

Text Models 1

Internet Analytics (COM-308)

Prof. Matthias Grossglauser
School of Computer and Communication
Sciences

EPFL

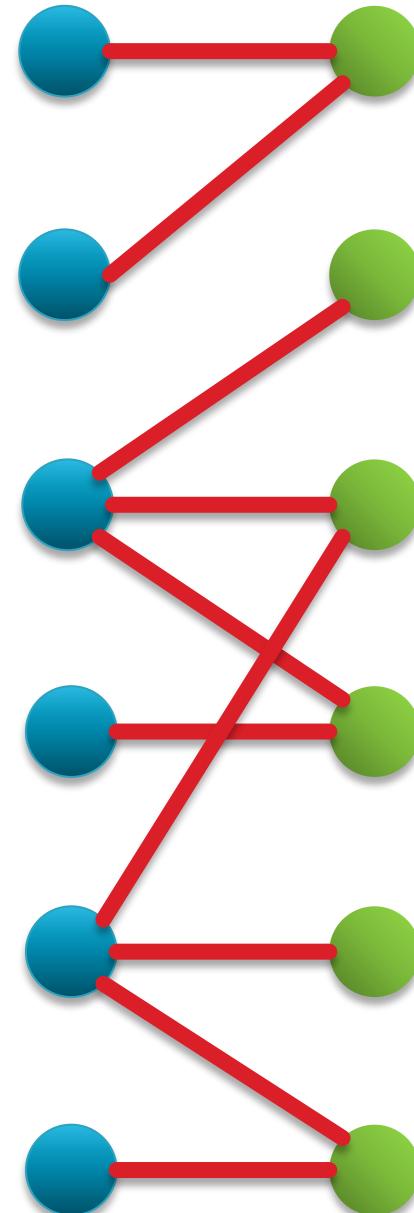
Overview

- Probabilistic models for text
 - Recall naïve Bayes: words i.i.d. conditional on a class
- Word embeddings:
 - Find a compact representation (vector) that captures semantics of a word
 - Applications: sentiment analysis; machine translation,...
- Topic models:
 - Find a generative model for a set of documents in a corpus
 - Applications: summarization; information retrieval; ...
 - Detour: introduction to graphical models

Synonymy and polysemy

word meaning

- **Synonymy:**
 - Different words with the same meaning
 - “car” and “automobile”
- **Polysemy/homonymy:**
 - One word with different meanings
 - “jaguar”: animal, brand of car
- For many applications, the **meaning** is more useful than the **symbol**
 - Information retrieval
 - Sentiment analysis
 - Dialog systems



Word embeddings

- Recall: vector space model for words

$$f(w) = [0, 0, \dots, x, \dots, 0]$$

TF-IDF score at w 's position
in the dictionary

- Problem: this high-dimensional vector space has no relationship to meaning
 - Distance is the same between any two words
- Question: can we find a lower-dimensional representations $v(w)$ such that
 - Words with similar meanings are close (“coffee” and “tea”)
 - Relationships among words reflected in the space

Similar context → similar meaning

- “The box with the baits was under the stern of the **skiff** along with the club that was used to subdue the big fish when they were brought **alongside**.”
- In a parallel universe, Hemingway might have (less elegantly) written “**boat**” or “**craft**”, without fundamentally changing the sentence
- But the same sentence with “**toaster**” or “**porosity**” are unlikely to be observed in a corpus
- The context (set of nearby words) suggest meaning; **exchangeable** words in a given **context** share meaning

Word2vec

- “The wooden hull of the ship crashed through the waves...” → lemming & stemming →

wood hull ship crash wave

- Word2vec key idea: learn a model of words and their context
- Two forms: for some window around word, **predict**
 - Continuous bag-of-words → predict center from context

wood hull ? crash wave

- Skip-gram → predict context from center

? ? ship ? ?

Word2vec skip-gram model

$C_{left}(w)$	w	$C_{right}(w)$
---------------	-----	----------------

- Data: sliding window $\rightarrow X = \{(\textcolor{teal}{w}, \textcolor{red}{C}(w))\}$

box	baits	under	stern	skiff
baits	under	stern	skiff	along
under	stern	skiff	along	club

- Skip-gram model: conditional probability of context $\textcolor{red}{C}(w)$ given word $\textcolor{teal}{w}$, parametrized in some way (θ)
- We want to learn θ such that corpus probability

$$\prod_{w \in X} \prod_{c \in C(w)} p(c|w; \theta) = \prod_{(w,c) \in X} p(c|w; \theta)$$

is maximized (maximum likelihood estimator)

Parameterization of skip-gram

- Each word $w \in V$ and each context word $c \in V$ is represented by a (relatively) low-dimensional vector in \mathbb{R}^d (d a few hundred)
 - $u_{\text{"cat"}}$ is the vector to represent $w = \text{"cat"}$
 - $v_{\text{"cat"}}$ is the vector to represent $c = \text{"cat"}$
 - θ is the collection of all these vectors
- Conditional probability of context given word:

$$p(c|w) = \frac{e^{u_w \cdot v_c}}{\sum_{c' \in V} e^{u_w \cdot v_{c'}}}$$

- Note: this is the **soft-max** of $u_w \cdot v_c$ over all $c \in V$
- Q: why different vectors for middle words and context words?

Negative sampling

- Problem: denominator $\sum_{c' \in V} e^{u_w \cdot v_{c'}}$ very costly to evaluate
 - $|V|$ in a large corpus 10-100s k
 - Need to compute for every (w, c) in a corpus
- Negative sampling: modified objective, cheaper to compute
 - Classification: given a pair (w, c) , is it from the corpus?
 - Def: $p(D = 1|w, c) = \frac{1}{1 + e^{-u_w \cdot v_c}}$: prob. “plausible text”
 - Maximize probability that all $(w, c) \in X$ are plausible

$$\max_{\theta} \sum_{(w,c) \in X} \log p(D = 1|w, c)$$

Negative sampling

- Problem: trivial solution: all vectors equal and large $\rightarrow e^{-u_w \cdot v_c}$ extremely small
- Need penalty for false positives, ie, $D = 1$ for implausible text
- Approach: let $X' =$ all pairs $(w, c) \notin X$
- New loss with negative sampling:

$$\max_{\theta} \sum_{(w,c) \in X} \log p(D = 1|w, c) + \sum_{(w,c) \in X'} \log p(D = 0|w, c)$$

$$\max_{\theta} \sum_{(w,c) \in X} \log \sigma(u_w \cdot v_c) + \sum_{(w,c) \in X'} \log \sigma(-u_w \cdot v_c)$$

- Note: $\sigma(x) = \frac{1}{1+e^{-x}}$ is called the logistic function (“S-curve”)

Negative sampling

- Problem: X' is very large!
- Idea: instead of enumerating entire X' , just sample from it
- For every positive sample $(w, c) \in X$, add k random negative samples $(w, c') \notin X$ for the second term
 - This is much cheaper than to enumerate X' : just generate (w, c') and check $\in X$; if yes, repeat
- Optimized with SGD
- Word2vec has some additional heuristics:
 - Biased negative sampling: favor more frequent c' in corpus
 - Adaptive window size
 - Rare word pruning

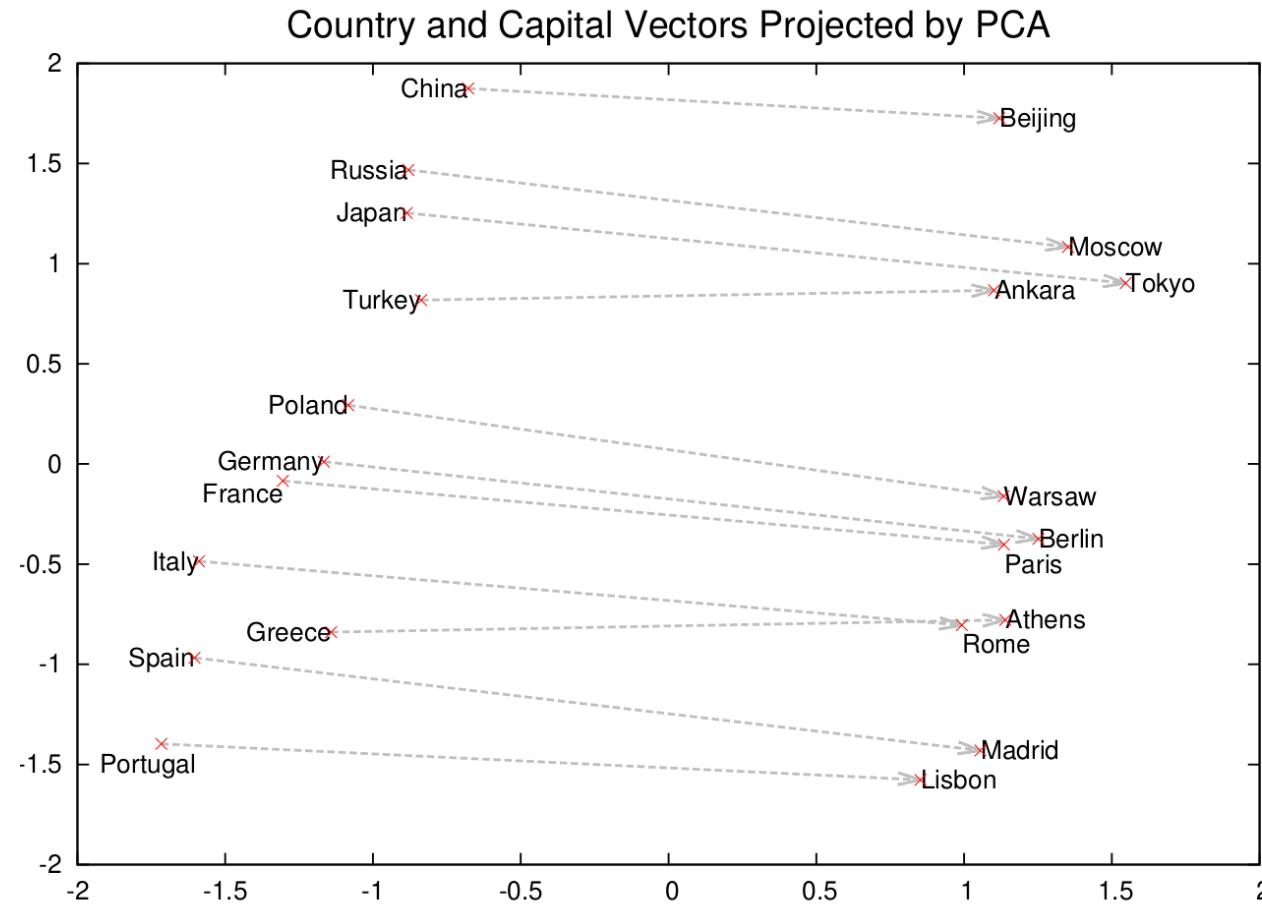
Word2vec: properties and results

- Similarity: e.g., 8 nearest neighbors (in cosine distance $u_i \cdot u_j / \sqrt{(u_i \cdot u_i)(u_j \cdot u_j)}$) of “Sweden”:

Norway	0.76
Denmark	0.72
Finland	0.62
Switzerland	0.59
Belgium	0.59
Netherlands	0.57
Iceland	0.56
Estonia	0.55

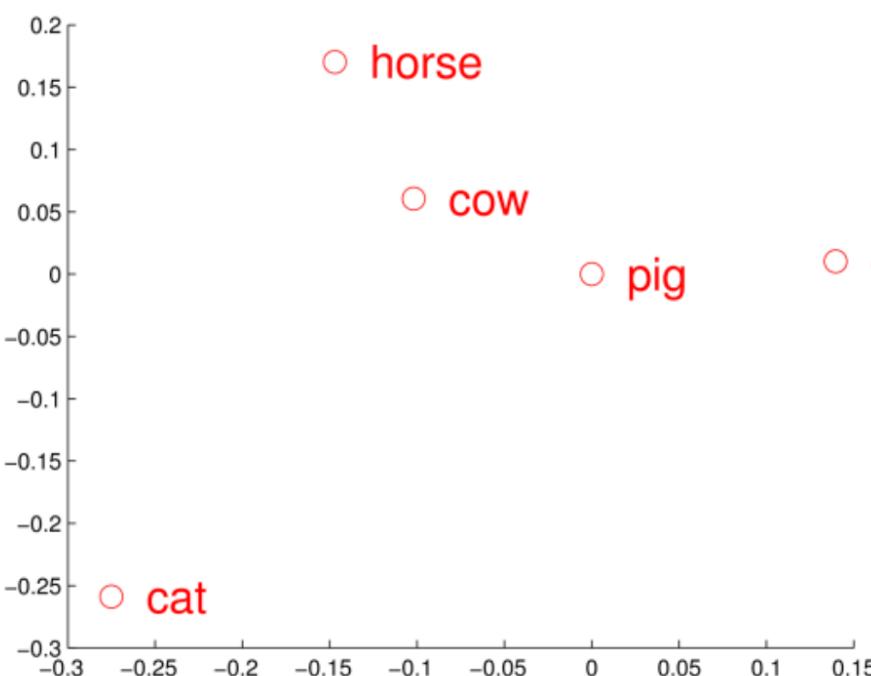
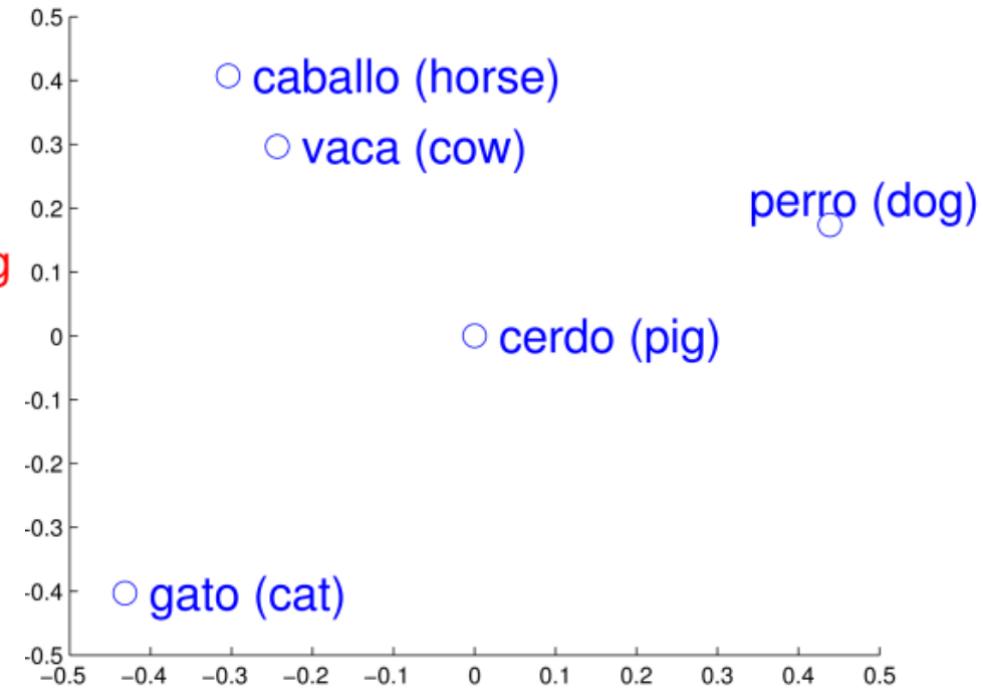
Word2vec: properties and results

- Learning associations:
 - E.g.: NN of **(man-king+queen)** is **woman**



Word2vec: properties and results

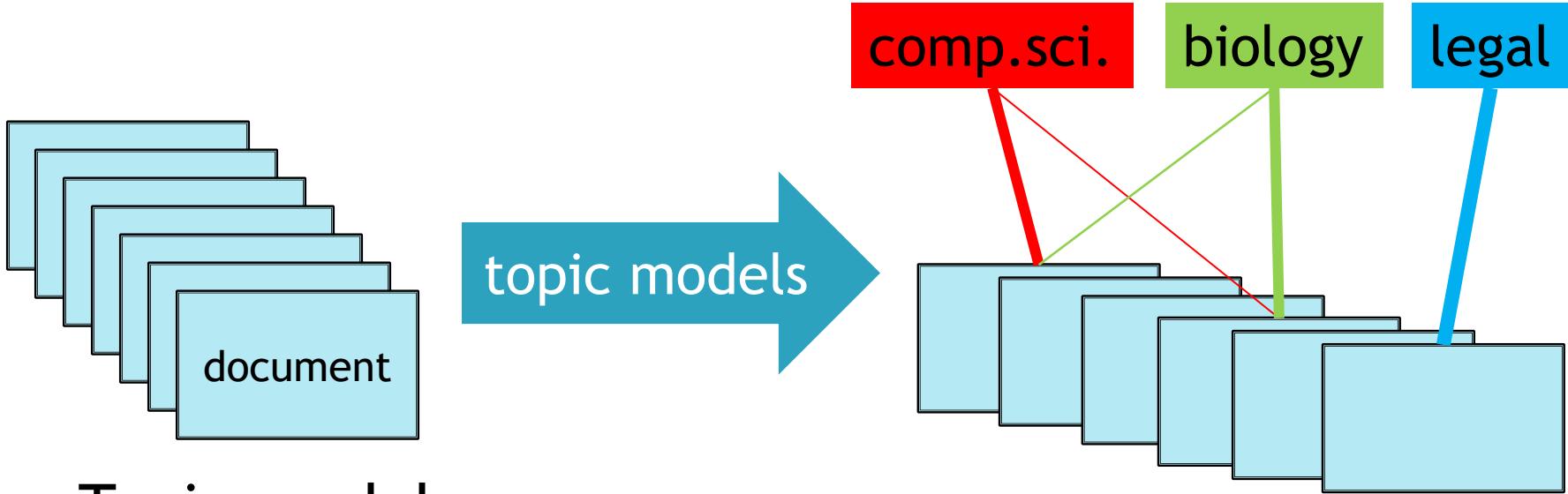
- Vectors learned in different languages share similar relationships for same concepts:



- Important in machine translation, LLMs,...

Topic models

- Without a query, how to describe a corpus?



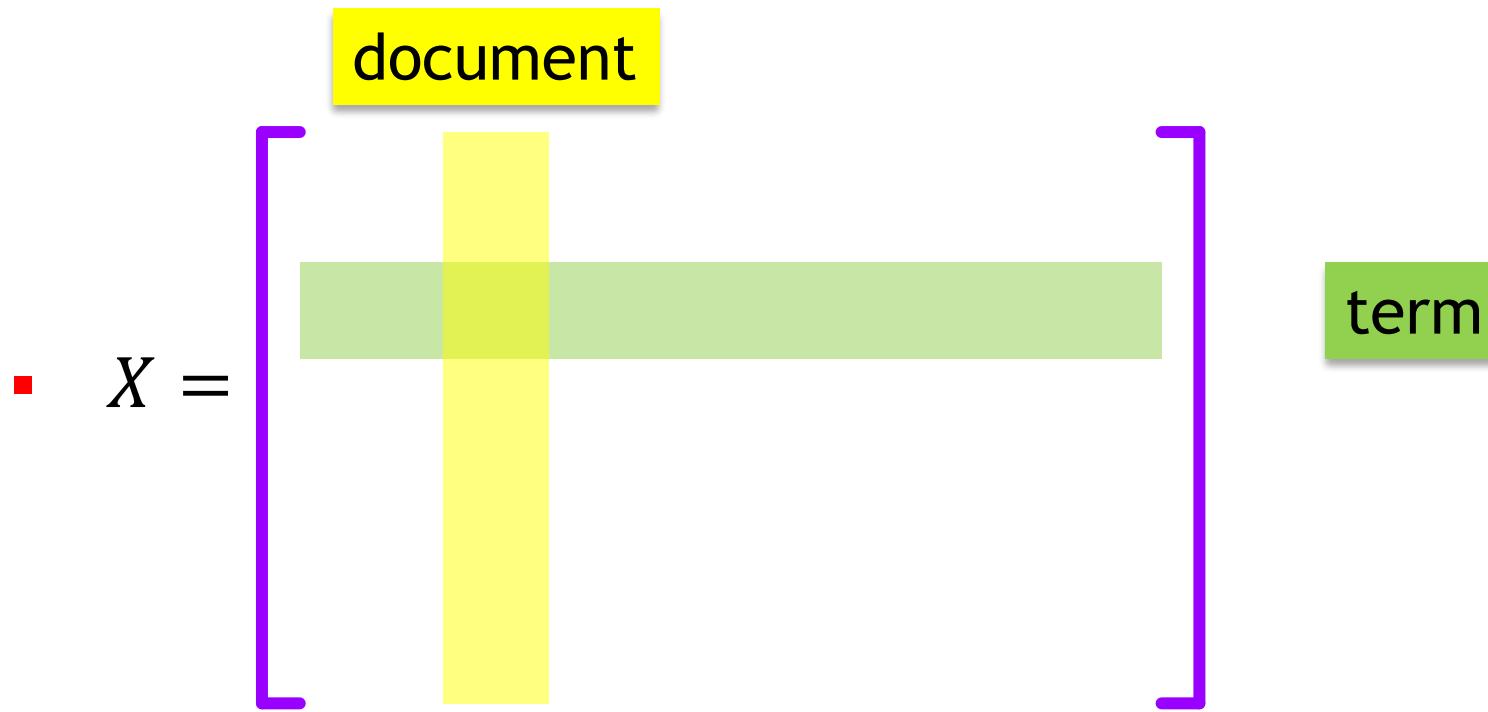
- Topic models:
 - We see the words of docs, but we want to classify the meanings of docs
 - Ambiguity of individual words - but many words per doc helps!
 - Generalization of naïve Bayes text model

Topic models

- Document classification
- Supervised: training set with known classes
 - Generalization of binary classification (spam/not spam)
- Unsupervised: need to identify sensible topic classes by comparing documents
- Assumptions:
 - Number of words per document $\gg 1$
 - Number of topics \ll number of documents
- Examples:
 - News articles: topics = {countries, business, politics, celebrity, ...}
 - Scientific literature: {physics, mathematics, engineering, chemistry, life sciences,...}

Approach 1: Latent Semantic Indexing (LSI)

- Synonymous: Latent Semantic Analysis (LSA)
- Starting point: TF-IDF matrix of corpus



- Remember: high TF-IDF means “term that is rare overall, but prominent in this doc”

SVD of TF-IDF matrix

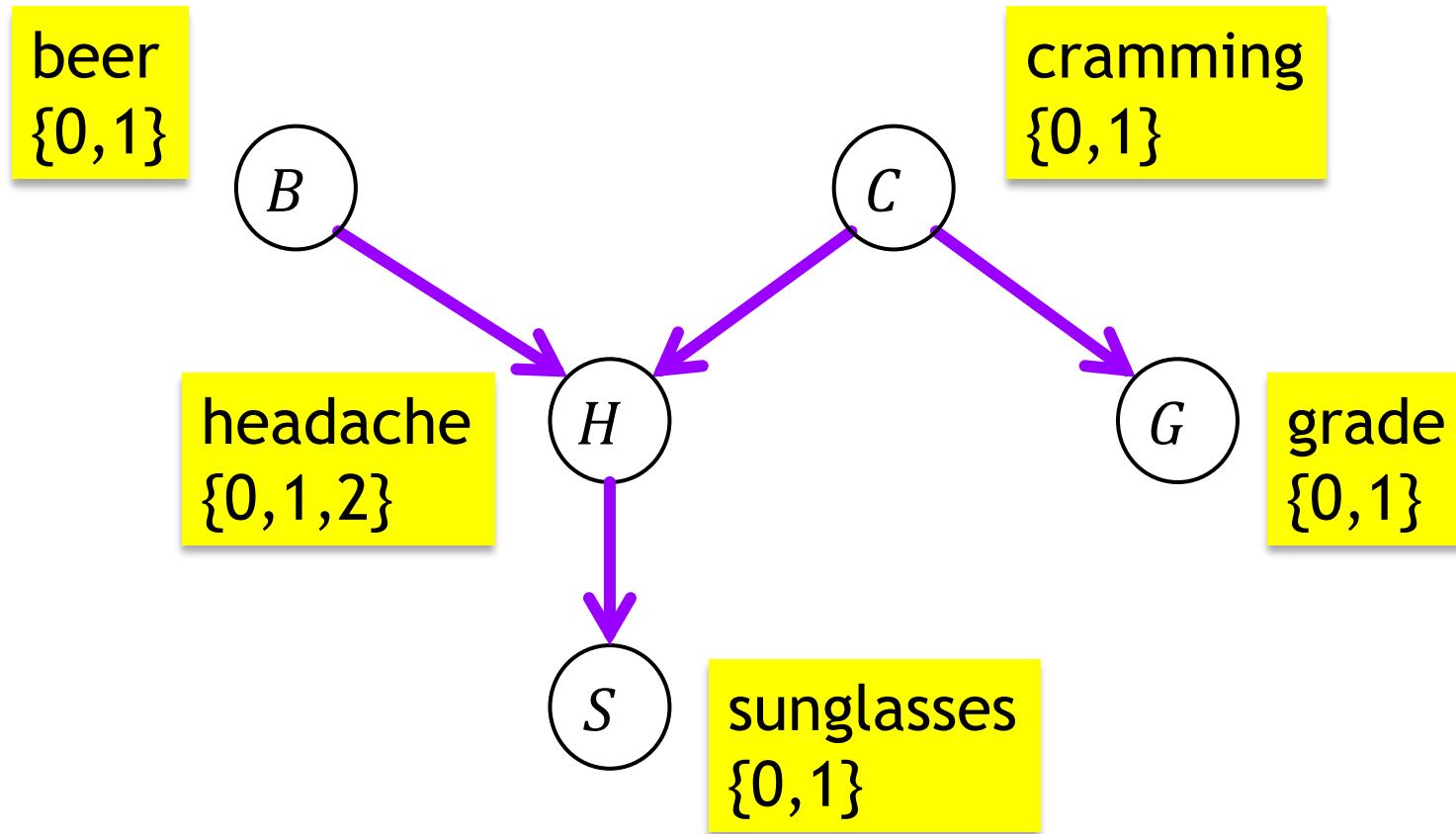
- Latent factors: “topics”
- Typically 100-300
- Should bunch together synonyms
- Should separate homonyms
- Critique:
 - Heuristic, no clean statistical foundation
 - Sometimes difficult to interpret results
 - Modern approaches based on probabilistic models:
 - better performance
 - better interpretability
 - generative

Gentle introduction to graphical models

- Modeling a multivariate distribution
- Example: insights from an expert:
 - “Drinking too much beer can result in headaches”
 - “Studying too much can cause headaches as well”
 - “To get a good grade, one must study”
 - “Wearing sunglasses tempers the pain of a headache”
- How to translate this into a probabilistic model?
 - Random variables
 - Dependencies?
 - Option: define/learn full joint distribution → many parameters, memory-intensive, hard to learn
 - Option: encode «causal structure» into model

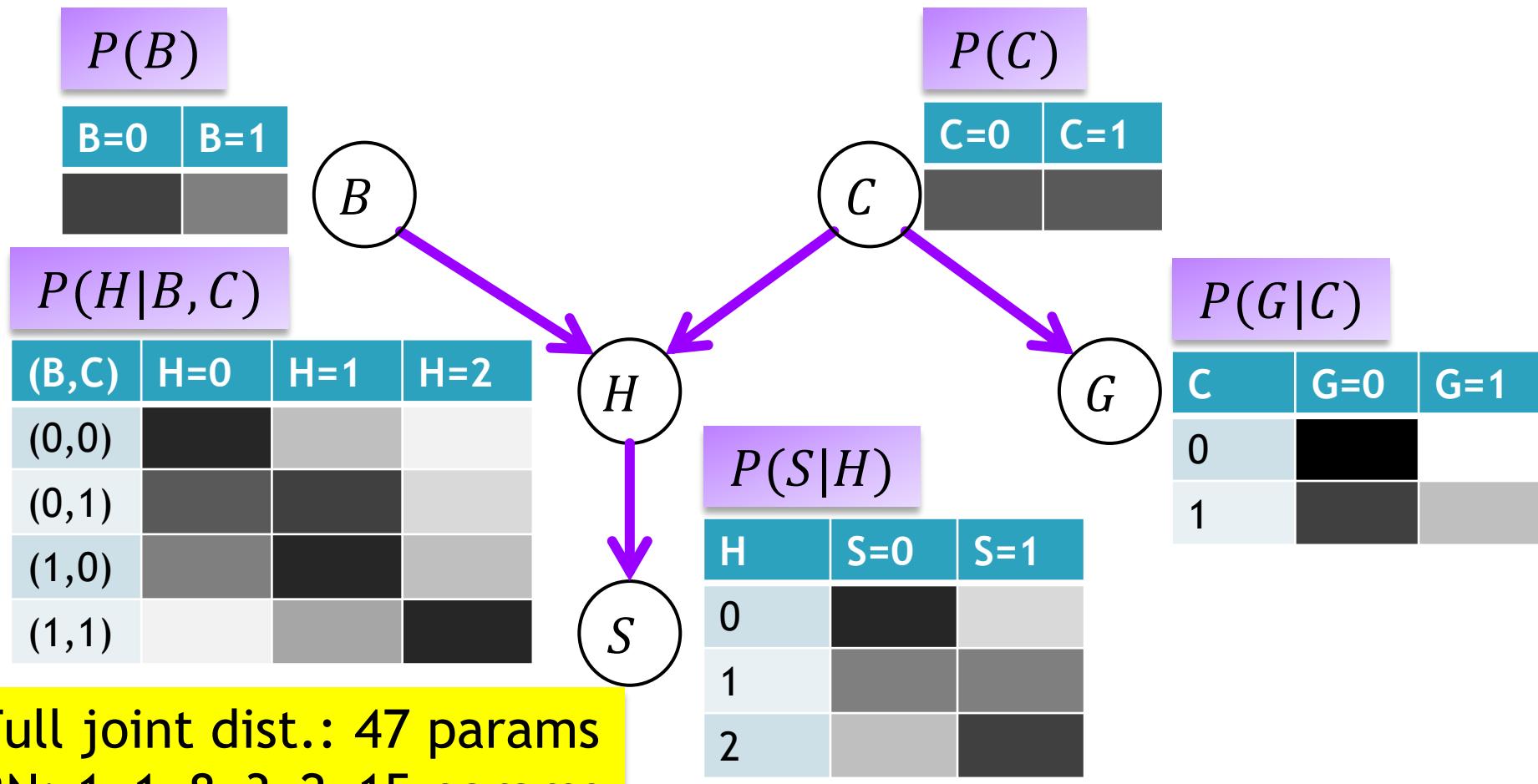
Bayesian Network

- Edges = “direct” influence



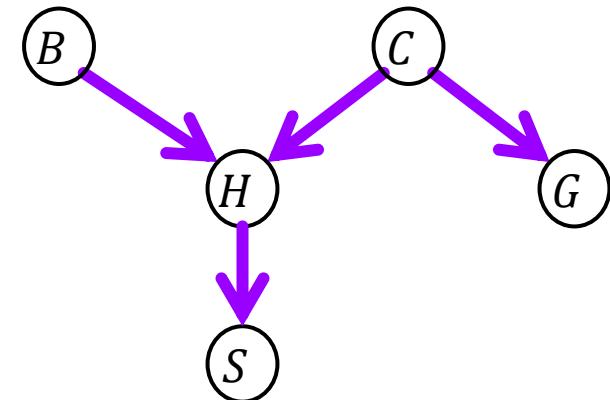
Bayesian Network

- One conditional distribution per node \rightarrow full joint distribution



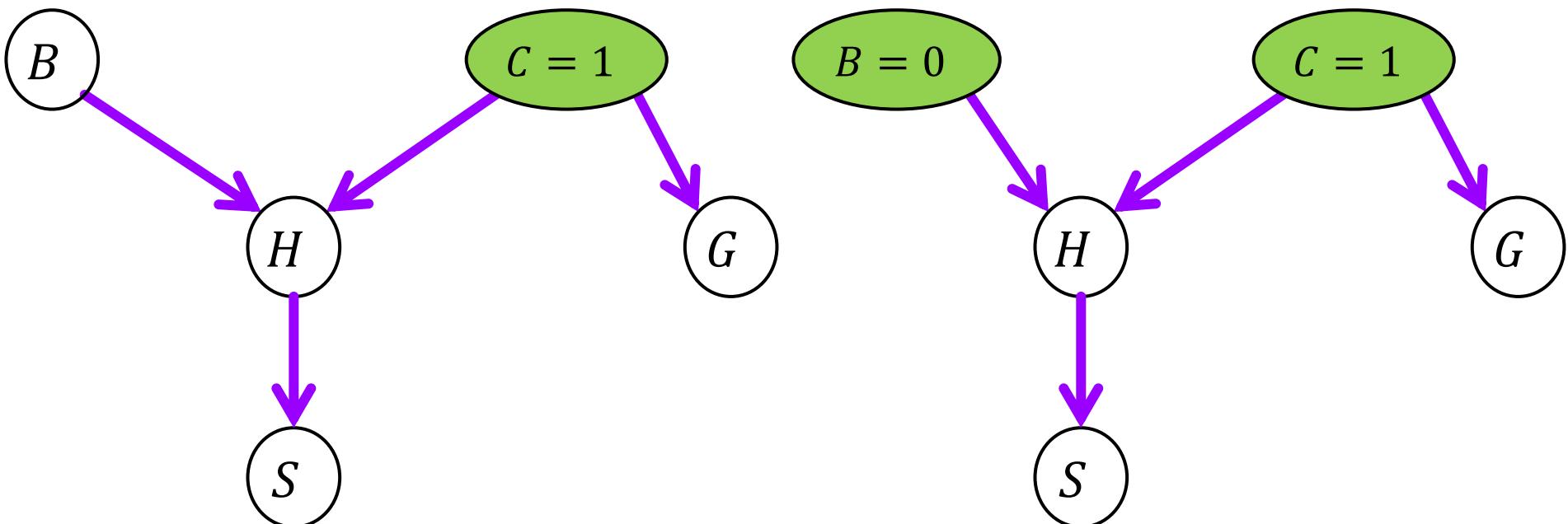
Joint distribution from CPDs

- Joint distribution from chain rule
- $P(b, c, h, g, s) =$
- $= P(c, h, g, s|b)P(b) =$
- $= P(h, g, s|b, c)P(c|b)P(b) =$
- $= P(h, s|b, c)P(g|b, c)P(c)P(b) =$
- $= P(s|b, c, h)P(h|b, c)P(g|c)P(c)P(b) =$
- $= P(s|h)P(h|b, c)P(g|c)P(c)P(b)$
- Joint distribution = product of all individual per-node factors
 - With the joint distribution, everything else follows: all marginal and conditional distributions we could want



Types of reasoning

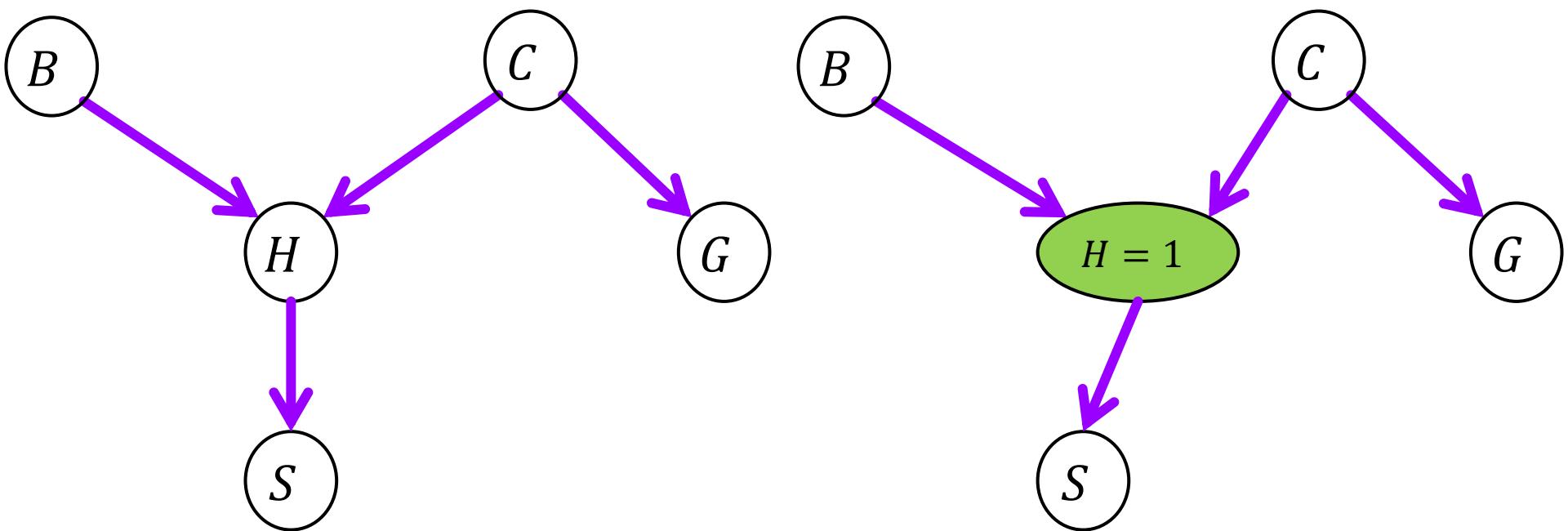
- Causal reasoning / prediction: downstream flow of influence



$$P(S = 1 | C = 1) > P(S = 1 | B = 0, C = 1)$$

Types of reasoning

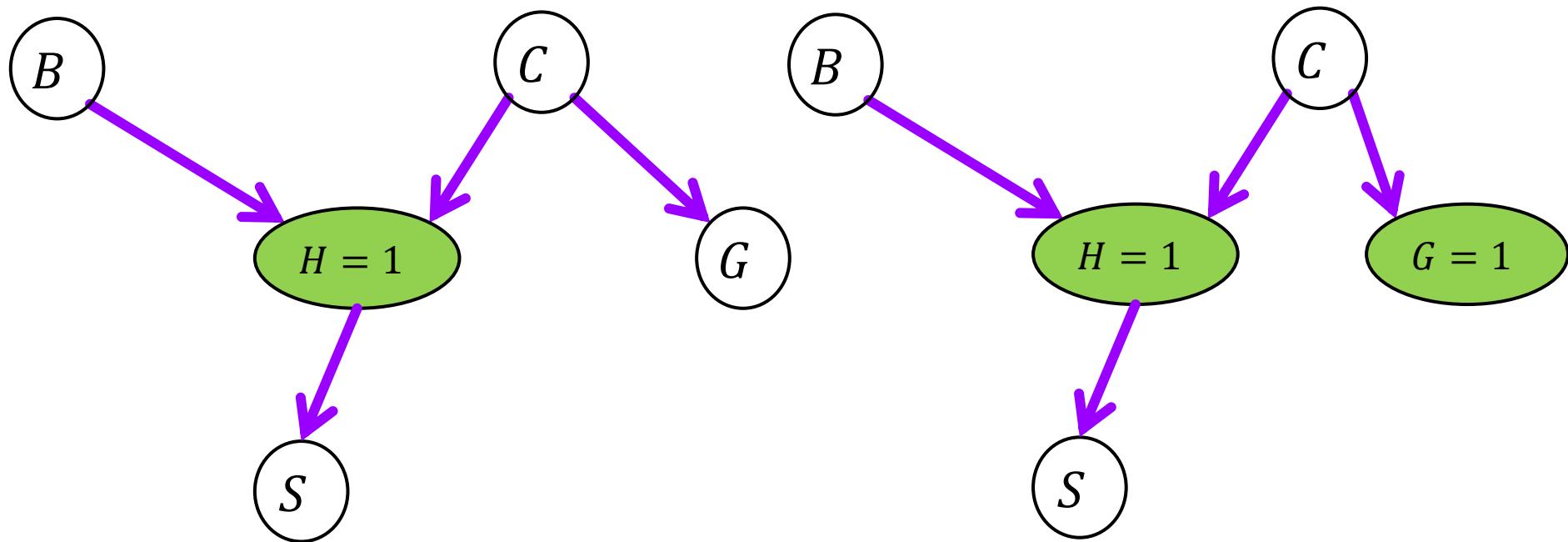
- Evidential reasoning / explanation: upstream flow of influence



$$P(B = 1|H = 1) > P(B = 1)$$
$$P(C = 1|H = 1) > P(C = 1)$$

Types of reasoning

- Intercausal reasoning: combination of upstream/downstream

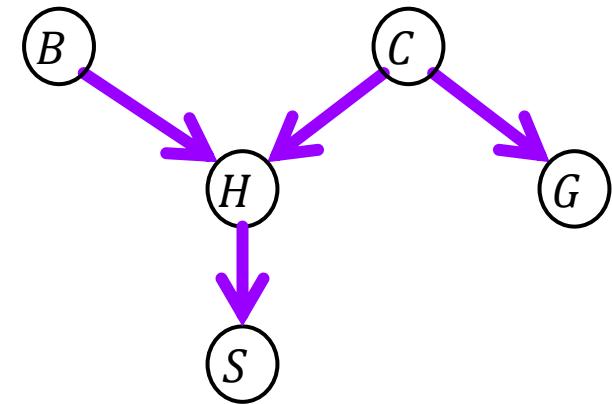


$$P(B = 1|H = 1) > P(B = 1|H = 1, G = 1)$$

Explaining away: the “good grade” explains the “headache”, making the possible cause “beer” less likely

Basic independencies in BNs

- Example: “the wearing of sunglasses depends only on the presence and strength of a headache”
 - Formally: $(S \perp B, C | H)$
- Also:
 - $(G \perp B, H, S | C)$
 - $(B \perp C)$
 - $(H \perp G | B, C)$
 - $(B \perp C, G)$
- How about $(H \perp S, G | B, C)$?
 - No! Intuition: suppose we know $B = 0$ and $C = 1$; then the guess for S changes according to $H = 0, 1, 2$



Basic conditional independencies in BNs

- Bayesian Network: directed acyclic graph (DAG) G
- Def: $Pa(X_i)$ =parents of X_i in G
- Def: $ND(X_i)$ =non-descendents of X_i in G
- Property: G has the following local independence properties:
 - For each X_i :

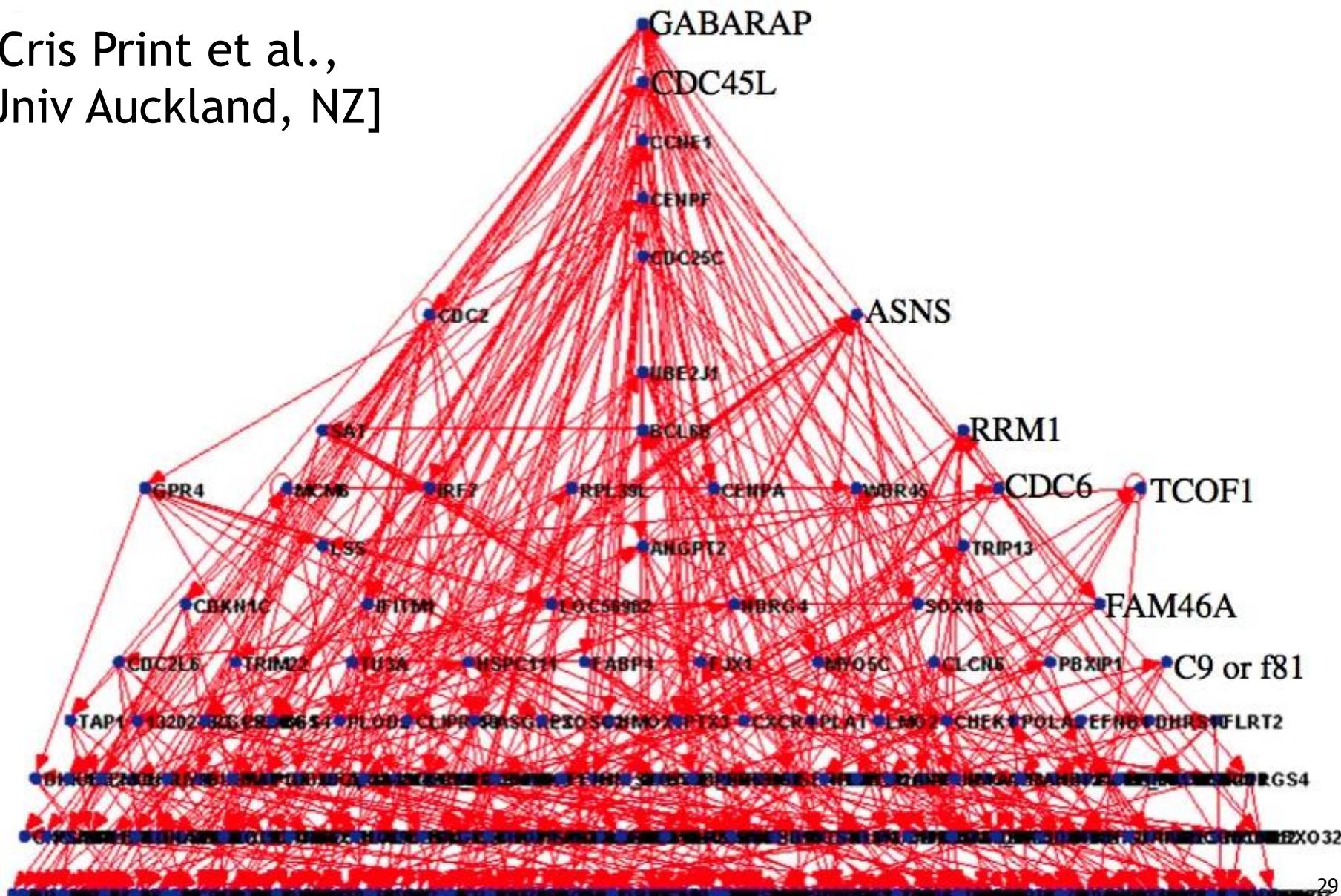
$$(X_i \perp ND(X_i) \mid Pa(X_i))$$

Bayesian Networks: recap

- Defines a multivariate probability distribution
- Models direct causal influences
 - This comes from expert knowledge, underlying mechanisms, data about the problem,...
- In practice: as sparse as possible
- Conditional independence properties as graph (path) properties
- Inference:
 - Observe some variables (observables)
 - Obtain conditional distribution of some other variables of interest → estimate
 - Some variables we do not care (latent)

Example: gene network

[Cris Print et al.,
Univ Auckland, NZ]



Computational challenge in large models

- Suppose G large; a few variables $Y \subset X$ are observed, $Z = X \setminus Y$ are not observed
- Want to estimate $P(Z_{573} | Y)$, where Z_{573} is e.g. one of many diseases in a medical diagnostic system
- Need to compute $P(Z_{573} | Y) =$

$$\sum_{Z_1, Z_2, \dots, Z_{572}, Z_{574}, \dots} P(Z_1, Z_2, \dots, Z_{572}, Z_{573}, Z_{574}, \dots | Y)$$

- Very costly to marginalize out all other latent variables
- Inference methods:
 - Exact
 - Markov Chain Monte Carlo (MCMC)
 - Variational inference

Inference: MCMC

- Probabilistic model:
 - Joint distribution $P(x)$ over $X = (X_1, X_2, \dots, X_n) = (Z, Y)$
 - $Y = (Y_1, \dots, Y_a)$: observed variables
 - $Z = (Z_1, \dots, Z_b)$: unobserved/latent variables
- Goal:
 - Obtain samples from $P(Z|Y = y)$

Gibbs sampling

- Markov chain Q :
 - State of Q is a variable assignment \mathbf{Z}
 - Pick K uniformly from $\{1, \dots, b\}$ (or cycle through)
 - Sample Z_K from $P(Z_K | Z_1, Z_2, \dots, Z_{K-1}, Z_{K+1}, \dots, Z_b, Y = y)$
 - Repeat
- Possible transition in Q :
 - Def: $\mathbf{z}' \sim_k \mathbf{z}$ if $\mathbf{z}' = (z_1, z_2, \dots, z_{K-1}, *, z_{K+1}, \dots, z_b)$, i.e., equal to \mathbf{z} except at position k
 - Transition $\mathbf{z} \rightarrow \mathbf{z}'$ only possible for $\mathbf{z}' \sim_k \mathbf{z}$ for some k

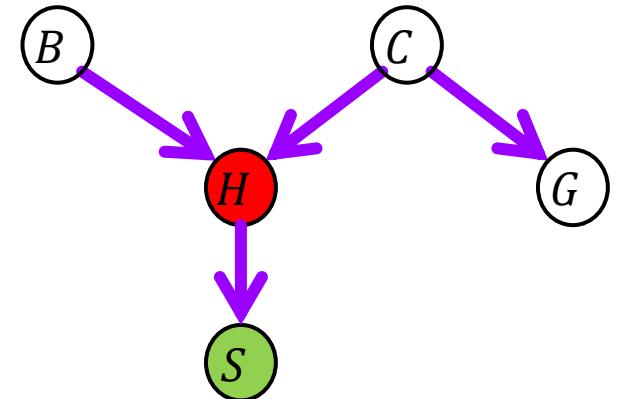
Gibbs sampling: illustration

0	1	2	3	4	...
Y_1	Y_1	Y_1	Y_1	Y_1	
Y_2	Y_2	Y_2	Y_2	Y_2	
Z_1	Z_1	Z_1	Z_1	Z_1	
Z_2	Z_2	Z_2	Z_2	Z_2	
Z_3	Z_3	Z_3	Z_3	Z_3	
Z_4	Z_4	Z_4	Z_4	Z_4	
Z_5	Z_5	Z_5	Z_5	Z_5	

$Z(1) \sim_2 Z(0)$ $Z(2) \sim_5 Z(1)$

Gibbs sampling for BNs: example

- Resampling variable H conditional on S
- $P(H|B, C, G, S) =$
- $= \frac{P(H, B, C, G, S)}{P(B, C, G, S)} =$
- $= \frac{P(H, B, C, G, S)}{\sum_H P(H, B, C, G, S)} =$
- $= \frac{P(B)P(C)P(H|B, C)P(G|C)P(S|H)}{\sum_{H'} P(B)P(C)P(H'|B, C)P(G|C)P(S|H')} =$
- $= \frac{P(H|B, C)P(S|H)}{\sum_{H'} P(H'|B, C)P(S|H')}$



Sampling from a variable only involves factors (CPDs) “touched” by this variable!

Gibbs sampling

- **Claim:**
 - Q is a reversible MC with stationary distribution
$$\pi(\mathbf{z}) = P(\mathbf{Z} = \mathbf{z} | Y = y)$$
 - Interpretation: run the MC Q and collect large # of samples of $\mathbf{Z}|Y = y$, then compute whatever statistic needed: mean, moments, confidence intervals, etc.
 - But: samples are correlated!
- **Reminder:**
 - An ergodic MC (irreducible, aperiodic, pos-recurrent) MC has a single stationary distribution π
 - Ergodic theorem: temporal averages \rightarrow ensemble expectations
 - Reversible MC: if Q is ergodic and we can find a $\pi(\cdot)$ such that for all \mathbf{z}, \mathbf{z}' , $\pi(\mathbf{z})Q(\mathbf{z}, \mathbf{z}') = \pi(\mathbf{z}')Q(\mathbf{z}', \mathbf{z})$, then $\pi(\cdot)$ is the stationary distribution

Transition matrix of Q

- Write
$$P(Z_K | Z_1, \dots, Z_{K-1}, Z_{K+1}, \dots, Z_b, y) \times \\ \times P(Z_1, \dots, Z_{K-1}, Z_{K+1}, \dots, Z_b | y) = \\ = P(Z_1, \dots, Z_b | y)$$
 Does not depend on Z_K
- Transition matrix:

$$Q(\mathbf{z}, \mathbf{z}') = \begin{cases} \frac{P(Z_K = z'_K | z_1, \dots, z_{K-1}, z_{K+1}, \dots, z_b, y)}{b} & \mathbf{z}' \sim_k \mathbf{z} \\ 0 & \text{for some } k \\ & \text{otherwise} \end{cases}$$

$$Q(\mathbf{z}, \mathbf{z}') = \begin{cases} \frac{P(\mathbf{Z} = \mathbf{z}' | y)}{b \sum_{\mathbf{z}'' \sim_k \mathbf{z}} P(\mathbf{Z} = \mathbf{z}'' | y)} & \mathbf{z}' \sim_k \mathbf{z} \\ 0 & \text{otherwise} \end{cases}$$

Gibbs sampling: proof

- Proof:

- $\pi(z)Q(z, z') =$

- $= P(Z = z|y)Q(z, z') =$

- $= \frac{P(Z = z|y)P(z=z'|y)}{b \sum_{z'' \sim_k z} P(Z = z''|y)} =$

- $= \frac{P(Z = z'|y)P(z=z|y)}{b \sum_{z'' \sim_k z'} P(Z = z''|y)} =$

- $= P(Z = z'|y)Q(z', z) =$

- $= \pi(z')Q(z', z)$

Note: z and z' only differ at position k ;
therefore,
 $z'' \sim_k z \Leftrightarrow z'' \sim_k z'$

Detailed balance equations
→ global balance equations
→ $\pi(z)$ is stationary distrib.
of MC Q

Bayesian Network: key ideas

- Two functions:
 - Compact representation for a set of conditional independence assumptions among RVs
 - A data structure to encode a joint distribution compactly through its factors
- Flexibility: model does not specify observables
- Example: 100 binary RVs
 - Full joint distribution: $2^{100} - 1 \sim 10^{30}$ parameters
 - All independent: 100 parameters, but very limiting
 - In practice, much closer to «everything independent» than to «full joint distribution»
 - Tradeoff: compact representation & efficient inference, but still capture main dependencies
- Next week: topic models using graphical models

References

- [D. Koller, N. Friedman: Probabilistic Graphical Models, MIT Press, 2009]
- [Ch. D. Manning, P. Raghavan, H. Schütze: Introduction to Information Retrieval, Cambridge, 2008]
- [C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006]