 0

▪ Property:
▪ At the end, 𝐾 is a superset of values with frequency 𝜃𝑛

▪ Second pass needed to get actual counts

▪ Cost: 𝑂(log 𝑛 /𝜃) space, 𝑂 𝑛  complexity
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▪ Lemma:
▪ A value 𝑥 that occurs at least 𝜃𝑛 times in the stream is in 

𝐾 at time 𝑛 (with count ≥ 1)

▪ Proof:
▪ Def: decrement action = decrement all nonzero counters

by one

▪ Each decrement action decreases the total count (sum of 

all counters) by at least 1/𝜃

▪ Therefore, at most 𝜃𝑛 decrement actions over dataset

▪ Each individual value 𝑥 gets decremented by at most one 

for each decrement action → at most 𝜃𝑛 decrements per 

𝑥

▪ If 𝑥 occurs more than 𝜃𝑛 times, its counter cannot be 0
at time 𝑛
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▪ Number of distinct elements?
▪ Table of values seen: 𝑂(𝑛 log 𝑛)

▪ Hash table

▪ Can we do better?

▪ No – if we need exact answer

▪ Approximation:
▪ Many streaming algorithms trade off small loss in 

precision (approximation) with large gain in memory 

requirement
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▪ Flajolet-Martin algorithm

▪ Intuition:
▪ Hash function ℎ(𝑥):

▪ Pseudorandom:

 Random: 𝑥 ≠ 𝑦 → ℎ 𝑥  and ℎ(𝑦) can be regarded as 

independent uniform random variables

 Pseudo: 𝑥 = 𝑦 → ℎ 𝑥 = ℎ(𝑦)

▪ 𝑘 distinct values 𝑥1, … , 𝑥𝑘 → hashed values ℎ 𝑥1 , … , ℎ 𝑥𝑘
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▪ Normalize 𝐻 = 1

▪ What is 𝑦 = 𝐸[min
𝑖

ℎ(𝑥𝑖)]?

▪ 𝑘 + 1 intervals → 𝑦 = 𝑘 + 1 −1

▪ Now suppose we have 𝑛 values 𝑥1, … , 𝑥𝑛, but not 

necessarily distinct

▪ What is 𝑦 = 𝐸[min
𝑖

ℎ 𝑥𝑖 ] now?

▪ Still 𝑦 = 𝑘 + 1 −1, where 𝑘 is # of distinct elements

▪ Therefore ෠𝑘 =
1

min
𝑖

ℎ 𝑥𝑖
− 1 is an estimator for # of 

distinct elements in 𝑥1, … , 𝑥𝑛
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▪ Improving the estimate:
▪ Obtain multiple independent estimates & average, by 

using multiple hash functions:

▪ Assumption: ℎ1 𝑥  and ℎ2(𝑥) can be regarded as 

independent RVs

15

ℎ1

ℎ2

ℎ3

෢𝑘1

෢𝑘2

෢𝑘3

෠𝑘



▪ Discretization of minimum estimator → 

compression

▪ Binary representation:

▪  𝑧(𝑥) = number of leading 0s (or trailing)

▪ Example: 0010101111000101011010 → 𝑧 = 2, ie, 𝑥 ∈
001000000 … , 001111111 …

▪ Maximum # of zeroes:

 𝑅 = 𝑧(min
𝑖

ℎ(𝑥𝑖)) = max
𝑖

𝑧(ℎ 𝑥𝑖 )

▪ Estimate: ෠𝑘 = 2𝑅/0.77351

▪ Factor ensures that estimate is unbiased despite 

discretization
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▪ Combining {𝑅𝑗} into a single estimate for ෠𝑘:

▪ 2𝑅 has power-law distribution → median{2𝑅1 , … , 2𝑅𝐽} is 
better than average

▪ (or average of medians over subgroups)
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▪ Given: Corpus of documents

▪ Efficient way to find pairwise similarity

▪ Applications:
▪ Web crawling: eliminate copies or similar version of 

documents

▪ Filter search results: only show sufficiently different 

docs

▪ Solutions:
▪ Cosine similarity or similar: too costly for some 

applications
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▪ How to compare two docs very efficiently?

▪ Approach 1: vector space model
▪ Two docs are similar if vectors of word frequencies are 

similar

▪ Drawback: bag-of-words approach loses all structure

▪ Approach 2: use more local structure → shingles 

(or n-grams)
▪ 𝑘-shingle: ordered sequence of 𝑘 consecutive words

▪ “bag of shingles” – large, sparse vocabulary

▪ Example: “And now for something 

completely different” → 3-shingles: 

“and now for”, “now for something”, 

“for something completely”,…
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▪ Two documents characterized by their sets of 

shingles 𝐴 and 𝐵

▪ Similarity: Jaccard index

▪ 𝑠𝑖𝑚 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

▪ Problem:
▪ Vector-space representation: |𝑉|𝑘-sized vocabulary

▪ Sparse representation: most shingles are unique (for 𝑘 

not too small) → 𝜃 𝑛  space, usually much better than 

|𝑉|𝑘, but still too much for some applications

▪ Solution:
▪ Sketch: compressed version of vector of shingles
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▪ Goal: compact representation of 𝐴, 𝐵 to estimate 

𝑠𝑖𝑚(𝐴, 𝐵)

▪ Hash function ℎ . ∈ [1, 𝐻]: maps shingle to integer
▪ Assume 𝐻 is large enough (e.g., 264) to avoid collisions

▪ Def: sketch 𝑠 𝐴 = min
𝑎∈𝐴

ℎ(𝑎)

▪ Lemma: 𝑃 𝑠 𝐴 = 𝑠 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

▪ Proof:
▪ Hash function → Each element 𝑥 in 𝐴 ∪ 𝐵 has same prob. 

of being min

▪ No collision assumption → 𝑃 𝑠 𝐴 = 𝑠 𝐵

= 𝑃 random 𝑥 ∈ 𝐴 ∪ 𝐵 is in 𝐴 ∩ 𝐵
= |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵| 21
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▪ To reduce variance: multiple hash functions (e.g., 

100-1000)

▪ 𝑠 𝐴 = (min ℎ1 𝐴 , min ℎ2 𝐴 , … , min ℎ𝐽(𝐴))

▪  ෢𝑠𝑖𝑚 𝐴, 𝐵 =
{𝑠:ℎ𝑗 𝐴 =ℎ𝑗(𝐵)}

𝐽
▪ Unbiased

▪ Doc sketch comparison:
▪ A few hundred integer comparison operations → very 

efficient
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17 204 94 144 78 12 204 42𝑠(𝐴)

87 204 185 91 78 12 84 42𝑠(𝐵) …

…



▪ So far: counts, set similarity

▪ Another general problem: high-dimensional data 

𝑥𝑖 ∈ ℝ𝑑, with 𝑑 large
▪ Examples: images; time series (financial, sensors,…)

▪ Euclidean distance 𝑥𝑖 − 𝑥𝑗

▪ Often, one needs nearest-neighbor queries:
▪ For a given 𝑥, find 𝑥𝑖 minimizing 𝑥𝑖 − 𝑥

▪ Examples: find most similar images; find user with 

similar pref vector in recommender system

▪ Large 𝑑 and 𝑛: very costly computation

▪ How can we bring down dimensionality?
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▪ Johnson-Lindenstrauss Lemma:

▪ Given: 𝑛 points 𝑥𝑖 ∈ ℝ𝑑, error tolerance 0 < 𝜖 < 1

▪ There is a (linear) function 𝑓: ℝ𝑑 → ℝ𝑑′
, such that

▪ 1 − 𝜖 𝑥𝑖 − 𝑥𝑗
2

≤ 𝑓 𝑥𝑖 − 𝑓 𝑥𝑗
2

≤ 1 + 𝜖 𝑥𝑖 − 𝑥𝑗
2

▪ for 𝑑′ > 8 ln(𝑛)/𝜖2

▪ Numerical example:
▪ 𝑛 =1000 images of 𝑑 =1m pixels each; suppose 𝜖 = 0.2

▪ 𝑑′ ≅ 1400
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▪ Techniques: project into a random low-dim 

subspace
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random subspace

(plus rescaling)

𝑥𝑖 − 𝑥𝑗



▪ Intuition: why can we project into a space of dim 

𝑑′ independently of original dim 𝑑?
▪ High dimension: almost everything is far away

▪ When projecting into 𝑑′ -dim random subspace:

▪ For 𝑥𝑖 − 𝑥𝑗  small → it stays small

▪ For 𝑥𝑖 − 𝑥𝑗  large → for distance to collapse, 𝑑′ 

different dimensions would have to “miss” the 

difference

▪ Probability of this happening drops very quickly with 𝑑′

▪ ln 𝑛  factor: price to pay for this to hold for 𝑛2 

different pairs
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▪ Very efficient way of maintaining distances 

between large collection of objects

▪ Version:
▪ Random vectors (components restricted to {-1,+1})

▪ Example application:
▪ Autonomous security camera taking pictures

▪ Cannot transmit all pictures, but want to answer queries 

of the type “when did things look different?”, or cluster 

similar scenes
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- (1) Heavy-hitter 

- (2) Flajolet-Martin sketch

- (3) Doc shingle sketch

- (4) random

projection

▪ “Big Data” challenges: volume and curse of 

dimensionality



▪ [A. Rajaraman, J. D. Ullman: Mining of Massive 

Datasets, 2012 (chapter 4)]

▪ [S. Muthukrishnan: Data Streams – Algorithms and 

Applications, Foundations and Trends in 

Theoretical CS, 1:2, 2005]
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