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Overview

= Clustering:
= Given: set of points with a distance metric

= Find sets of points that are close to each other, but far
from other points

= Community detection:
= Given: network

= Find sets of nodes that are highly interconnected, but
poorly connected to other nodes

= Many important applications:

= Data analysis: finding structure, modes in data
distribution

= Problem decomposition and resource allocation: where
to put warehouses; group formation in social networks



Clustering: goal and definition

= Definition:
= Given: set of points (vectors) with a distance function
(metric space)

= Find: partition (hard or soft) of points into clusters; plus
potentially more information (characterization of
clusters)

= Find organization in data:

= Image compression: each pixel has a color - find small
set of colors so that each pixel is close to one color
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Clustering: goal and definition

= Find organization in data:

= Mobility: point = GPS trace with noise - find
representative set of trajectories
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K-means clustering algorithm

= Input:
= N data points x4, ..., xy
= K: number of clusters
= QOutput:
= K cluster centers u;
= T, point-cluster assignment indicator
= 1, = 1 means point x,, is in cluster k

= Cost function:
= ] =Yn-1 2§=1Tnk”xn — e ll?
= Optimal K-means: NP-hard

= Solution: iterative heuristic to approximate
solution



K-means: iterative approximation

= |Initialize u = (u4, ..., ug)
= Until convergence (J does not decrease):
= Minimize ] w.r.t. {r;}:

= 7, = 1 only for E-step:
nk = yi Attribute each x,,
k = argmin |[[x,, — py|| to closest center

= Minimize J w.r.t. u:
= Set gradient of J w.r.t. u; to zero
= 2 Tk (xy — ug) = 0 (for each k) M-step:
Yon TnkXn New cluster center py

Y 7 = center of mass of
n ' nk points of cluster k

= Solve for u: W), =



Voronoi tessellation

[baeldung.com]
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K-means converges in finite # steps

= Proof:
= ] non-increasing in both steps

= First step: each ||x,, — u,||* either stays the same or
decreases if r,,;,, changes

= Second step: J convex in u > new J global min as
function of {u,}

= There are finitely many configurations r,,;, > if we ever
returned to a configuration of {r,,} already visited (in a
finite # of steps), we’d end up with the same J in step 2
as last time in step 2 - must have already converged

= But: there is no guarantee of convergence to
globally minimal J over both {r,;}, {u;}
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From K-means to Mixtures of Gaussians

= K-Means: Can be generalized to non-Euclidean
distance functions

= Limitations:
= Each point attributed to exactly one cluster

= Not a generative model: cannot “simulate” data based
on learned {r,;}, {1x} (no distribution for new values)

= Improvement:
= Soft attribution: a point can belong to several clusters
= Generative model: distribution over points
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Gaussian mixture model (GMM)

= GMM: distribution of single data point
K
p(x) = 2 Ty N(X; g, Zi)

k=1
= Random variable Z,,,: point n belongs to cluster k
- p(Z,, = 1) = m,: mixing coefficients

unobserved/latent

n °
Q variable

observed variable

I )
Q (hyper)parameter

replication
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GMM is a generative model
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GMM

= Latentvariable Z,, = (Z,,1,Z,,5, ..., Ziter -, Z it )
 p(Zy) = em ™
= “One-hot”: Z,, = (0,0,0,...,1,...,0,0)
= Conditional distribution of data point:
= p(X,|Z, = 1) = N(X,;; ug, Zx), or equivalently
. p(Xn Zn) — HRN(Xn; .uk'zk)znk
= Data distribution (unconditional):
- p(Xy,) = Zznp(zn)p(xnlzn) —
. = 2z, i (e N (X e, Zi)) ™ = 2 T N (X5 ties Zie)
= Conclusion:

= Gaussian mixture can be viewed as follows: choose a
cluster k with distribution mr; then generate a point
according to Gaussian N (X|u, Z;) of the chosen cluster
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Fitting single Gaussian to data

= Data vectors X4, ..., Xy
= Model as N(u, X)
= Maximum likelihood:

1 iy
. U= NZ" X,,: empirical mean

- Y= %Zn(Xn — ) (X,, — pw)'': empirical covariance
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GMM: posterior

Finding clusters = computing posterior, ie,
distribution of Z,, given data X,

Def: yn = p(Zn = 11Xy)

Bayes’ theorem:

Y = PZnk=DpXn|Znk=1) _ meN&XnibeZE)
KT Y p(Zn=)pXnlZnj=1) XN Xnitt )
Interpretation:

= For fixed {uy, 2},
it is the prior for the cluster Z., of point X,,, and
Y. 1S its posterior
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GMM: ML estimator for u

= Log-likelihood for n data points (X4, ..., Xy):
= L=logp(Xy, ..., Xnlm, 1, 2) =2plog X N (s iy, Zi)
= Maximizing w.r.t. u:
"V L=0=
TN (Xn; Bier L)
%_J

= y..,.- posterior of Z,, given X,,

lel(Xn - ﬂk) = 0

= Solution:

- Uy = Nikzn Ynk Xy, (roughly, weighted center of mass)

= with N, = )., Vi (roughly, # of points in class k)
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GMM: ML estimator for X and

= Maximizing w.r.t. X2
1
Ly = N—an Ve X — i) Xy, — )"

= (roughly, weighted empirical covariance matrix within
class k)

= Maximizing w.r.t. m:
Nk

T, = —
kK™ N

= (roughly, number of points attributed to cluster k)
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EM algorithm for GMM

Until convergence of likelihood
L=logp(Xy,.., X,|m,u2)




EM for GMM: example

E-step

Iter 1 : y T -

Ilter 2



K-means vs GMM
| K-Means | GMM

Membership Hard Soft
Generative No Yes
E-step updates i = closest vy = P(Z1|X5)
center
M-step updates Uy, Ui, i, T
Convergence Guaranteed Guaranteed
Optimal Not guaranteed Not guaranteed
Characterization Centers, Centers,

membership weights, shapes
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Community detection: goal and def

= Find organization in graphs:
= Email or phone graph - find organizational units

= Citation networks - scientific topics and their
relationships

= Social networks - groups with shared interests
(language, etc.)
= Definition:
= Given: a network G(V,E)

= Find: a partition (hard or soft), or a hierarchy, such that
node in same community are more “meshed” than other
nodes
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Modularity: strength of communities

= Def:

= Partitioning of nodes into communities: {C;}

1 d,d
" Q= %ZCiEC Zu,vECi (ﬂuv . v)

2m

- CZ

(1
6 -

Note: inner sum is over all *ordered* (u,v), and includes (u, u)
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Modularity: interpretation

= Number of stubs: 2m weights

= Expected # edges . Q= Yc;(mi—ey)
(u v) in C;: m
dudv = m;: # edges in
Zu VEC; o Ci community C;
. Actual # edges in = ;. expected # edges in
community C;: commun.ity C; in random

raph same degrees

1 —
Ezu,veci Ly =m

= Modularity: compares
actual graph with
unstructured graph
with same node






Modularity: example

= m =25
- Edge (4,8):
e d, =5;dg =3
5 - Expected # = ;—§~0.3
G\ o = (15+6)-(1156+2.56) _
A D - 25 —
0.275
Cy: C,
- my =15 - my; =6

- e, =11.56 - e, =2.56



Modularity: example

Q = 0.275

Q = 0.383 = Max-modularity is NP-
hard

= Need efficient
., B heuristics
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Louvain method

= |dea:
= Building hierarchy of
communities
= Bottom-up: start with each
node a separate community,
then coalesce communities

= For every node u:

= Compare modularity if u is
added to the community of a
neighbor v

= Choose neighbor v that
increases modularity most; if
none, leave u in current
community
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Louvain method

= |terate through all nodes u

(possibly several times)
until no more modularity
increases possible

= Local maximum

Form a new graph
capturing the network of
communities

= Link weights = # edges

between communities
= Self-loops: internal edges
Repeat the procedure
until convergence
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Louvain method: e
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Louvain method
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Louvain method in LinkedIn Labs

. Matthias Grossglauser's Professional Network
Llnkedm' MAPS as of February 16, 2013

e

- |Matthias Grossglauser | -

~®2011 LinkedIn - Get your network map at inmaps.linkedinlaBs]com



Summary

Unsupervised techniques for grouping data

Clusters: set of points close in distance, far from

other clusters

= Criteria: distances to center (K-means), likelihood (GMM)
GMM: Gaussian parameters characterize cluster

Community: set of nodes with high edge density,

low edge density to other communities

= Criterion = modularity

In general, no optimal solutions

= Exponential computational cost

Heuristics:

= Expectation Maximization for mixture models
= Louvain method: build hierarchy bottom-up
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