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▪ Clustering:
▪ Given: set of points with a distance metric

▪ Find sets of points that are close to each other, but far 

from other points

▪ Community detection:
▪ Given: network

▪ Find sets of nodes that are highly interconnected, but 

poorly connected to other nodes

▪ Many important applications:
▪ Data analysis: finding structure, modes in data 

distribution

▪ Problem decomposition and resource allocation: where 

to put warehouses; group formation in social networks

▪ …
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▪ Definition:
▪ Given: set of points (vectors) with a distance function 

(metric space)

▪ Find: partition (hard or soft) of points into clusters; plus 

potentially more information (characterization of 

clusters)

▪ Find organization in data:
▪ Image compression: each pixel has a color → find small 

set of colors so that each pixel is close to one color
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▪ Find organization in data:
▪ Mobility: point = GPS trace with noise → find 

representative set of trajectories

4
[Miriam Baglioni]



▪ Input:
▪ 𝑁 data points 𝒙1, … , 𝒙𝑁

▪ 𝐾: number of clusters

▪ Output:
▪ 𝐾 cluster centers 𝝁𝑘

▪ 𝑟𝑛𝑘: point-cluster assignment indicator

▪ 𝑟𝑛𝑘 = 1 means point 𝒙𝑛 is in cluster 𝑘

▪ Cost function:

▪ 𝐽 = σ𝑛=1
𝑁 σ𝑘=1

𝐾 𝑟𝑛𝑘 𝒙𝑛 − 𝝁𝑘
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▪ Optimal K-means: NP-hard

▪ Solution: iterative heuristic to approximate 

solution
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▪ Initialize 𝝁 = (𝝁1, … , 𝝁𝐾)

▪ Until convergence (𝐽 does not decrease):
▪ Minimize 𝐽 w.r.t. {𝑟𝑛𝑘}:

▪ 𝑟𝑛𝑘 = 1 only for

 𝑘 = argmin 𝒙𝑛 − 𝝁𝑘
▪ Minimize 𝐽 w.r.t. 𝝁:

▪ Set gradient of 𝐽 w.r.t. 𝝁𝑘 to zero

▪ 2 σ𝑛 𝑟𝑛𝑘 𝒙𝑛 − 𝝁𝑘 = 0 (for each 𝑘)

▪ Solve for 𝝁: 𝝁𝑘 =
σ𝑛 𝑟𝑛𝑘𝒙𝑛

σ𝑛 𝑟𝑛𝑘
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E-step:

Attribute each 𝒙𝑛

to closest center 

M-step:

New cluster center 𝝁𝑘

= center of mass of

points of cluster 𝑘
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▪ Proof:
▪ 𝐽 non-increasing in both steps

▪ First step: each 𝒙𝑛 − 𝝁𝑘
2 either stays the same or 

decreases if 𝑟𝑛𝑘 changes

▪ Second step: 𝐽 convex in 𝜇 → new 𝐽 global min as 

function of {𝜇𝑘}

▪ There are finitely many configurations 𝑟𝑛𝑘 → if we ever

returned to a configuration of 𝑟𝑛𝑘 already visited (in a 

finite # of steps), we’d end up with the same 𝐽 in step 2 

as last time in step 2 → must have already converged

▪ But: there is no guarantee of convergence to 

globally minimal 𝐽 over both 𝑟𝑛𝑘 , {𝝁𝑘}
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Iter 1

E-step

Iter 2

M-step



▪ K-Means: Can be generalized to non-Euclidean 

distance functions

▪ Limitations:
▪ Each point attributed to exactly one cluster

▪ Not a generative model: cannot “simulate” data based 

on learned 𝑟𝑛𝑘 , {𝝁𝑘} (no distribution for new values)

▪ Improvement:
▪ Soft attribution: a point can belong to several clusters

▪ Generative model: distribution over points
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▪ GMM: distribution of single data point 

𝑝 𝒙 = ෍
𝑘=1

𝐾

𝜋𝑘 𝑁(𝒙; 𝜇𝑘 , Σ𝑘)

▪ Random variable 𝑍𝑛𝑘: point 𝑛 belongs to cluster 𝑘
▪  𝑝 𝑍𝑛𝑘 = 1 = 𝜋𝑘: mixing coefficients
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𝒁𝑛

𝑿𝑛

𝑁

𝝅

𝝁 Σ

replication

(hyper)parameter

observed variable

unobserved/latent

variable
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▪ Latent variable 𝒁𝑛 = (𝑍𝑛1, 𝑍𝑛2, … , 𝑍𝑛𝑘 , … , 𝑍𝑛𝐾):

▪  𝑝 𝒁𝑛 = ς𝑘 𝜋𝑘
𝑍𝑛𝑘

▪ “One-hot”: 𝒁𝑛 = (0,0,0, … , 1, … , 0,0)

▪ Conditional distribution of data point:
▪ 𝑝 𝑿𝑛 𝑍𝑛𝑘 = 1 = 𝑁(𝑿𝑛; 𝜇𝑘, Σ𝑘), or equivalently

▪ 𝑝 𝑿𝑛 𝒁𝑛 = ς𝑘 𝑁(𝑿𝑛; 𝜇𝑘, Σ𝑘)𝑍𝑛𝑘

▪ Data distribution (unconditional):
▪  𝑝 𝑿𝑛 = σ𝒛𝑛

𝑝 𝒁𝑛 𝑝 𝑿𝑛 𝒁𝑛 =

▪           = σ𝒁𝑛
Π𝑘(𝜋𝑘𝑁(𝑿𝑛; 𝜇𝑘, Σ𝑘))𝑧𝑛𝑘 = σ𝑘 𝜋𝑘 𝑁(𝑿𝑛; 𝜇𝑘, Σ𝑘)

▪ Conclusion:
▪ Gaussian mixture can be viewed as follows: choose a 

cluster 𝑘 with distribution 𝝅; then generate a point 

according to Gaussian 𝑁(𝑿|𝜇𝑘 , Σ𝑘) of the chosen cluster
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▪ Data vectors 𝑿1, … , 𝑿𝑁

▪ Model as 𝑁(𝝁, Σ)

▪ Maximum likelihood:

▪  𝜇 =
1

𝑁
σ𝑛 𝑿𝑛: empirical mean

▪  Σ =
1

𝑁
σ𝑛 𝑿𝑛 − 𝝁 𝑿𝑛 − 𝝁 𝑇: empirical covariance

14



▪ Finding clusters = computing posterior, ie, 

distribution of 𝒁𝑛 given data 𝑿𝑛

▪ Def: 𝛾𝑛𝑘 = 𝑝 𝑍𝑛𝑘 = 1 𝑿𝑛

▪ Bayes’ theorem:

▪  𝛾𝑛𝑘 =
𝑝 𝑍𝑛𝑘=1 𝑝(𝑿𝑛|𝑍𝑛𝑘=1)

σ𝑗 𝑝 𝑍𝑛𝑗=1 𝑝(𝑿𝑛|𝑍𝑛𝑗=1)
=

𝜋𝑘𝑁(𝑿𝑛;𝝁𝑘,Σ𝑘)

σ𝑗 𝜋𝑗𝑁(𝑿𝑛;𝝁𝑗,Σ𝑗)

▪ Interpretation:
▪ For fixed {𝝁𝑘 , Σ𝑘}, 

𝝅 is the prior for the cluster 𝒁𝑛 of point 𝑿𝑛, and 

𝜸𝒏 is its posterior 
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▪ Log-likelihood for 𝑛 data points (𝑋1, … , 𝑋𝑁):
▪ 𝐿 = log 𝑝 𝑿1, … , 𝑿𝑁 𝝅, 𝜇, Σ = σ𝑛 log σ𝑘 𝜋𝑘𝑁(𝒙𝑛; 𝝁𝑘 , Σ𝑘)

▪ Maximizing w.r.t. 𝝁:

▪ 𝛻𝝁𝑘
𝐿 = 0 ⇒

෍

𝑛

𝜋𝑘𝑁(𝑿𝑛; 𝝁𝑘 , Σ𝑘)

σ𝑗 𝜋𝑗𝑁(𝑿𝑛; 𝝁𝑗 , Σ𝑗) 
Σ𝑘

−1 𝑿𝑛 − 𝝁𝑘 = 0

▪ Solution:

▪  𝝁𝑘 =
1

𝑁𝑘
σ𝑛 𝛾𝑛𝑘 𝑿𝑛 (roughly, weighted center of mass)

▪  with 𝑁𝑘 = σ𝑛 𝛾𝑛𝑘 (roughly, # of points in class 𝑘)
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= 𝛾𝑛𝑘: posterior of 𝑍𝑛𝑘 given 𝑿𝑛



▪ Maximizing w.r.t. 𝜮:

▪  Σ𝑘 =
1

𝑁𝑘
σ𝑛 𝛾𝑛𝑘 𝑿𝑛 − 𝝁𝑘 𝑿𝑛 − 𝝁𝑘

𝑇

▪ (roughly, weighted empirical covariance matrix within 

class 𝑘)

▪ Maximizing w.r.t. 𝝅:

▪  𝜋𝑘 =
𝑁𝑘

𝑁
▪ (roughly, number of points attributed to cluster 𝑘)
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E-step 3
M-step 2

E-step 2

18

E-step:

Compute posterior of

latent variables 𝑍 given

parameters from

M-step:

 𝛾𝑛𝑘 =
𝜋𝑘𝑁(𝑋𝑛;𝜇𝑘,Σ𝑘)

σ𝑗 𝜋𝑗𝑁(𝑋𝑛;𝜇𝑗,Σ𝑗) 

M-step:

Compute new parameters using 

distribution of latent variables from 

E-step:

 𝜇𝑘 =
1

𝑁𝑘
σ𝑛 𝛾𝑛𝑘 𝑋𝑛

 Σ𝑘 =
1

𝑁𝑘
σ𝑛 𝛾𝑛𝑘 𝑋𝑛 − 𝜇𝑘 𝑋𝑛 − 𝜇𝑘

𝑇

 𝜋𝑘 =
𝑁𝑘

𝑁

Until convergence of likelihood

 𝐿 = log 𝑝 𝑋1, … , 𝑋𝑛 𝜋, 𝜇, Σ  
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Iter 1

E-step

Iter 2

M-step

𝜇1

Σ1
Σ2

𝜇2



K-Means GMM

Membership Hard Soft

Generative No Yes

E-step updates 𝑟𝑛𝑘 = closest 

center

𝛾𝑛𝑘 = 𝑃(𝑍𝑛𝑘|𝑋𝑛) 

M-step updates 𝜇𝑘 𝜇𝑘 , Σ𝑘 , 𝜋𝑘

Convergence Guaranteed Guaranteed

Optimal Not guaranteed Not guaranteed

Characterization Centers, 

membership

Centers, 

weights, shapes
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▪ Find organization in graphs:
▪ Email or phone graph → find organizational units

▪ Citation networks → scientific topics and their 

relationships

▪ Social networks → groups with shared interests 

(language, etc.)

▪ Definition:
▪ Given: a network 𝐺(𝑉, 𝐸)

▪ Find: a partition (hard or soft), or a hierarchy, such that 

node in same community are more “meshed” than other 

nodes
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▪ Def:
▪ Partitioning of nodes into communities: {𝐶𝑖}

▪ 𝑄 =
1

2𝑚
σ𝐶𝑖∈𝐶 σ𝑢,𝑣∈𝐶𝑖

𝟙𝑢𝑣 −
𝑑𝑢𝑑𝑣

2𝑚
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764

3
5

1

𝐶1

𝐶2

Note: inner sum is over all *ordered* (𝑢, 𝑣), and includes (𝑢, 𝑢)



2

7
64

3
5

1

▪ Number of stubs: 2𝑚

▪ Expected # edges 

(𝑢, 𝑣) in 𝐶𝑖: 
1

2
σ𝑢,𝑣∈𝐶𝑖

𝑑𝑢𝑑𝑣

2𝑚
= 𝑒𝑖

▪ Actual # edges in 

community 𝐶𝑖: 
1

2
σ𝑢,𝑣∈𝐶𝑖

𝟙𝑢𝑣 = 𝑚𝑖

▪ Modularity: compares 

actual graph with 

unstructured graph 

with same node 

weights

▪ 𝑄 =
σ𝐶𝑖

(𝑚𝑖−𝑒𝑖)

𝑚

▪ 𝑚𝑖: # edges in 

community 𝐶𝑖

▪ 𝑒𝑖: expected # edges in 

community 𝐶𝑖 in random 

graph with same degrees
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▪ 𝑚 = 25

▪ Edge (4,8):
▪ 𝑑4 = 5; 𝑑8 = 3

▪ Expected # =
15

50
~0.3

▪ 𝑄 =
15+6 −(11.56+2.56)

25
=

0.275

25

2

DA

1

8 C

9

𝐶1

3

4

5

67

B

𝐶2

𝐶1:

- 𝑚1 = 15
- 𝑒1 = 11.56

𝐶2:

- 𝑚2 = 6
- 𝑒2 = 2.56



▪ Max-modularity is NP-

hard

▪ Need efficient 

heuristics
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▪ Idea:
▪ Building hierarchy of 

communities

▪ Bottom-up: start with each 

node a separate community, 

then coalesce communities

▪ For every node 𝑢:
▪ Compare modularity if 𝑢 is 

added to the community of a 

neighbor 𝑣

▪ Choose neighbor 𝑣 that 

increases modularity most; if 

none, leave 𝑢 in current 

community
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▪ Iterate through all nodes 𝑢 

(possibly several times) 

until no more modularity 

increases possible
▪ Local maximum

▪ Form a new graph 

capturing the network of 

communities
▪ Link weights = # edges 

between communities

▪ Self-loops: internal edges

▪ Repeat the procedure 

until convergence
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[Source: V. Blondel]



French Dutch
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nokia

research

community

epfl

studies



▪ Unsupervised techniques for grouping data

▪ Clusters: set of points close in distance, far from 

other clusters

▪ Criteria: distances to center (K-means), likelihood (GMM)

▪ GMM: Gaussian parameters characterize cluster

▪ Community: set of nodes with high edge density, 

low edge density to other communities
▪ Criterion = modularity

▪ In general, no optimal solutions
▪ Exponential computational cost

▪ Heuristics:
▪ Expectation Maximization for mixture models

▪ Louvain method: build hierarchy bottom-up
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▪ [Ch. M. Bishop, Pattern Recognition and Machine 

Learning, Springer, 2006 (chapter 9)]

▪ [V. Blondel, lecture notes on community 

detection, 2013]

▪ [M. Newman, Networks, Oxford UP, 2010]
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