

Clusters and Communities

Internet Analytics (COM-308)

Prof. Matthias Grossglauser
School of Computer and Communication
Sciences

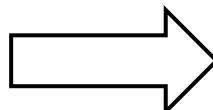
EPFL

Overview

- **Clustering:**
 - Given: set of points with a distance metric
 - Find sets of points that are close to each other, but far from other points
- **Community detection:**
 - Given: network
 - Find sets of nodes that are highly interconnected, but poorly connected to other nodes
- **Many important applications:**
 - Data analysis: finding structure, modes in data distribution
 - Problem decomposition and resource allocation: where to put warehouses; group formation in social networks
 - ...

Clustering: goal and definition

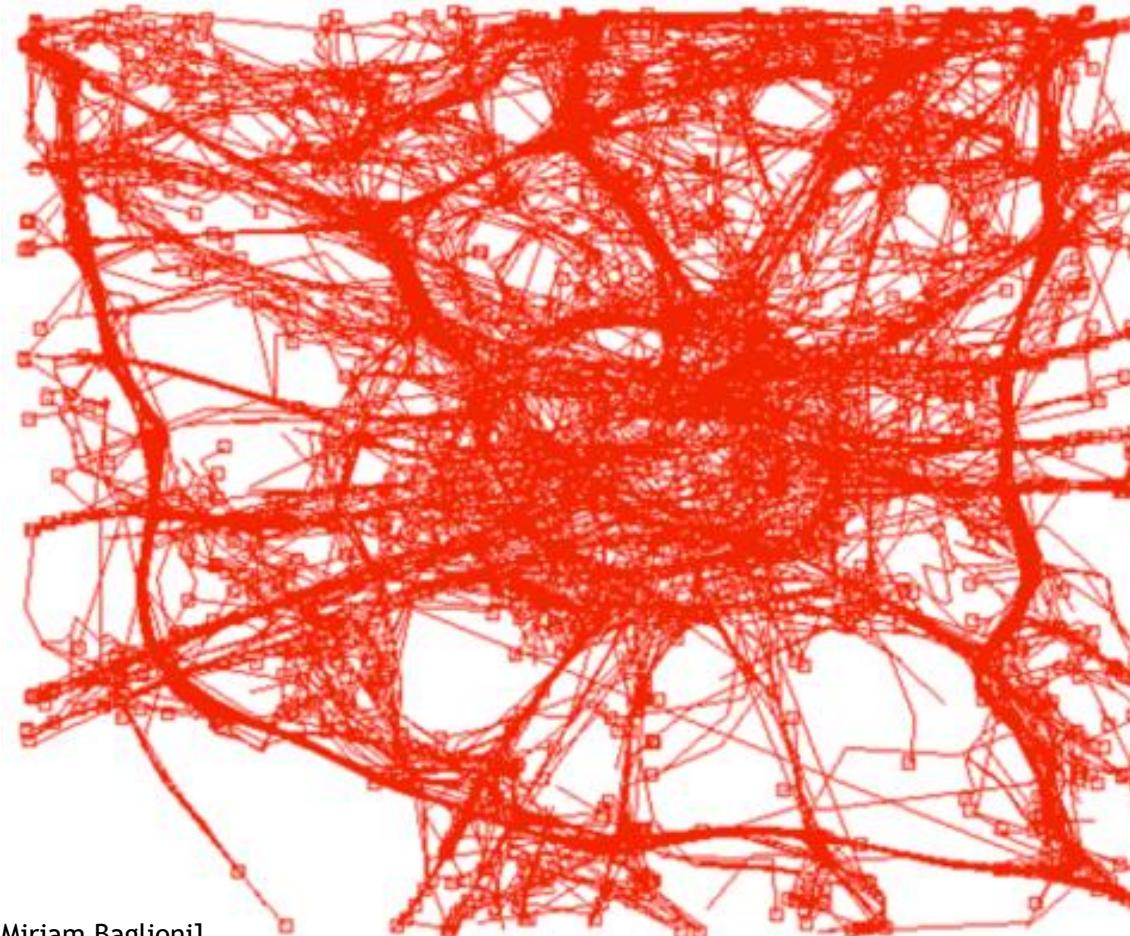
- Definition:
 - Given: set of points (vectors) with a distance function (metric space)
 - Find: partition (hard or soft) of points into clusters; plus potentially more information (characterization of clusters)
- Find organization in data:
 - Image compression: each pixel has a color → find small set of colors so that each pixel is close to one color



[Stackexchange.com]

Clustering: goal and definition

- Find organization in data:
 - Mobility: point = GPS trace with noise → find representative set of trajectories



K-means clustering algorithm

- **Input:**
 - N data points x_1, \dots, x_N
 - K : number of clusters
- **Output:**
 - K cluster centers μ_k
 - r_{nk} : point-cluster assignment indicator
 - $r_{nk} = 1$ means point x_n is in cluster k
- **Cost function:**
 - $J = \sum_{n=1}^N \sum_{k=1}^K r_{nk} \|x_n - \mu_k\|^2$
- **Optimal K-means:** NP-hard
- **Solution:** iterative heuristic to approximate solution

K-means: iterative approximation

- Initialize $\mu = (\mu_1, \dots, \mu_K)$
- Until convergence (J does not decrease):
 - Minimize J w.r.t. $\{r_{nk}\}$:
 - $r_{nk} = 1$ only for $k = \operatorname{argmin} \|x_n - \mu_k\|$
 - Minimize J w.r.t. μ :
 - Set gradient of J w.r.t. μ_k to zero
 - $2 \sum_n r_{nk} (x_n - \mu_k) = 0$ (for each k)
 - Solve for μ : $\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$

E-step:
Attribute each x_n to closest center

M-step:
New cluster center μ_k = center of mass of points of cluster k

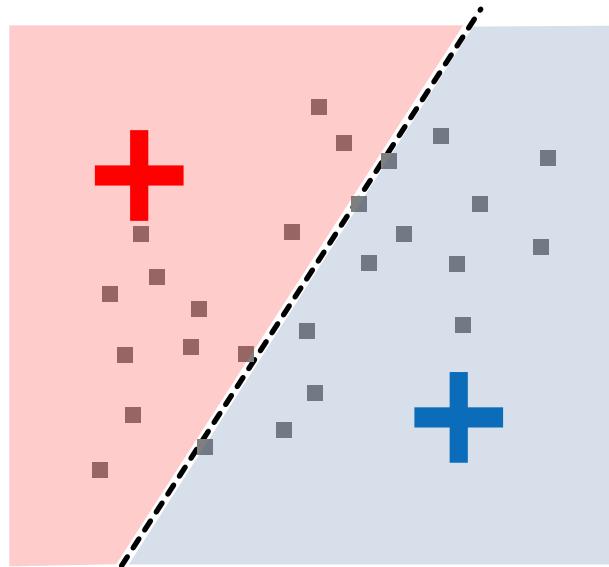
Voronoi tessellation

K-means converges in finite # steps

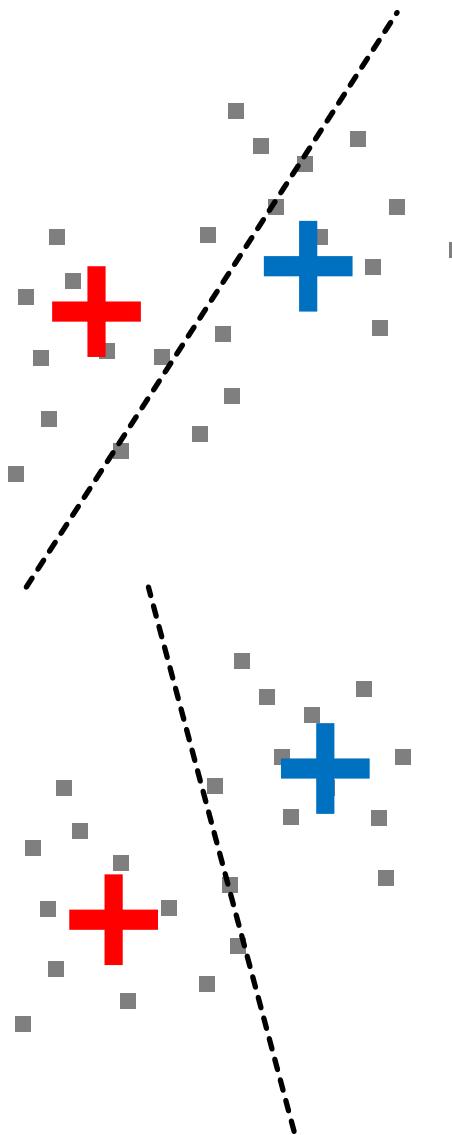
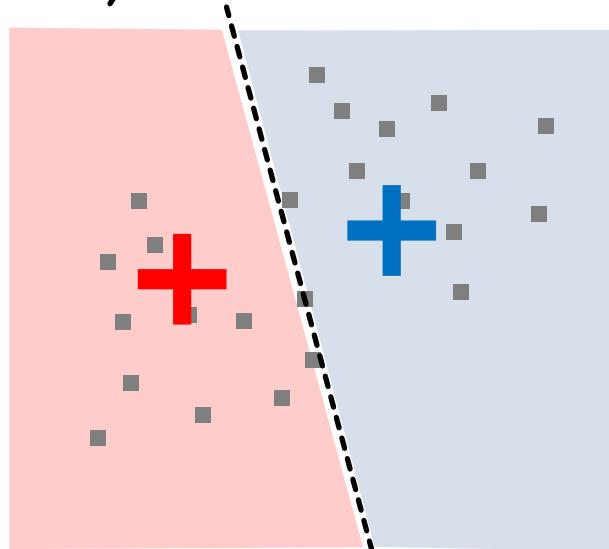
- Proof:
 - J non-increasing in both steps
 - First step: each $\|x_n - \mu_k\|^2$ either stays the same or decreases if r_{nk} changes
 - Second step: J convex in $\mu \rightarrow$ new J global min as function of $\{\mu_k\}$
 - There are finitely many configurations $r_{nk} \rightarrow$ if we ever returned to a configuration of $\{r_{nk}\}$ already visited (in a finite # of steps), we'd end up with the same J in step 2 as last time in step 2 \rightarrow must have already converged
- But: there is no guarantee of convergence to globally minimal J over both $\{r_{nk}\}, \{\mu_k\}$

K-means: example

E-step



M-step



From K-means to Mixtures of Gaussians

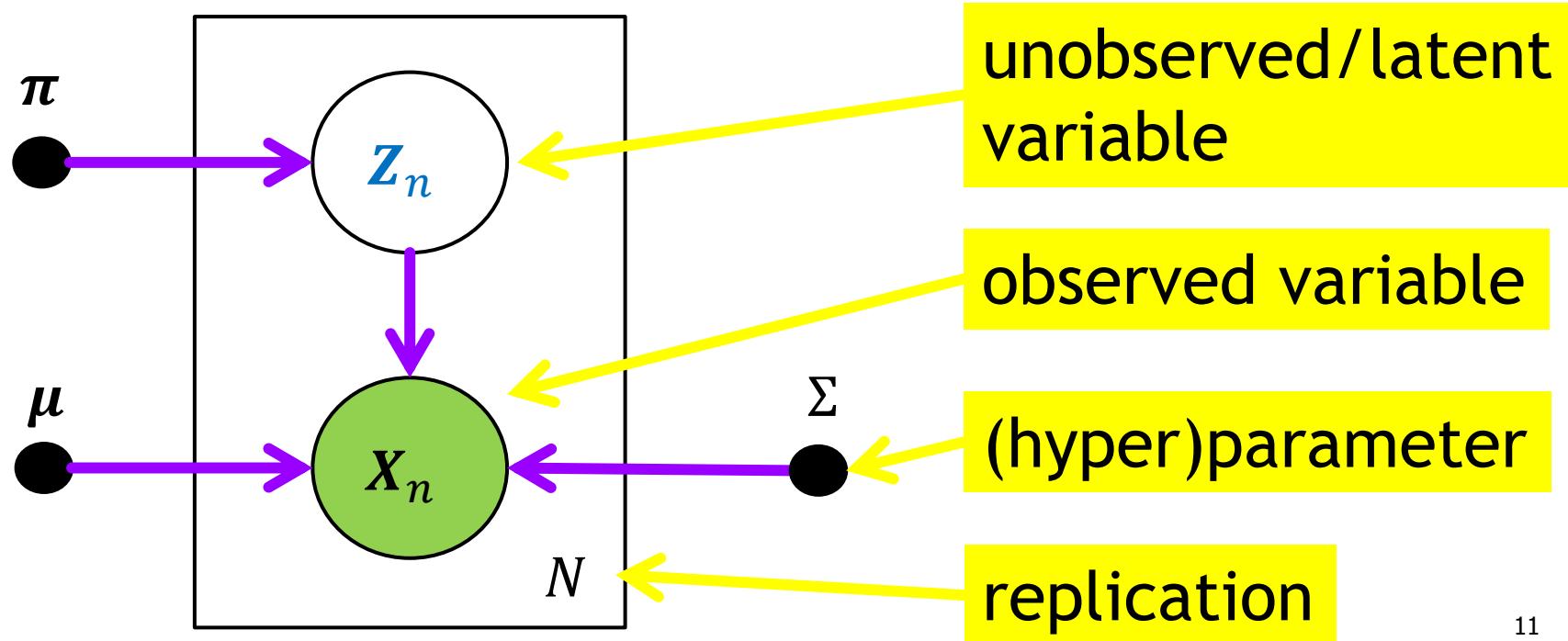
- K-Means: Can be generalized to non-Euclidean distance functions
- Limitations:
 - Each point attributed to exactly one cluster
 - Not a generative model: cannot “simulate” data based on learned $\{r_{nk}\}, \{\mu_k\}$ (no distribution for new values)
- Improvement:
 - Soft attribution: a point can belong to several clusters
 - Generative model: distribution over points

Gaussian mixture model (GMM)

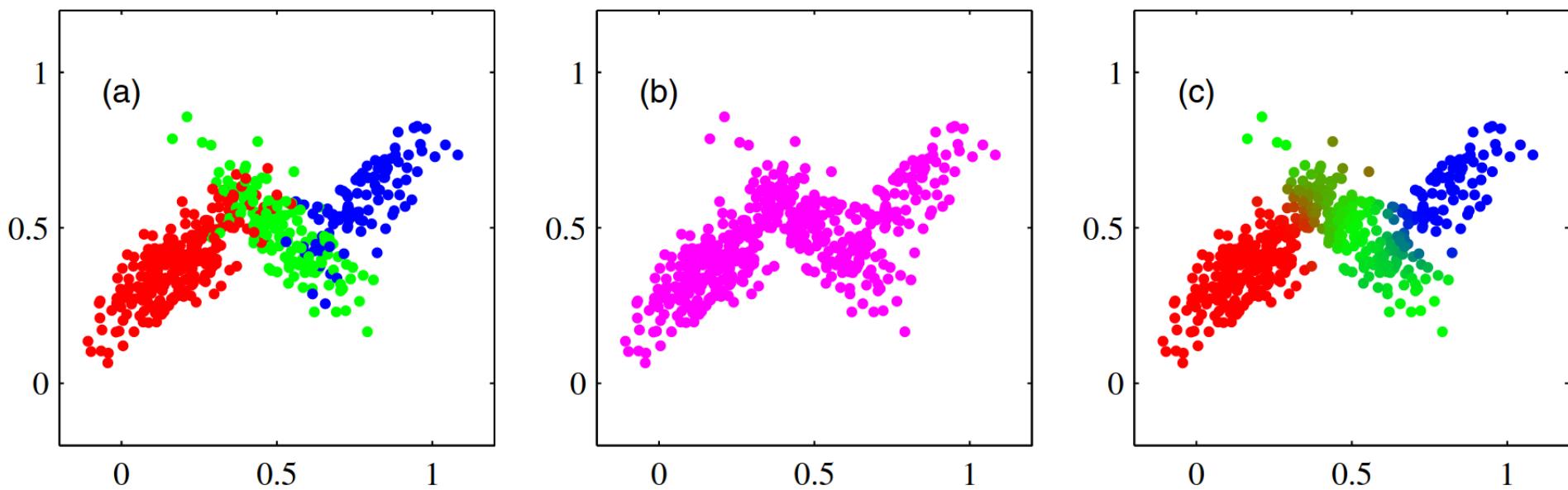
- GMM: distribution of single data point

$$p(x) = \sum_{k=1}^K \pi_k N(x; \mu_k, \Sigma_k)$$

- Random variable Z_{nk} : point n belongs to cluster k
 - $p(Z_{nk} = 1) = \pi_k$: mixing coefficients



GMM is a generative model



GMM

- Latent variable $\mathbf{Z}_n = (Z_{n1}, Z_{n2}, \dots, Z_{nk}, \dots, Z_{nK})$:
 - $p(\mathbf{Z}_n) = \prod_k \pi_k^{Z_{nk}}$
 - “One-hot”: $\mathbf{Z}_n = (0,0,0, \dots, 1, \dots, 0,0)$
- Conditional distribution of data point:
 - $p(\mathbf{X}_n | Z_{nk} = 1) = N(\mathbf{X}_n; \mu_k, \Sigma_k)$, or equivalently
 - $p(\mathbf{X}_n | \mathbf{Z}_n) = \prod_k N(\mathbf{X}_n; \mu_k, \Sigma_k)^{Z_{nk}}$
- Data distribution (unconditional):
 - $p(\mathbf{X}_n) = \sum_{\mathbf{Z}_n} p(\mathbf{Z}_n) p(\mathbf{X}_n | \mathbf{Z}_n) =$
 - $= \sum_{\mathbf{Z}_n} \prod_k (\pi_k N(\mathbf{X}_n; \mu_k, \Sigma_k))^{Z_{nk}} = \sum_k \pi_k N(\mathbf{X}_n; \mu_k, \Sigma_k)$
- Conclusion:
 - Gaussian mixture can be viewed as follows: choose a cluster k with distribution π ; then generate a point according to Gaussian $N(\mathbf{X} | \mu_k, \Sigma_k)$ of the chosen cluster

Fitting single Gaussian to data

- Data vectors X_1, \dots, X_N
- Model as $N(\mu, \Sigma)$
- Maximum likelihood:
 - $\mu = \frac{1}{N} \sum_n X_n$: empirical mean
 - $\Sigma = \frac{1}{N} \sum_n (X_n - \mu)(X_n - \mu)^T$: empirical covariance

GMM: posterior

- Finding clusters = computing posterior, ie, distribution of \mathbf{Z}_n given data \mathbf{X}_n
- Def: $\gamma_{nk} = p(\mathbf{Z}_{nk} = 1 | \mathbf{X}_n)$
- Bayes' theorem:
 - $\gamma_{nk} = \frac{p(\mathbf{Z}_{nk}=1)p(\mathbf{X}_n | \mathbf{Z}_{nk}=1)}{\sum_j p(\mathbf{Z}_{nj}=1)p(\mathbf{X}_n | \mathbf{Z}_{nj}=1)} = \frac{\pi_k N(\mathbf{X}_n; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j N(\mathbf{X}_n; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$
- Interpretation:
 - For fixed $\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}$, π is the prior for the cluster \mathbf{Z}_n of point \mathbf{X}_n , and γ_n is its posterior

GMM: ML estimator for μ

- Log-likelihood for n data points (X_1, \dots, X_N) :
 - $L = \log p(X_1, \dots, X_N | \pi, \mu, \Sigma) = \sum_n \log \sum_k \pi_k N(x_n; \mu_k, \Sigma_k)$
- Maximizing w.r.t. μ :
 - $\nabla_{\mu_k} L = 0 \Rightarrow \sum_n \frac{\pi_k N(X_n; \mu_k, \Sigma_k)}{\sum_j \pi_j N(X_n; \mu_j, \Sigma_j)} \Sigma_k^{-1} (X_n - \mu_k) = 0$
- Solution: $= \gamma_{nk}$: posterior of Z_{nk} given X_n
 - $\mu_k = \frac{1}{N_k} \sum_n \gamma_{nk} X_n$ (roughly, weighted center of mass)
 - with $N_k = \sum_n \gamma_{nk}$ (roughly, # of points in class k)

GMM: ML estimator for Σ and π

- Maximizing w.r.t. Σ :
 - $\Sigma_k = \frac{1}{N_k} \sum_n \gamma_{nk} (X_n - \mu_k)(X_n - \mu_k)^T$
 - (roughly, weighted empirical covariance matrix within class k)
- Maximizing w.r.t. π :
 - $\pi_k = \frac{N_k}{N}$
 - (roughly, number of points attributed to cluster k)

EM algorithm for GMM

E-step:

Compute posterior of latent variables Z given parameters from

M-step:

$$\gamma_{nk} = \frac{\pi_k N(X_n; \mu_k, \Sigma_k)}{\sum_j \pi_j N(X_n; \mu_j, \Sigma_j)}$$

M-step:

Compute new parameters using distribution of latent variables from E-step:

$$\mu_k = \frac{1}{N_k} \sum_n \gamma_{nk} X_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_n \gamma_{nk} (X_n - \mu_k)(X_n - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N}$$

E-step 2

M-step 2

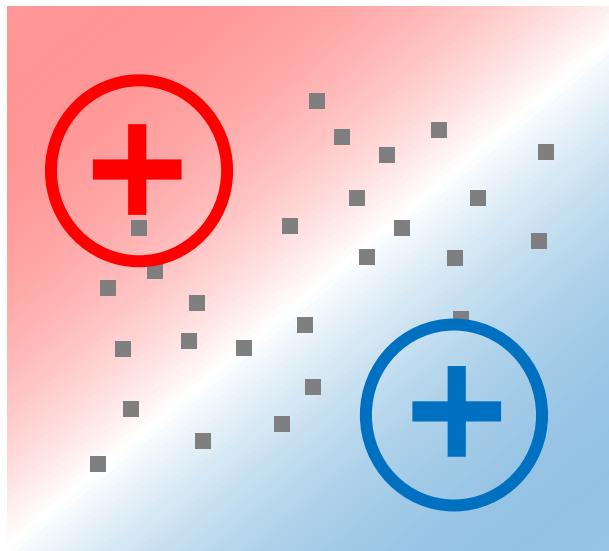
E-step 3

Until convergence of likelihood
 $L = \log p(X_1, \dots, X_n | \pi, \mu, \Sigma)$

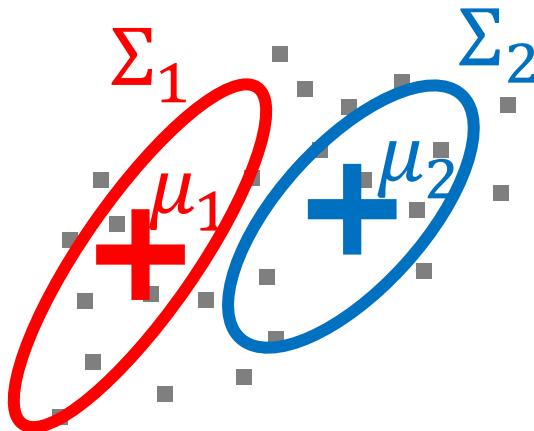
EM for GMM: example

Iter 1

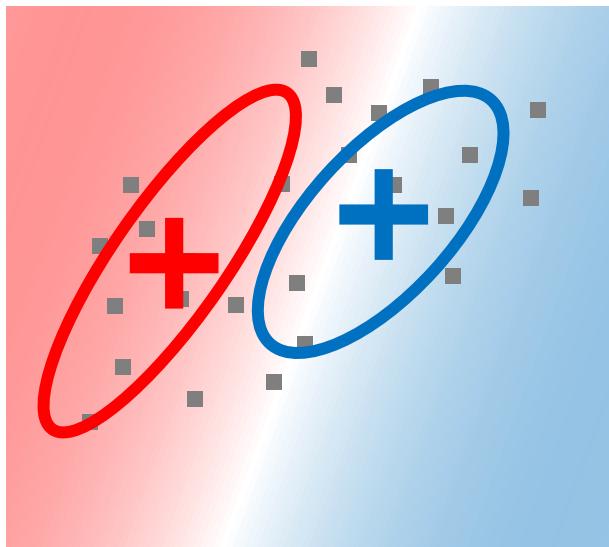
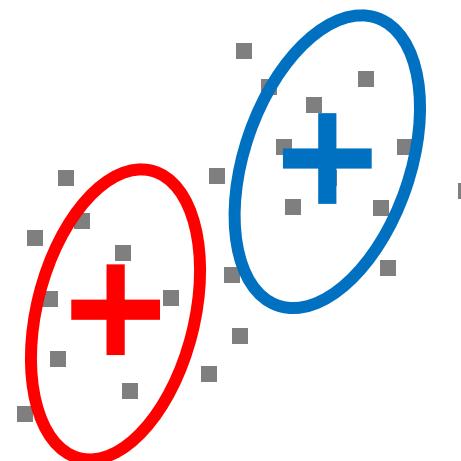
E-step



M-step



Iter 2



K-means vs GMM

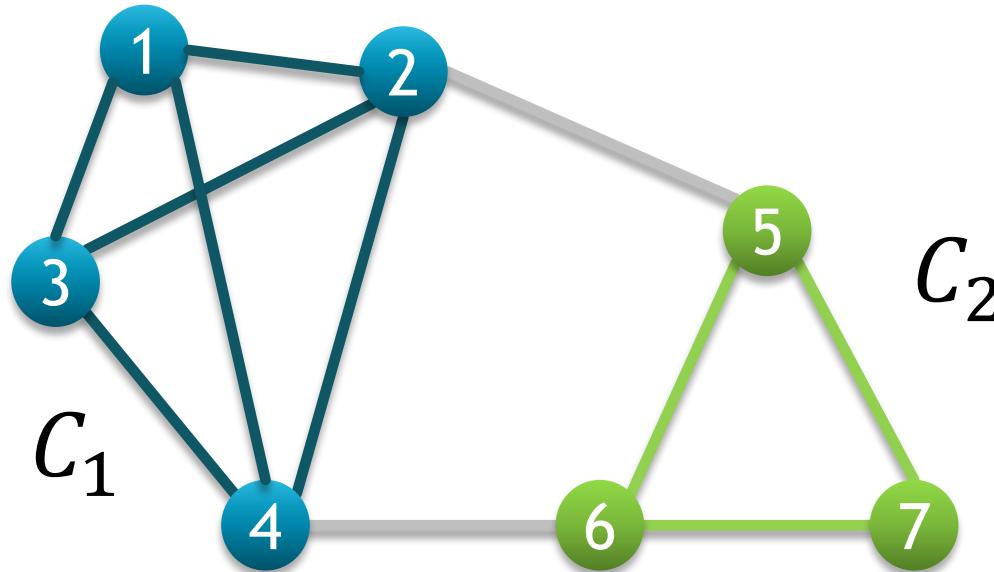
	K-Means	GMM
Membership	Hard	Soft
Generative	No	Yes
E-step updates	$r_{nk} = \text{closest center}$	$\gamma_{nk} = P(Z_{nk} X_n)$
M-step updates	μ_k	μ_k, Σ_k, π_k
Convergence	Guaranteed	Guaranteed
Optimal	Not guaranteed	Not guaranteed
Characterization	Centers, membership	Centers, weights, shapes

Community detection: goal and def

- Find organization in graphs:
 - Email or phone graph → find organizational units
 - Citation networks → scientific topics and their relationships
 - Social networks → groups with shared interests (language, etc.)
- Definition:
 - Given: a network $G(V, E)$
 - Find: a partition (hard or soft), or a hierarchy, such that nodes in same community are more “meshed” than other nodes

Modularity: strength of communities

- Def:
 - Partitioning of nodes into communities: $\{C_i\}$
 - $$Q = \frac{1}{2m} \sum_{C_i \in C} \sum_{u, v \in C_i} \left(\mathbb{1}_{uv} - \frac{d_u d_v}{2m} \right)$$



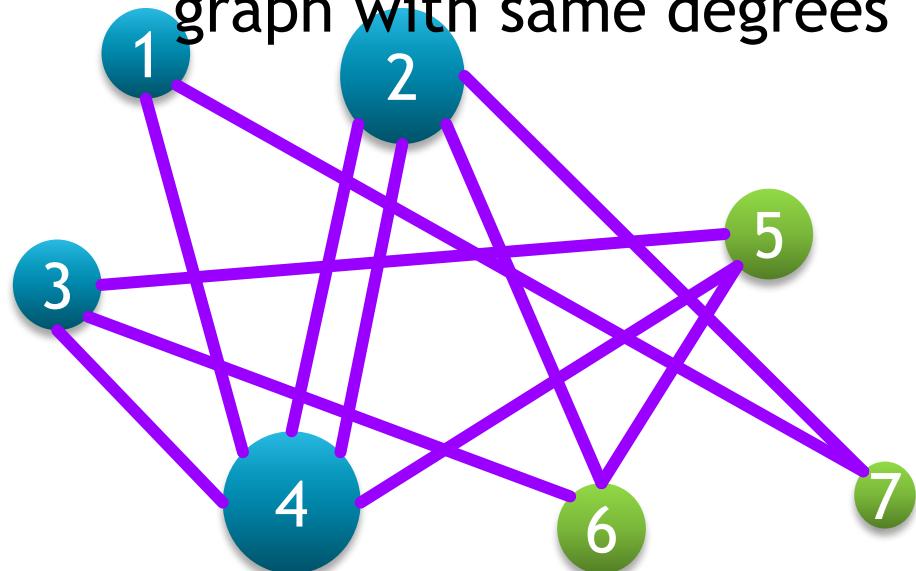
Note: inner sum is over all *ordered* (u, v) , and includes (u, u)

Modularity: interpretation

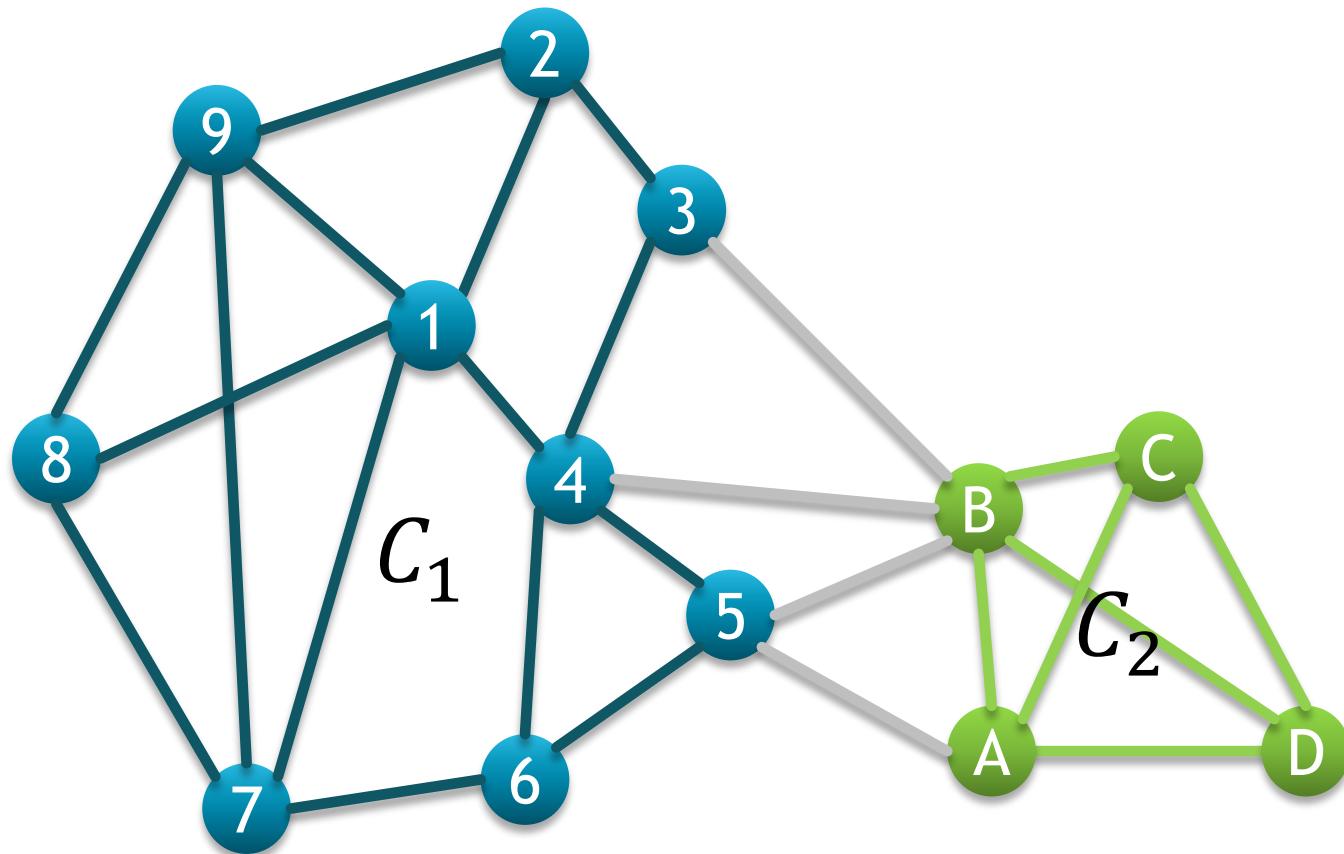
- Number of stubs: $2m$
- Expected # edges (u, v) in C_i :
$$\frac{1}{2} \sum_{u, v \in C_i} \frac{d_u d_v}{2m} = e_i$$
- Actual # edges in community C_i :
$$\frac{1}{2} \sum_{u, v \in C_i} \mathbf{1}_{uv} = m_i$$
- Modularity: compares actual graph with unstructured graph with same node

weights

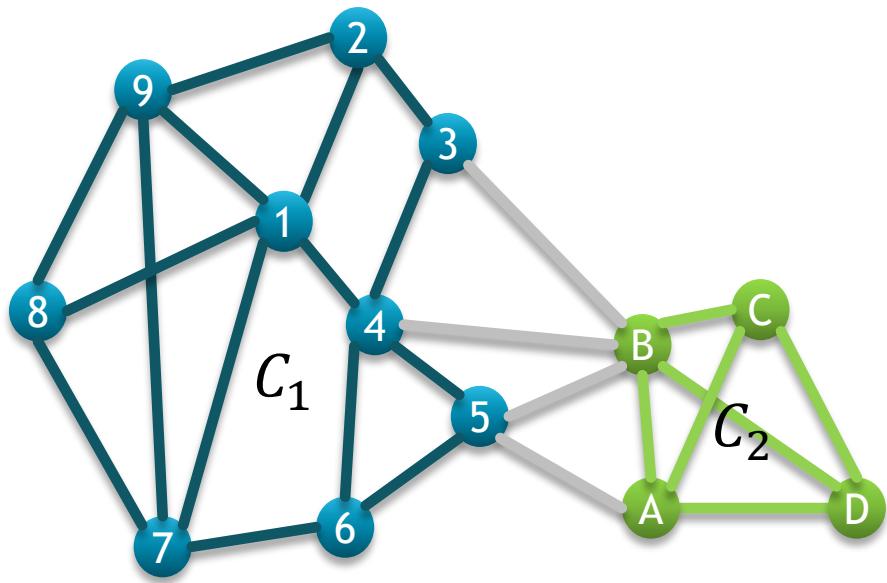
- $$Q = \frac{\sum_{C_i} (m_i - e_i)}{m}$$
- m_i : # edges in community C_i
- e_i : expected # edges in community C_i in random graph with same degrees



Modularity: example



Modularity: example



C_1 :

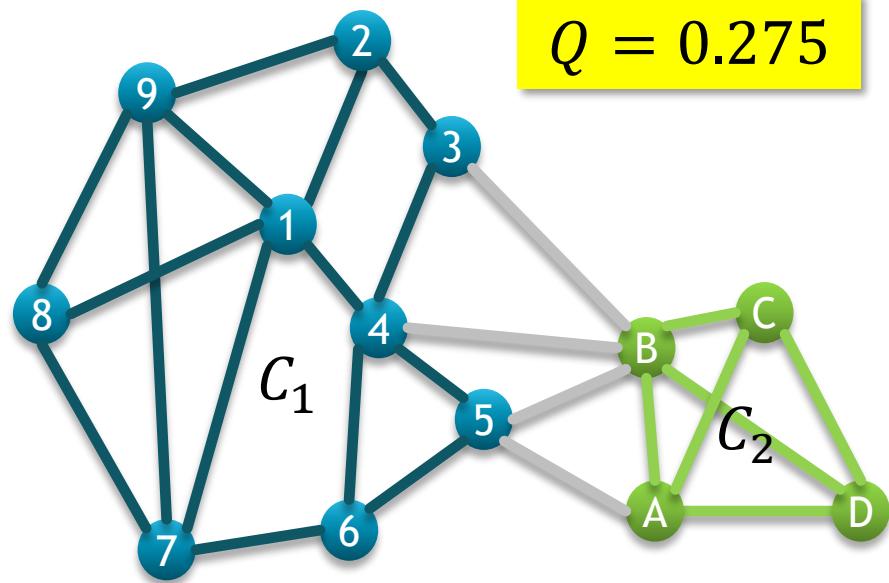
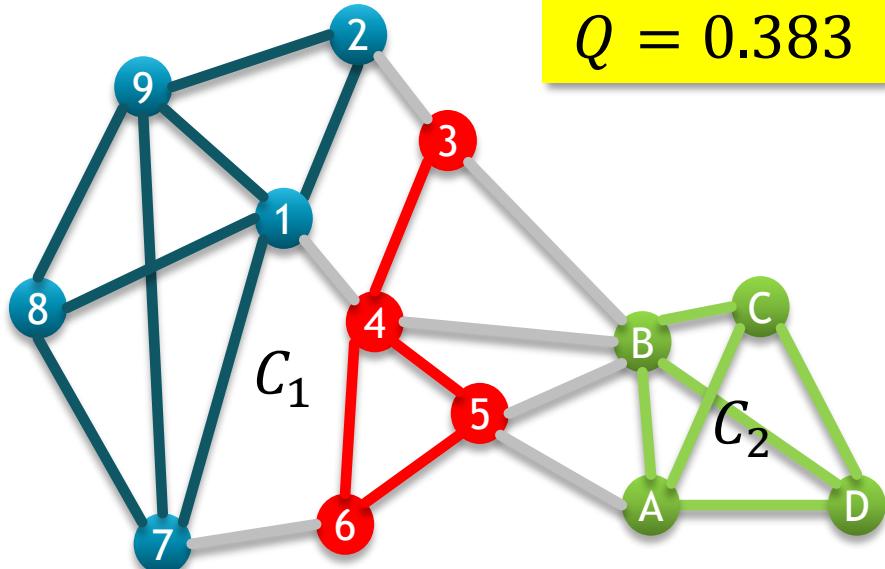
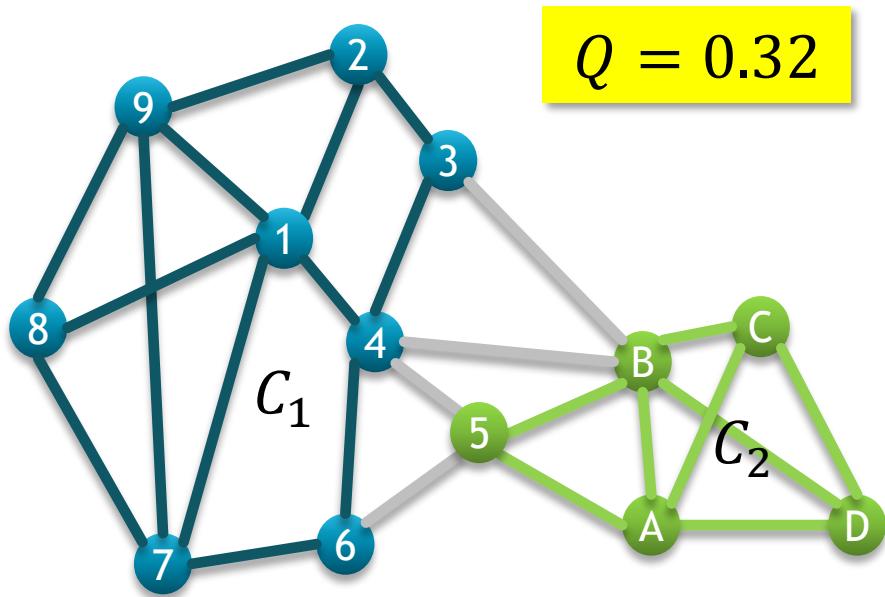
- $m_1 = 15$
- $e_1 = 11.56$

C_2 :

- $m_2 = 6$
- $e_2 = 2.56$

- $m = 25$
- Edge (4,8):
 - $d_4 = 5; d_8 = 3$
- Expected # = $\frac{15}{50} \sim 0.3$
- $$Q = \frac{(15+6)-(11.56+2.56)}{25} = 0.275$$

Modularity: example



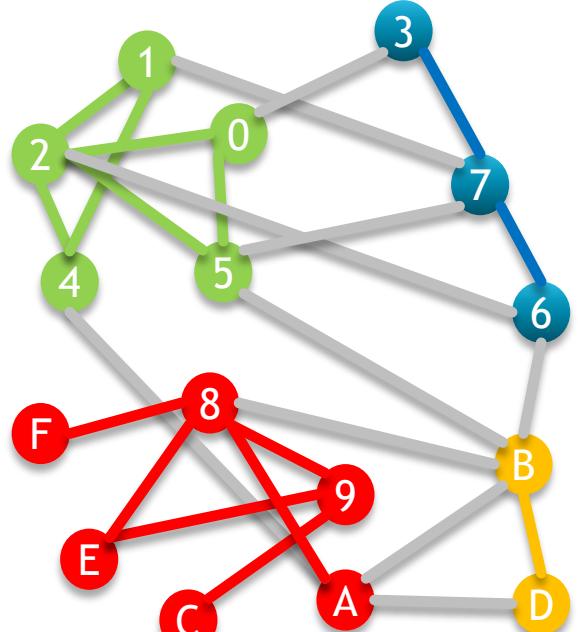
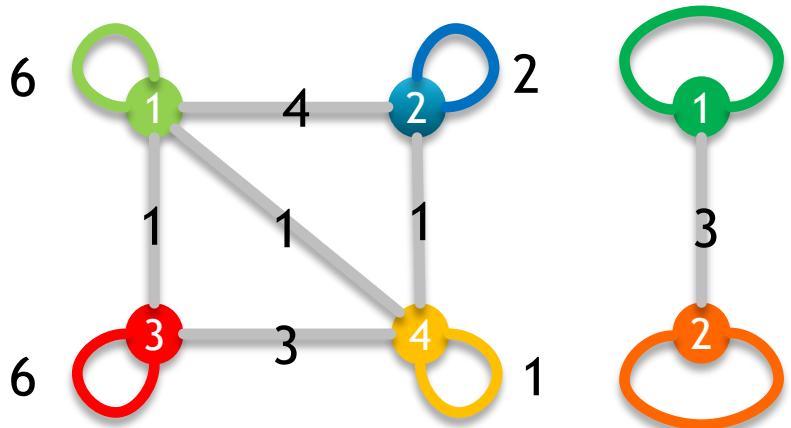
- Max-modularity is NP-hard
- Need efficient heuristics

Louvain method



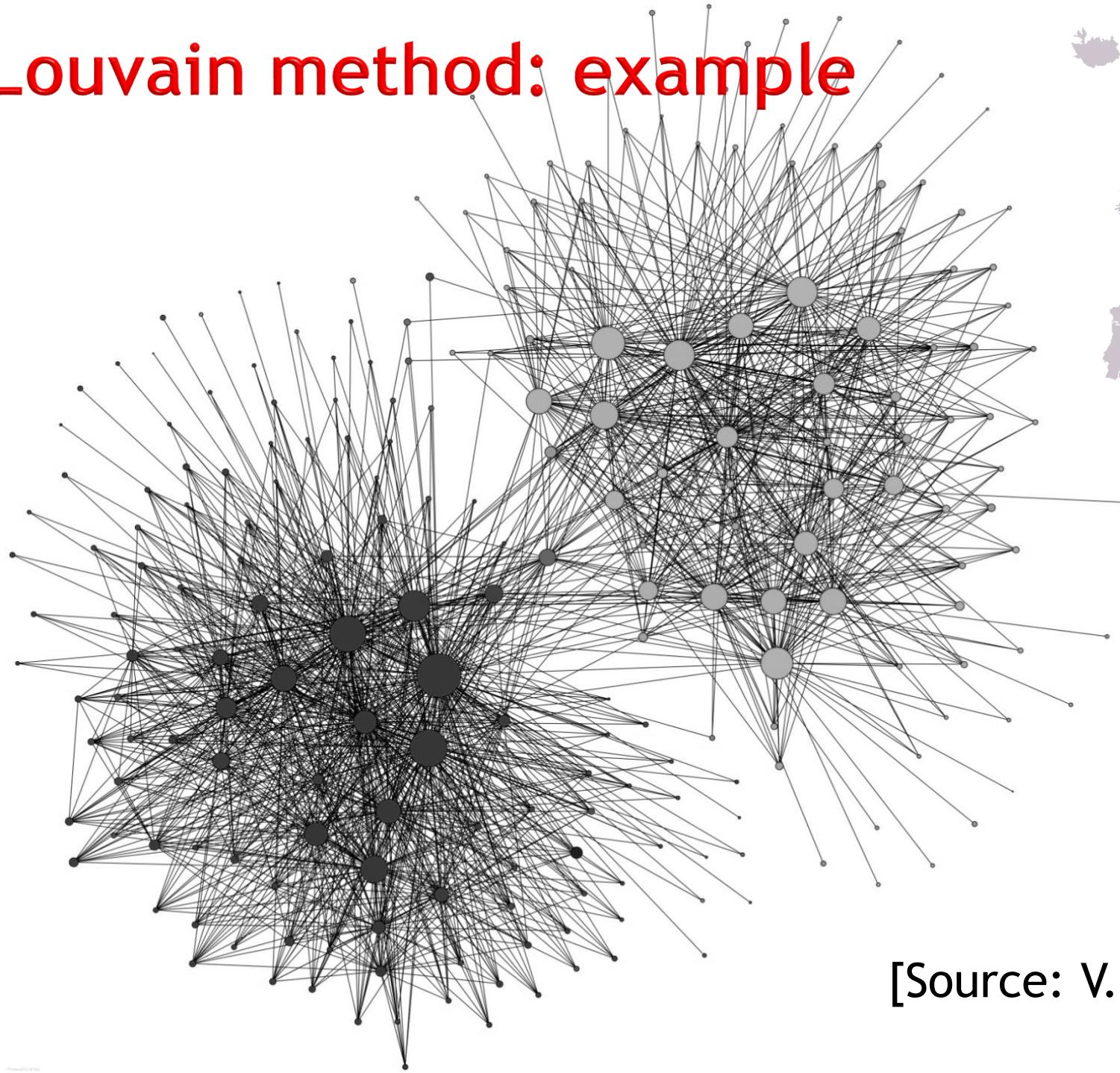
- **Idea:**
 - Building hierarchy of communities
 - Bottom-up: start with each node a separate community, then coalesce communities
- **For every node u :**
 - Compare modularity if u is added to the community of a neighbor v
 - Choose neighbor v that increases modularity most; if none, leave u in current community

Louvain method



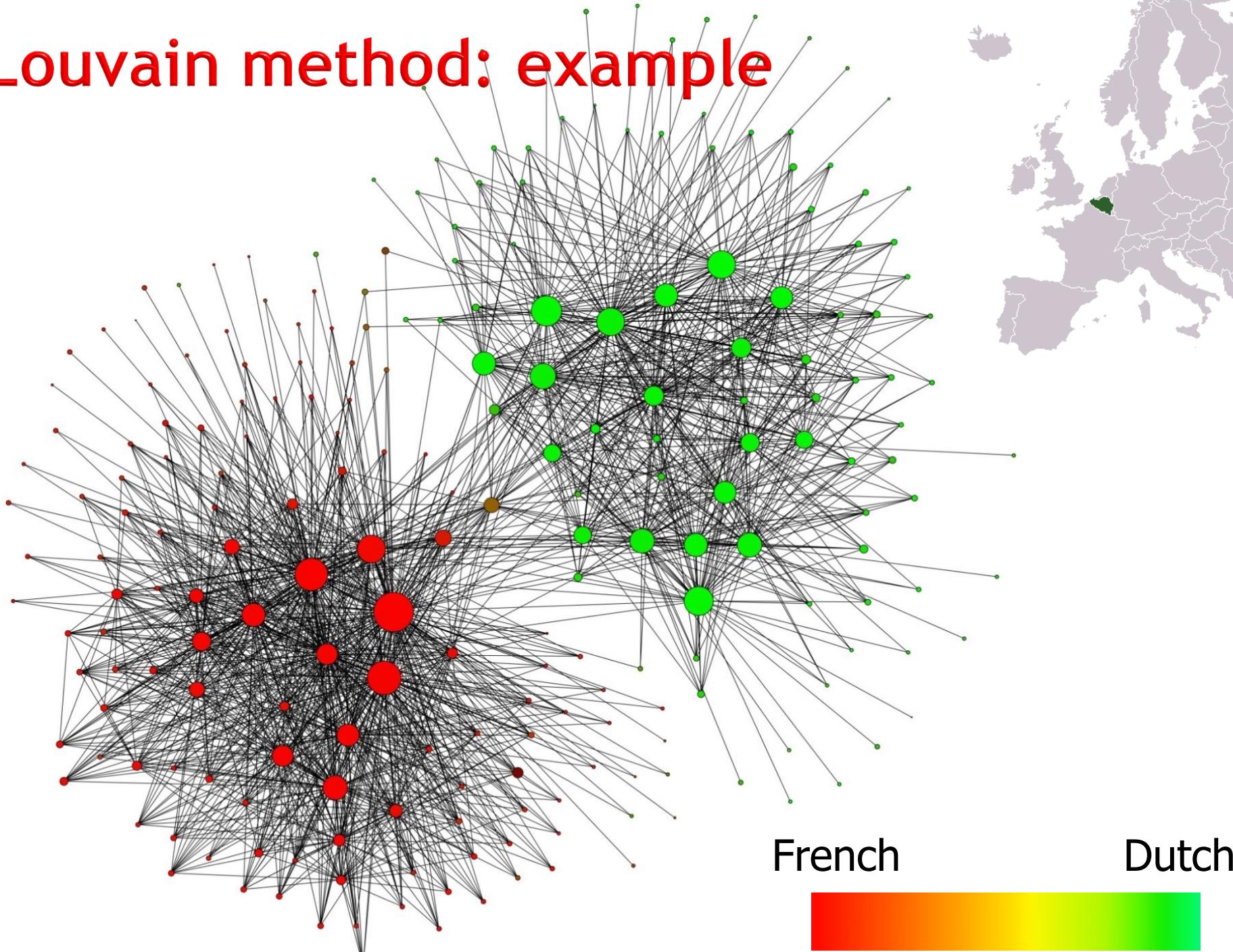
- Iterate through all nodes u (possibly several times) until no more modularity increases possible
 - Local maximum
- Form a new graph capturing the network of communities
 - Link weights = # edges between communities
 - Self-loops: internal edges
- Repeat the procedure until convergence

Louvain method: example



[Source: V. Blondel]

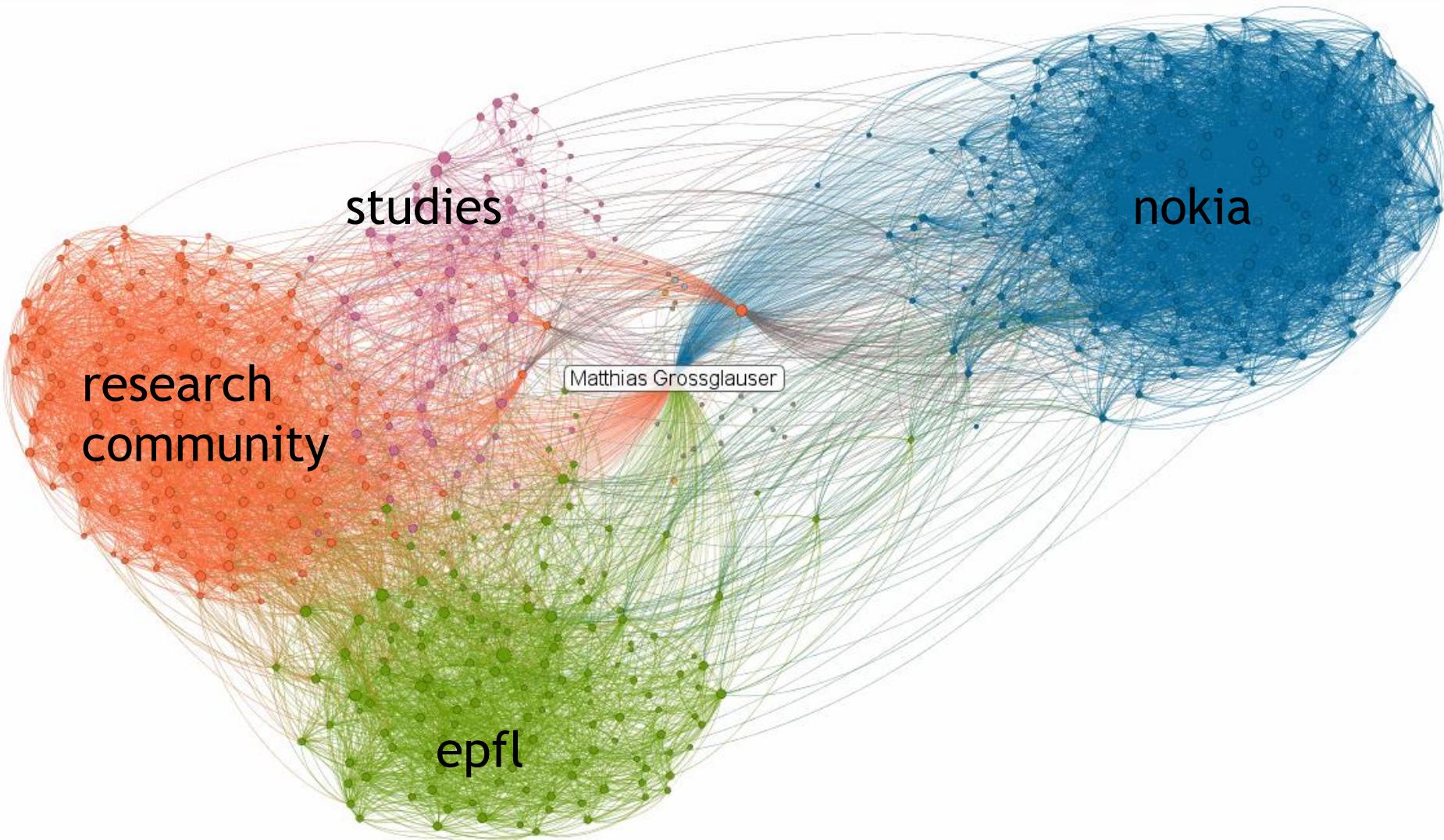
Louvain method: example



Louvain method in LinkedIn Labs

LinkedIn Maps

Matthias Grossglauser's Professional Network
as of February 16, 2013



Summary

- Unsupervised techniques for grouping data
- Clusters: set of points close in distance, far from other clusters
 - Criteria: distances to center (K-means), likelihood (GMM)
 - GMM: Gaussian parameters characterize cluster
- Community: set of nodes with high edge density, low edge density to other communities
 - Criterion = modularity
- In general, no optimal solutions
 - Exponential computational cost
- Heuristics:
 - Expectation Maximization for mixture models
 - Louvain method: build hierarchy bottom-up

References

- [Ch. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006 (chapter 9)]
- [V. Blondel, lecture notes on community detection, 2013]
- [M. Newman, Networks, Oxford UP, 2010]