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▪ Probabilistic models for text
▪ Recall naïve Bayes: words i.i.d. conditional on a class

▪ Word embeddings:
▪ Find a compact representation (vector) that captures 

semantics of a word

▪ Applications: sentiment analysis; machine translation,…

▪ Topic models:
▪ Find a generative model for a set of documents in a 

corpus

▪ Applications: summarization; information retrieval; …

▪ Detour: introduction to graphical models
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▪ Synonymy:
▪ Different words with the same 

meaning

▪ “car” and “automobile”

▪ Polysemy/homonymy:
▪ One word with different 

meanings

▪ “jaguar”: animal, brand of car

▪ For many applications, the 

meaning is more useful than 

the symbol
▪ Information retrieval

▪ Sentiment analysis

▪ Dialog systems 3

word meaning



▪ Recall: vector space model for words

𝑓 𝑤 = 0,0, … , 𝑥, … , 0

▪ Problem: this high-dimensional vector space has 

no relationship to meaning
▪ Distance is the same between any two words

▪ Question: can we find a lower-dimensional 

representations 𝑣(𝑤) such that
▪ Words with similar meanings are close (“coffee” and 

“tea”)

▪ Relationships among words reflected in the space
4

TF-IDF score at 𝑤’s position

in the dictionary



▪ “The  box  with  the  baits  was  under  the  stern  

of  the  skiff  along  with  the  club  that  was  

used  to  subdue  the  big  fish  when  they  were  

brought  alongside.”

▪ In a parallel universe, Hemingway might have (less 

elegantly) written “boat” or “craft”, without 

fundamentally changing the sentence

▪ But the same sentence with “toaster” or 

“porosity” are unlikely to be observed in a corpus

▪ The context (set of nearby words) suggest 

meaning; exchangeable words in a given context 

share meaning

5[Ernest Hemingway, The Old Man and the Sea (1952)]



▪ “The wooden hull of the ship crashed through the 

waves…” → lemming & stemming → 

▪ Word2vec key idea: learn a model of words and 

their context

▪ Two forms: for some window around word, predict
▪ Continuous bag-of-words → predict center from context

▪ Skip-gram → predict context from center
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wood hull ship crash wave

? ? ship ? ?

wood hull ? crash wave



▪ Data: sliding window → 𝑋 = {(𝑤, 𝐶(𝑤))} 

▪ Skip-gram model: conditional probability of 

context 𝐶(𝑤) given word 𝑤, parametrized in some 

way (𝜃)

▪ We want to learn 𝜃 such that corpus probability

ෑ

𝑤∈𝑋

ෑ

𝑐∈𝐶(𝑤)

𝑝(𝑐|𝑤; 𝜃) = ෑ

𝑤,𝑐 ∈𝑋

𝑝(𝑐|𝑤; 𝜃)

is maximized (maximum likelihood estimator)
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𝑪𝒍𝒆𝒇𝒕(𝒘) 𝒘 𝑪𝒓𝒊𝒈𝒉𝒕(𝒘)

box baits under stern skiff

baits under stern skiff along

under stern skiff along club



▪ Each word 𝑤 ∈ 𝑉 and each context word 𝑐 ∈ 𝑉 is 

represented by a (relatively) low-dimensional 

vector in ℝ𝑑 (𝑑 a few hundred)
▪ 𝑢"𝑐𝑎𝑡" is the vector to represent 𝑤 = "𝑐𝑎𝑡"

▪ 𝑣"𝑐𝑎𝑡" is the vector to represent 𝑐 = "𝑐𝑎𝑡"

▪ 𝜃 is the collection of all these vectors

▪ Conditional probability of context given word:

𝑝 𝑐 𝑤 =
𝑒𝑢𝑤⋅𝑣𝑐

σ𝑐′∈𝑉 𝑒𝑢𝑤⋅𝑣𝑐′

▪ Note: this is the  soft-max of 𝑢𝑤 ⋅ 𝑣𝑐 over all 𝑐 ∈ 𝑉

▪ Q: why different vectors for middle words and 

context words?
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▪ Problem: denominator σ𝑐′∈𝑉 𝑒𝑢𝑤⋅𝑣
𝑐′very costly to 

evaluate
▪ |𝑉| in a large corpus 10-100s k

▪ Need to compute for every (𝑤, 𝑐) in a corpus

▪ Negative sampling: modified objective, cheaper to 

compute
▪ Classification: given a pair (𝑤, 𝑐), is it from the corpus?

▪ Def: 𝑝 𝐷 = 1 𝑤, 𝑐 =
1

1+𝑒−𝑢𝑤⋅𝑣𝑐
 : prob. “plausible text”

▪ Maximize probability that all 𝑤, 𝑐 ∈ 𝑋 are plausible

max
𝜃

෍

𝑤,𝑐 ∈𝑋 

log 𝑝 𝐷 = 1 𝑤, 𝑐
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▪ Problem: trivial solution: all vectors equal and 

large → 𝑒−𝑢𝑤⋅𝑣𝑐 extremely small

▪ Need penalty for false positives, ie, 𝐷 = 1 for 

implausible text

▪ Approach: let 𝑋′= all pairs 𝑤, 𝑐 ∉ 𝑋

▪ New loss with negative sampling:

max
𝜃

෍

𝑤,𝑐 ∈𝑋 

log 𝑝 𝐷 = 1 𝑤, 𝑐 + ෍

𝑤,𝑐 ∈𝑋′ 

log 𝑝 𝐷 = 0 𝑤, 𝑐

max
𝜃

෍

𝑤,𝑐 ∈𝑋 

log 𝜎(𝑢𝑤 ⋅ 𝑣𝑐) + ෍

𝑤,𝑐 ∈𝑋′ 

log 𝜎(−𝑢𝑤 ⋅ 𝑣𝑐)

▪ Note: 𝜎 𝑥 =
1

1+𝑒−𝑥 is called the logistic function (“S-

curve”)
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▪ Problem: 𝑋′ is very large!

▪ Idea: instead of enumerating entire 𝑋′, just 

sample from it

▪ For every positive sample 𝑤, 𝑐 ∈ 𝑋, add 𝑘 random 

negative samples 𝑤, 𝑐′ ∉ 𝑋 for the second term
▪ This is much cheaper than to enumerate 𝑋′: just 

generate (𝑤, 𝑐′) and check ∈ 𝑋; if yes, repeat

▪ Optimized with SGD 

▪ Word2vec has some additional heuristics:
▪ Biased negative sampling: favor more frequent 𝑐′ in 

corpus

▪ Adaptive window size

▪ Rare word pruning
11



▪ Similarity: e.g., 8 nearest neighbors (in cosine 

distance 𝑢𝑖 ⋅ 𝑢𝑗/ (𝑢𝑖⋅ 𝑢𝑖)(𝑢𝑗⋅ 𝑢𝑗) ) of “Sweden”:
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Norway 0.76

Denmark 0.72

Finland 0.62

Switzerland 0.59

Belgium 0.59

Netherlands 0.57

Iceland 0.56

Estonia 0.55

[pathmind.com]



▪ Learning associations:
▪ E.g.: NN of (man-king+queen) is woman

13[Mikolov, Sutskever, Chen, Corrado, Dean: Distributed Representations of Words and Phrases and their Compositionality, NIPS 2013]



14[Mikolov, Lee, Sutskever: Exploiting Similarities among Languages for Machine Translation, 2013]

▪ Vectors learned in different languages share 

similar relationships for same concepts:

▪ Important in machine translation, LLMs,…



▪ Without a query, how to describe a corpus?

▪ Topic models:
▪ We see the words of docs, but we want to classify the 

meanings of docs

▪ Ambiguity of individual words – but many words per doc 

helps!

▪ Generalization of naïve Bayes text model
15

document

topic models

comp.sci. biology legal



▪ Document classification

▪ Supervised: training set with known classes
▪ Generalization of binary classification (spam/not spam)

▪ Unsupervised: need to identify sensible topic 

classes by comparing documents

▪ Assumptions:
▪ Number of words per document ≫ 1

▪ Number of topics ≪ number of documents

▪ Examples:
▪ News articles: topics = {countries, business, politics, 

celebrity, …}

▪ Scientific literature: {physics, mathematics, engineering, 

chemistry, life sciences,…}
16



▪ Synonymous: Latent Semantic Analysis (LSA)

▪ Starting point: TF-IDF matrix of corpus

▪  𝑋 =

▪ Remember: high TF-IDF means “term that is rare 

overall, but prominent in this doc” 17

term

document



▪ Latent factors: “topics”

▪ Typically 100-300

▪ Should bunch together synonyms

▪ Should separate homonyms

▪ Critique:
▪ Heuristic, no clean statistical foundation

▪ Sometimes difficult to interpret results

▪ Modern approaches based on probabilistic models: 

▪ better performance

▪ better interpretability

▪ generative
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▪ Modeling a multivariate distribution

▪ Example: insights from an expert:
▪ “Drinking too much beer can result in headaches”

▪ “Studying too much can cause headaches as well”

▪ “To get a good grade, one must study”

▪ “Wearing sunglasses tempers the pain of a headache”

▪ How to translate this into a probabilistic model?
▪ Random variables

▪ Dependencies?

▪ Option: define/learn full joint distribution → many 

parameters, memory-intensive, hard to learn

▪ Option: encode «causal structure» into model

19



▪ Edges = “direct” influence

20

𝐻

𝐵 𝐶

𝐺

𝑆

beer

{0,1}

cramming

{0,1}

grade

{0,1}

headache

{0,1,2}

sunglasses

{0,1}
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𝐻

𝐵 𝐶

𝐺

𝑆

(B,C) H=0 H=1 H=2

(0,0)

(0,1)

(1,0)

(1,1)

C=0 C=1

H S=0 S=1

0

1

2

C G=0 G=1

0

1

B=0 B=1

▪ One conditional distribution per node → full joint 

distribution

Full joint dist.: 47 params

BN: 1+1+8+3+2=15 params

𝑃(𝐵)

𝑃(𝐻|𝐵, 𝐶)

𝑃(𝑆|𝐻)

𝑃(𝐶)

𝑃(𝐺|𝐶)



▪ Joint distribution from chain rule

▪ 𝑃 𝑏, 𝑐, ℎ, 𝑔, 𝑠 =

▪ = 𝑃 𝑐, ℎ, 𝑔, 𝑠 𝑏 𝑃 𝑏 =

▪ = 𝑃 ℎ, 𝑔, 𝑠 𝑏, 𝑐 𝑃 𝑐|𝑏 𝑃 𝑏 =

▪ = 𝑃 ℎ, 𝑠 𝑏, 𝑐 𝑃 𝑔 𝑏, 𝑐 𝑃 𝑐 𝑃 𝑏 =

▪ = 𝑃 𝑠 𝑏, 𝑐, ℎ 𝑃 ℎ 𝑏, 𝑐 𝑃 𝑔 𝑐 𝑃 𝑐 𝑃 𝑏 =

▪ = 𝑃 𝑠 ℎ 𝑃 ℎ 𝑏, 𝑐 𝑃 𝑔 𝑐 𝑃 𝑐 𝑃(𝑏)

▪ Joint distribution = product of all individual per-

node factors
▪ With the joint distribution, everything else follows: all 

marginal and conditional distributions we could want
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𝐻

𝐵 𝐶

𝐺

𝑆



▪ Causal reasoning / prediction: downstream flow of 

influence

23

𝐻

𝐵 𝐶 = 1

𝐺

𝑆

𝐻

𝐵 = 0 𝐶 = 1

𝐺

𝑆

𝑃 𝑆 = 1 𝐶 = 1 > 𝑃(𝑆 = 1|𝐵 = 0, 𝐶 = 1)



▪ Evidential reasoning / explanation: upstream flow 

of influence

24

𝐻

𝐵

𝐺

𝑆

𝐶

𝐻 = 1

𝐵

𝐺

𝑆

𝐶

𝑃 𝐵 = 1 𝐻 = 1 > 𝑃 𝐵 = 1
𝑃 𝐶 = 1 𝐻 = 1 > 𝑃(𝐶 = 1)



▪ Intercausal reasoning: combination of 

upstream/downstream
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𝐻 = 1

𝐵

𝐺

𝑆

𝐶

𝑃 𝐵 = 1 𝐻 = 1 > 𝑃(𝐵 = 1|𝐻 = 1, 𝐺 = 1)

𝐻 = 1

𝐵

𝐺 = 1

𝑆

𝐶

Explaining away: the “good grade” explains the “headache”,

making the possible cause “beer” less likely



▪ Example: “the wearing of sunglasses depends only 

on the presence and strength of a headache”
▪ Formally: (𝑆 ⊥ 𝐵, 𝐶, 𝐺|𝐻)

▪ Also:
▪ (𝐺 ⊥ 𝐵, 𝐻, 𝑆|𝐶)

▪ 𝐵 ⊥ 𝐶

▪ (𝐻 ⊥ 𝐺|𝐵, 𝐶)

▪ (𝐵 ⊥ 𝐶, 𝐺)

▪ How about (𝐻 ⊥ 𝑆, 𝐺|𝐵, 𝐶)?
▪ No! Intuition: suppose we know 𝐵 = 0 and 𝐶 = 1; then 

the guess for 𝑆 changes according to 𝐻 = 0,1,2

26

𝐻

𝐵 𝐶

𝐺

𝑆



▪ Bayesian Network: directed acyclic graph (DAG) 𝐺

▪ Def: 𝑃𝑎(𝑋𝑖)=parents of 𝑋𝑖 in 𝐺

▪ Def: 𝑁𝐷(𝑋𝑖)=non-descendents of 𝑋𝑖 in 𝐺

▪ Property: 𝐺 has the following local independence

properties:
▪ For each 𝑋𝑖: 

𝑋𝑖 ⊥ 𝑁𝐷 𝑋𝑖  𝑃𝑎(𝑋𝑖))
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▪ Defines a multivariate probability distribution

▪ Models direct causal influences
▪ This comes from expert knowledge, underlying 

mechanisms, data about the problem,…

▪ In practice: as sparse as possible

▪ Conditional independence properties as graph 

(path) properties

▪ Inference: 
▪ Observe some variables (observables)

▪ Obtain conditional distribution of some other variables of 

interest → estimate

▪ Some variables we do not care (latent)

28
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[Cris Print et al., 

Univ Auckland, NZ]



▪ Suppose 𝐺 large; a few variables 𝑌 ⊂ 𝑋 are 

observed, 𝑍 = 𝑋\𝑌 are not observed

▪ Want to estimate 𝑃(𝑍573|𝑌), where 𝑍573 is e.g. one 

of many diseases in a medical diagnostic system

▪ Need to compute 𝑃 𝑍573 𝑌 =

෍

𝑍1,𝑍2,…,𝑍572,𝑍574,…

𝑃(𝑍1, 𝑍2, … , 𝑍572, 𝑍573, 𝑍574, … |𝑌)

▪ Very costly to marginalize out all other latent variables

▪ Inference methods:
▪ Exact

▪ Markov Chain Monte Carlo (MCMC)

▪ Variational inference
30



▪ Probabilistic model:

▪ Joint distribution 𝑃(𝑥) over 𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑛 = (𝑍, 𝑌)

▪ 𝑌 = (𝑌1, … , 𝑌𝑎): observed variables

▪ 𝑍 = (𝑍1, … , 𝑍𝑏): unobserved/latent variables

▪ Goal:
▪ Obtain samples from 𝑃(𝑍|𝑌 = 𝑦)

31



▪ Markov chain 𝑄:
▪ State of 𝑄 is a variable assignment 𝒁

▪ Pick 𝐾 uniformly from {1, … , 𝑏} (or cycle through)

▪ Sample 𝑍𝐾 from 𝑃(𝑍𝐾|𝑍1, 𝑍2, … , 𝑍𝐾−1, 𝑍𝐾+1, … , 𝑍𝑏 , 𝑌 = 𝑦)

▪ Repeat

▪ Possible transition in 𝑄:
▪ Def: 𝒛′~𝑘𝒛 if 𝒛′ = 𝑧1, 𝑧2, … , 𝑧𝐾−1,∗, 𝑧𝐾+1, … , 𝑧𝑏 ,i.e., equal

to 𝒛 except at position 𝑘

▪ Transition 𝒛 → 𝒛′ only possible for 𝒛′~𝑘𝒛 for some 𝑘

32
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𝑌1

𝑌2

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5

𝑍(1)~2𝑍(0)

0

𝑌1

𝑌2

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5

1

𝑌1

𝑌2

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5

2

𝑌1

𝑌2

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5

3

𝑌1

𝑌2

𝑍1

𝑍2

𝑍3

𝑍4

𝑍5

4

…

𝑍(2)~5𝑍(1)



▪ Resampling variable 𝐻 conditional on 𝑆

▪ 𝑃 𝐻 𝐵, 𝐶, 𝐺, 𝑆 =

▪   =
𝑃 𝐻,𝐵,𝐶,𝐺,𝑆

𝑃 𝐵,𝐶,𝐺,𝑆
=

▪   =
𝑃 𝐻,𝐵,𝐶,𝐺,𝑆

σ𝐻 𝑃 𝐻,𝐵,𝐶,𝐺,𝑆
=

▪   =
𝑃 𝐵 𝑃 𝐶 𝑃(𝐻|𝐵,𝐶)𝑃(𝐺|𝐶)𝑃(𝑆|𝐻)

σ𝐻′ 𝑃 𝐵 𝑃 𝐶 𝑃 𝐻′ 𝐵, 𝐶 𝑃 𝐺 𝐶 𝑃 𝑆 𝐻′ =

▪   =
𝑃 𝐻 𝐵, 𝐶 𝑃 𝑆 𝐻

σ
𝐻′ 𝑃 𝐻′ 𝐵, 𝐶 𝑃 𝑆 𝐻′

34

𝐻

𝐵 𝐶

𝐺

𝑆

Sampling from a 

variable only involves 

factors (CPDs) 

“touched” by this 

variable!



▪ Claim:
▪ 𝑄 is a reversible MC with stationary distribution 

𝜋 𝒛 = 𝑃(𝒁 = 𝒛|𝑌 = 𝑦)

▪ Interpretation: run the MC 𝑄 and collect large # of 

samples of 𝒁|𝑌 = 𝑦, then compute whatever statistic 

needed: mean, moments, confidence intervals, etc.

▪ But: samples are correlated!

▪ Reminder:
▪ An ergodic MC (irreducible, aperiodic, pos-recurrent) MC 

has a single stationary distribution 𝜋

▪ Ergodic theorem: temporal averages → ensemble 

expectations

▪ Reversible MC: if 𝑄 is ergodic and we can find a 𝜋 .  such 

that for all 𝒛, 𝒛′, 𝜋 𝒛 𝑄 𝒛, 𝒛′ = 𝜋 𝒛′ 𝑄(𝒛′, 𝒛), then 𝜋(. ) is 
the stationary distribution 35



▪ Write     𝑃 𝑍𝐾 𝑍1, … , 𝑍𝐾−1, 𝑍𝐾+1, … , 𝑍𝑏 , 𝑦 ×
 × 𝑃 𝑍1, … , 𝑍𝐾−1, 𝑍𝐾+1, … , 𝑍𝑏|𝑦 =

                    = 𝑃(𝑍1, … , 𝑍𝑏|𝑦)

▪ Transition matrix:

𝑄 𝒛, 𝒛′ = ቐ
𝑃 𝑍𝐾 = 𝑧𝐾

′ 𝑧1, … , 𝑧𝐾−1, 𝑧𝐾+1, … , 𝑧𝑏, 𝑦

𝑏 
𝒛′~𝑘𝒛

for some 𝑘
0 otherwise

𝑄 𝒛, 𝒛′ = ൞

𝑃 𝒁 = 𝒛′ 𝑦

𝑏 σ𝒛′′~𝑘𝒛 𝑃 𝒁 = 𝒛′′ 𝑦
𝒛′~𝑘𝒛

0 otherwise

36

Does not depend on 𝑍𝐾



▪ Proof:

▪ 𝜋 𝑧 𝑄 𝑧, 𝑧′ =

▪   = 𝑃 𝑍 = 𝑧 𝑦 𝑄 𝑧, 𝑧′ =

▪   =
𝑃 𝑍 = 𝑧 𝑦 𝑃(𝑍=𝑧′|𝑦)

𝑏 σ
𝑧′′~𝑘𝑧

𝑃 𝑍 = 𝑧′′ 𝑦
=

▪   =
𝑃 𝑍 = 𝑧′ 𝑦 𝑃(𝑍=𝑧|𝑦)

𝑏 σ
𝑧′′~𝑘𝑧′ 𝑃 𝑍 = 𝑧′′ 𝑦

=

▪   = 𝑃 𝑍 = 𝑧′ 𝑦 𝑄 𝑧′, 𝑧 =

▪ = 𝜋 𝑧′ 𝑄(𝑧′, 𝑧)

37

Note: 𝑧 and 𝑧′ only 

differ at position 𝑘; 

therefore,

 𝑧′′~𝑘𝑧 ⇔ 𝑧′′~𝑘𝑧′

Detailed balance equations

→ global balance equations

→ 𝜋 𝑧  is stationary distrib.

of MC 𝑄



▪ Two functions:
▪ Compact representation for a set of conditional 

independence assumptions among RVs

▪ A data structure to encode a joint distribution compactly 

through its factors

▪ Flexibility: model does not specify observables

▪ Example: 100 binary RVs
▪ Full joint distribution: 2100 − 1~1030 parameters

▪ All independent: 100 parameters, but very limiting

▪ In practice, much closer to «everything independent» 

than to «full joint distribution»

▪ Tradeoff: compact representation & efficient 

inference, but still capture main dependencies

▪ Next week: topic models using graphical models 38



▪ [D. Koller, N. Friedman: Probabilistic Graphical 

Models, MIT Press, 2009]

▪ [Ch. D. Manning, P. Raghavan, H. Schütze: 

Introduction to Information Retrieval, Cambridge, 

2008]

▪ [C. Bishop, Pattern Recognition and Machine 

Learning, Springer, 2006]
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